ECE137B Final Exam

There are 5 problems on this exam and you have 3 hours There are pages 1-19 in the exam: please make sure all are there.

Do not open this exam until told to do so Show all work: Credit will not be given for correct answers if supporting work is not shown. Class Crib sheets and 2 pages (front and back→ 4 surfaces) of your own notes permitted. Don't panic.

Time function	LaPlace Transform
$\delta(t)$	1
U(t)	1/s
$e^{-\alpha t} \cdot U(t)$	$\frac{1}{s+\alpha}$ or $\frac{1/\alpha}{1+s/\alpha}$
$e^{-\alpha t}\cos(\omega_d t)\cdot U(t)$	$\frac{s+\alpha}{\left(s+\alpha\right)^2+\omega_d^2}$
$e^{-\alpha t}\sin(\omega_d t)\cdot U(t)$	$\frac{\omega_d}{\left(s+\alpha\right)^2+\omega_d^2}$

Name: ______

Problem	points	possible	Problem	points	possible
1a		3	2		10
1b		8	3a		7
1c		5	3b		13
1d		12	4a		10
1e		7	4b		5
1f		5	5a		5
			5b		5
			5c		5

Problem 1, 40 points

method of first-order and second-order time constants, some feedback theory

The circuit below is an op-amp

Part a, 3 points DC analysis

Find all transistor DC emitter currents, find all node voltages. Make these on the circuit diagrm.

$\lambda = 1/20$ V for Q3 and Q9.	$\lambda = 0$ for all other transistors											
$ V_{th} =0.3$ V for all transistors, $g_m=1$ mS for all transistors.												
Q5 : $C_{gs} = 2$ fF, $C_{gd} = 0.5$ fF.	Q6 : $C_{gs} = 0$ fF, $C_{gd} = 0.5$ fF.											
All other transistors: $C_{gs} = C_{gd} = 0$ fF.												
The DC component of Vin is zero volts												
The supplies are +/- 2 Volts.												
Pick R3 so that the DC drain current of Q8 is 0.3 mA												
R1=1 MegOhm R2=100 kOhm												

Part b, 8 points mid-band analysis

Find the low-frequency loop transmission: T(f=0 Hz) =_____

To do this, you need to cut the feedback loop, thus, to find the loop transmission

Part c, 5 points feedback theory

At low frequencies, what is the closed-loop gain V_{out} / V_{in} ?

Treat C_{infinite} as an AC short (not a capacitor) in the MOTC analysis.

V_{out} / V_{in} =_____

Part d, 12 points

motc

Using MOTC, you will find the frequency, in Hz (not rad/sec), of the *two* major poles in the transfer function.

capacitor 1: Cgs of Q5	capacitor 2: Cgd of Q5	capacitor 3: Cgd of Q6
$R_{11}^0 =$	$R_{22}^0 =$	$R_{33}^0 =$
$R_{22}^1 =$	$R_{33}^1 =$	$R_{33}^2 =$
$f_{p1} =$	$f_{p2} =$	

Remember to treat C_{infinite} as an AC short (not a capacitor) in the MOTC analysis.

Part e, 7 pointsMake accurate asymptotic plots of T. Find the phase margin and the loop bandwidth.Phase margin =Loop bandwidth =

Draw the magnitude of T on this plot

Frequency, Hz

Part f, 5 points

What is the gain and bandwidth of the closed-loop amplifier ?

low frequency Vout/Vgen=_____ bandwidth of Vout/Vgen=_____

Problem 2: 10 points

method of time constants analysis

R1=1 KOhm, R2=2kOhm, R3=3kOhm, R4=4 kOhm, C1= 1 fF C2=2 fF Using MOTC, find the coefficients a1 and a2 of transfer function Vout(s)/Vgen(s), given a transfer function in the standard form $\frac{V_{out}(s)}{V_{gen}(s)} = \frac{V_{out}}{V_{gen}} \bigg|_{DC} \frac{1+b_1s+b_2s^2+...}{1+a_1s+a_2s^2+...}$

 $V_{gen}(s) = V_{gen}\Big|_{DC} 1 + a_1 s + a_2 s^2 + \dots$

$$\begin{array}{c} R_{11}^{0} = \underline{\qquad} & R_{22}^{0} = \underline{\qquad} & R_{22}^{1} = \underline{\qquad} & a_{1} = \underline{\qquad} & a_{2} = \underline{\qquad} & a_{3} = \underline{\qquad} &$$

Problem 3: 20 points

Part a, 7 points

Draw an accurate small-signal equivalent circuit model of the circuit above.

