ECE137B Final Exam

There are 5 problems on this exam and you have 3 hours
There are pages 1-19 in the exam: please make sure all are there.
Do not open this exam until told to do so
Show all work:
Credit will not be given for correct answers if supporting work is not shown.
Class Crib sheets and 2 pages (front and back $\rightarrow 4$ surfaces) of your own notes permitted. Don't panic.

Time function	LaPlace Transform
$\delta(t)$	1
$\mathrm{U}(\mathrm{t})$	$1 / \mathrm{s}$
$e^{-\alpha t} \cdot U(t)$	$\frac{1}{s+\alpha}$ or $\frac{1 / \alpha}{1+s / \alpha}$
$e^{-\alpha t} \cos \left(\omega_{d} t\right) \cdot U(t)$	$\frac{s+\alpha}{(s+\alpha)^{2}+\omega_{d}^{2}}$
$e^{-\alpha t} \sin \left(\omega_{d} t\right) \cdot U(t)$	$\frac