<u>Part b, 13 points</u> Using NODAL ANALYSIS, find the transfer function Vout(s)/Vin(s) The answer must be in standard form $\frac{V_{out}(s)}{V_{in}(s)} = \frac{V_{out}}{V_{in}}\Big|_{midband} \times \frac{1 + b_1 s + b_2 s^2 + \dots}{1 + a_1 s + a_2 s^2 + \dots}$,

Vout(s)/Vin(s)=_____

Problem 4, 15 points

negative feedback

part a, 10 points

The amplifier has a differential gain of 10^4 . R1=9 kOhm, R2=1 kOhm. The op-amp has infinite differential input impedance and zero differential output impedance.

The differential amplifier has 2 poles in its openloop transfer function.

One, the dominant pole, is at a low frequency, and can be adjusted by appropriately adjusting a compensation capacitor internal to the op-amp. The second one is at 200 MHz

а

To repeat:

 f_{p1} = dominant pole frequency= you must find the required value f_{p2} = second pole frequency= 200 MHz

PICK f_{p1} so that the phase margin is 161.6 degrees.

Using the Bode plot on the next page, plot the open-loop gain (A_d or A_{ol}), the inverse of the feedback factor ($1/\beta$), closed loop gain (A_{CL}). *Label all axes, slopes, pole/zero frequencies, etc.* Determine the following:

 f_{p1} =_____ Loop bandwidth=_____

Vout/Vgen at DC=_____

_						ш						Ш						Ш				1		щ						ш				Ш						Ш					ш
			-					- 1-	-							5.5	÷	13				+		212	-			-						3.2	2.5			33	1.5					2.2.3	-
		зb	-51	tit.	5.5		11	ti:	5	tit.	51	1.5	2.2	t di t	t t	5.5	1	515	2.2	÷	t b	÷.		212	1	сia.	t i t		11	5.5	5.5	5.5	55	5.5	6.5	55	ΞŤ	55	110		2.2	i ci	ΞŤ.	107	
		2.2	124	12	2,3	i Gu	22	272	ц.	2,2	i a i	51 Er	22	121	11	40	ι÷,	414	2.2	4	2,2	40	2121	ELE.	12.3	2,2	272	12.	244	44	2.27	2 4	2,2,	9 E	Ъ. I.	2.2,	11	44	444	14	22	72,	24	2,2,7	
-		7 0	(π)	- 17	(n) n	(in)		7.07	- 70	- 1 -	in i	n n			τ,	n -	(r)	т іт		т.	- (r	$\mathbf{T}^{(1)}$	r (n)	ni n		- 6	- i -	17.1	т (т.	n in	7 7		$\pi(\pi)$	n r	$\tau \in \tau_{-}$	7 7	т. т	n n	т (п	ц п .,		t to	т т	n in i	
		0.0	-24	2.0	0.1	101	2.2	212	2	242	-2.6	0.0	2.2	20	11	2.2	11	212	2.2	1	2.0	Ξ.	10	0.0	12.3	2.0	212	101	212	9.0	2.01	2.2	2.2	3.0	D.C.	2.2	11	2.2	-1-12	- <u>D</u> -	2.2	10	ΞΞ.	5.03	
	- -		-1	- 1-	212	191		- ! -	!	-!-	12.1	. U		- 4		2.5	11	7.17		÷ +	- 5	1 .	112	LU L	-	- 1-	-1-	121	-14	212	!	!	-1-1	2.0	10 L	!	- 1	2.2	1.12	112		<u>+</u>	- 1	L U I	
_		22	21	12			2.2	2.2		2)2			2.2		11	20		- 14	2.2	1	22	1		ELE.	12.3	12	2,2				2.2	22	2,2,	12	2.5	22	22		- E 14		2.2	+ - ! :	22	E IELI	
		- 2	-	- 1-				-1-		-1-				·	÷÷	4.5	÷	4.8		÷÷	- 2	÷		Нè	-	- 1-	-1-	- 24	-14	F	1		-1-1	48	88		÷÷	-14	18	. ÷		÷ - 1	÷÷.	223	-
		2.0	-57	10	60	- Ū-	2.2	272	5	272	-51	1.0	2.2	5.	17	5.5	E.	5.5	2.2	1	2.0	Ŧ.	10	0.0	1.1	10	212	10.	515	5.0	2.25	2.5	5.5	5.5	6.5	2.5	11	55	10	- Ē	2.2	1.55	11	107	
		2.6	21	- 12	444	140	22	242	- 40	272	64.6		22	- 1	4	44	(# I	4.14	2.2		2,2	4	- 1-1	FUE	12.5	- 14	212	14.1	-14	414	2.27	2.4	2,2,	4.6	60 F	2.2	2.2	4.4	6.14	1.14	22	42)	24.	6.640	
_		7.5	(π)	1.0	0.0	(m)		7.07	10	797	(n. (n n	2.2	1.70	T, T	2.5	(T)	т (т		т.	7.0	\mathbf{T}_{i}	n ini	n) n		т. ст.	212	17.1	717	nin.	2,23		2020	7.0	$\mathbb{P}(\mathbb{P})$	7, 71	7.7	0.0	1.17	0.00		T 7 (τ.	n in i	
		2.0	-24	2.0	0.3	-0-	22	242	2.	242	-2.6	0.0	2.2	120	11	2.2	- E 1	212	2.2	Ξ.	2.0	Ξ.	20	515	- 2.3	2.0	212	10	212.	90	2.01	2.2	202	3.0	D D.	2.2	2.5	2.2	-5-0	÷2.,	22	3.23	ΞΞ.	5.00	
		- 5	-1	- 1-	99	101		- 1-	а, 2	-1-	12.1	0.0		- P -	- 1	2.5	1.1	7.17		÷ 1	- 5	Ε.	99	D.C	-	- 1-	-1-	191	-12	9.6	1		-1-1	2.0	10 L		- 1	2.2	100	112		1 - 1	- E.	0.001	<u></u>
_		11	12	12			2.2	212		212			2.2		11	11		- 14	2.2	1	212	11		EL E	12.0	- 1-	212		-14		2.23	2 2	2121	1 1	2.5	2.2	11		1.14		2.2	+ - !	::	E 1-11	
		÷ è	-1	÷ h	2.5			-1-	- 4	-1-					÷÷	4.5	÷	4.6		÷÷	- h	÷		Нè		- 61	-1-	÷.	-14	E	1		-1-1	48	85		÷÷	44	10			÷ - 1	÷÷.	i da	-
		зb	-51	12	5.5	101		212	5	ci c	5.	1.7	2.2	15	t t	5.5	1.	515	2.2	÷Ť.	t it	÷.	10	ΤĒ	1.1	τit.	515	1.5	сiй.	5.5	2.5	5.5	5.5	5.5	6.5	55	ΞŤ	55	110	1.	2.2	ŤΞ	ΞŤ.	107	
		2.2	а,	2,2	44	i An	22	272	- L	2,2	44	21 Eu	2.2	14	11	4.5	ι÷,	444	2.2	4	2,2	4	2,2,	Ê Ê	- 2.3	2,2	2,2	÷2.	242	G.C.	2.2,	2 4	2,2,	4 E	같은.	2.2,	2.2	44	i Fi G	14	22.	72,	24.	E E I	
-			(π)	- 17	1111	(in)		717	- 10	- 1 -	in i	n n			τ	n -	τı	т іт		τ.		$\mathbf{T}^{(1)}$	r ini	ni n	-		717	17.1	т (т.	nin.	7,71		$\pi(\pi)$	п с	F) = 1		т т	n n	т (п	ιπ.		t ti	т т	n in i	
		0.0	-24	2.0	0.3	-0-	2.2	242	2.	242	-2.6	D D	2.2	20	11	2.0	Ð	2.0	2.2	Ξ.	2.0	Ξ.	10	515	12.0	2.0	010	101	212	9.0	0.01	2.2	202	3.0	Ð D.	2.2	2.5	2.2	-5-0	- <u>0</u> -	2.2	3.20	2.5	5.00	
			1	- 1-	9.12	000		- 1-	- P.	-1-	0.0	υu		- P -	- 1	2.5	1.1	7.17		- ± -	- 5	Τ.	99	0.0		- 14	-1-	191	112	9.6	1	- 2	2121	2.0	10 L.	1	2 L	0.0	10.00	04.		1 - 1	2 E -	0.00	<u></u>
_		11	12		1-1-1		2.2	212		212			2.2		11	2.5		2.2	2.2		2.5	11	- 1-1	ELE.	12.3	- 1-	212		-14	111	2.25	2.2	2121	문문	2.5	2.2	2.2	11	1.14		2.2.	* - !	2.2	E 1-11	
		÷È	(-1)	- 64				-1-	- 41	-1-	33			- 47	÷÷	4.5	÷	438		÷41	- 2	÷		222		- 21	-1-	18	-14	a			-1-1	48	8.5	1	÷÷	33	12.3	. A.		÷ - 1	÷÷.	222	-
		- 2	- 11	- 25	11			-11	- E.	-1-	15.3	1.5		t di t	÷÷.	11		111		÷ † 1	하는	÷		212		- 21	nin.	12	-14	51E.	5.51	- 5	-151	18	215	지원	÷÷.	111	1111			÷ - 1	÷÷.	122	
		2.2	127	2.2	2.3	i i i i i	22	272	- A.	272	44		2.2	- L.	11	44	÷.	4.4	2.2	а.	2.2	40	- 1-1	ELE.	- 2.0	2,2	272	12.1	44	442	2.27	24	2,2,	4.6	44.2	2.2	22	44	14.14	14.	22.	727	22.	E IEI A	
_			(π)	- 1-	ini n	(in)		- 1-		- 1 -	in i	n n			τ, r	n -	(r)	т іт		т.	- 6	$\mathbf{T}^{(1)}$	r ini	ni n		- 61	- 1 -	in i	т (п.	nin.			$\pi_{1}(\pi)$	n n	$\mathbf{r} \in \mathbb{R}^{n}$		т т	n n	n in	um.		t ni	т т	n in e	
		0.0	-24	с C.	0.3	-0-	2.2	0.0	÷ 0.	242	0.0	0.0	2.2	1.20	11	2.2	- E 1	313	2.2	Ξ.	2.0	Ξ.	0.0	515	12.0	2.0	010	101	212	0.0	0.01	2.2	2.0	3.0	0.0	0.0	2.5	0.0	-5-0	- <u>1</u>	2.2	3 D I	ΞΞ.	5.04	
	- -	20	-1	- 1-	9.1	101		- 1-	ω,	-1-	12.1	0.0		. Д.,	- 1	2.5	1.1	2.12		- ± -	2 N.	Τ.	υų	L L	-	- 12	-1-	. L. I	212	uru.	2, 21	2.2	2121	3.0	$\mathbb{D}(\mathbb{L})$	2.12	2.1	2.2	10.12	92.		1 2 1	2 L.	t i tu i	<u></u>
			-1	- 1-		140		- 1-	-	-1-					- +		. + 1	- 14		÷.,	- 1-	+ -	- 1-1	FLF		- 1-	-1-	151	-1.4		2,21		-1-1	н н	HL -	1	- +		H 14	1.14		+ - 1	- +	H 1-1 1	
		2.2	-21	2,2	21	121	2.2	202		2)2	12.5	2.2.	2.2		11	20	÷.	212	2.2	÷.	2,2	Į.,		212	- 2-3	2,0.	2)2		212.	212	2.2)	2 2	212	3.2	맛요.	2.2	2 Į.	22	-513	12	22.	Į I !	2 Ç.	2,21	
		- 2	-1	- 21	2.3			-1-	- 1	-1-	11				÷÷	4.5	-	434		÷ ÷ .	- 2	÷		212	-	- 21	-1-	11	-14	21-	1		-1-1	48	응구.	1	÷÷.	33	113			÷ - 1	÷÷.	223	-
		2.2	127	12	141.4	140	2.2	242	4	272	14.1		2.2	1.	11	40	4	4.14	2.2	4	2.2	÷.		ELE.	12.0	22	272	12.1	44	414	2.27	24	2121	귀리	£12.	2.2	22	44	16.14	14	2.2.	÷ - i	22.	E IEI A	
_		n e	-1	- ini	ini n	un i		- 15	- m	- 1 -	in r	n n			÷ r	n 1	(T)	т іт		π.	n in	$\mathbf{T}^{(1)}$	n ini	ni n		n m	-1	in i	nin.	nin.	$\tau_{i} = \tau_{i}$	n m	π_{1},π_{2}	n e	$\mathbf{r} \in \mathbb{R}^{n}$		$\tau \to \tau$	n n	1.10	um i		t di	n n	n in e	
		0.0	-01	2.0	0.3	-0-	2.2	2.0	÷ 24	242	0.6	0.0	2.2	1.2	11	2.0	Ð	3.0	2.2	Ξ.	2.0	Ξ.	0	515	12.0	2.0	010	100	212	0.0	0.01	2.2	0.0	3.0	Ð D.	2.2	2.5	2.2	1510	- E -	2.2.	3.20	ΞΞ.	5.04	
		- 0	$-^{1}$	- 14	9.12	121		- 1-	÷ 21	- 1 -	12.3	0.0		с Ф.,	- 1	2.5	123	2.12		4	- 9-	Σ.,	- 0	10 L		- N.	-1-	12.1	212	о (2)	1	210	-1 - 1	0 U	$\mathbb{D}^{1}(\mathbb{L})$		$\omega = L$	0.0	11/12	942		1.1.1	2 E .	0.001	<u></u>
			- 1	- 1-		100		- 1-	-	-1-					1	1.1	. + 1	- 14		+	- 1-	+ -	- 1-1	ELF.		- 1-	- 1-	15.1	-1.4		2,21		-1-1	н н	HL -	7 7	7.1		H 14	1.14		+ -)	- +	F 1-1 1	
		2.2	12)	2,2	213	121	2.2	212		212	12 (2.2		11	20	1	212	2.2	. Į.,	2 (2	Ę.		212	12.0	2,2.	212		212	212	2.25	22	2,2,	2.5	22	2.2	11	22	112		22.	111	2 Ç.,	120	
		- 2	-1	- 1-		-		-1-		-1-	11				÷÷	4.5	-	434		÷ -	- 2	÷		212	-	- 1-	-1-	1	-14	21-			-1-1	48	85		÷÷	44	113				- ÷.	223	-
		22	12	212			2.2	272	14	272			2.2	14	11	40	- <u>-</u>	4.14	2.2	÷.	212	÷.		ELE.	12.0	22	212	12.	-14	414	2.2)	24	지지	유민	£1.2	2.2	22	44	10.10	1.4	2.2	÷ - 1	2÷.	E IEI I	-
_			-1	- 1-	ini i	un i		- 6-	-	- , -	. n. i	n ni			- +		(T)	л (т.		τ.		τ.	r ini	nin.	-	- 61		ie i	-1-1	nin.			-1-1	n e	ni el		- +	- n - n	1.17	um.		т = i	- r	e in c	
		2.6	10	10	00	0	2.2	20	0	217	01	0.0	2.7	101	17	2.7	Ē	10	2.7	1	2.0	ΞĽ	0.0	517	12.1	2.0	017	0	212	0.0	0.01	2.0	2.2	2.0	0.0	0.0	2.7	2.2	100	- D	2.2	1.11	ΞΞ.	5.02	1
		10	10	10	00	10)	2.2	20	ю,	272	ŭ i	οĐ	2.2	10.	11	0.0	11	2.0	2.2	1	2.0	1	10	ΰŪ	1	- C	202	(C)	111	бC,	2.0	2.0	20	3.0	6 E.	2.0	11	0.0	100	ιú,	22.	10	11.	101	
		- +	-1	- 1-				- 1-	-1	-1-					- +	2.5	. • 1	4.14		+	- 1-	+ -	- 1-1	er e	- 1	- 1-	-1-	1-1	-1.4	H (-	7,71		-1-1	н н	н) —	1	- +		H 14	19		+ -)	- +	e (-) (-+-
_		Т				Ш						Щ				Т	П	Ш				T	П	Щ			Τ		TT						T		- 1					1 1		ПП	
												I																							1					- I					

Frequency, Hz

part b, 5 points What is the gain and bandwidth of the closed-loop amplifier ?

low frequency Vout/Vgen=_____ bandwidth of Vout/Vgen=_____ Draw a plot of the closed loop gain, labeling all axes, slopes, pole/zero frequencies, etc.

draw closed loop gain on this bode plot

Frequency, Hz

Problem 5: 15 points

transfer functions

Part a, 5 points

A transistor circuit has a step response (input is a 1-V step function) as shown.

Determine the frequency and damping factor of the dominant poles of the transfer function.

Part b, 5 points

Give the transfer function

Vout(s)/Vgen(s). Give the answer in standard form $\frac{V_{out}(s)}{V_{gen}(s)} = \frac{V_{out}}{V_{gen}}\Big|_{DC} \frac{1+b_1s+b_2s^2+\dots}{1+a_1s+a_2s^2+\dots}$

Vout(s)/Vgen(s)=

Part c, 5 points

Draw an accurate Bode plot of the transfer function. LABEL AXES precisely

Frequency, Hz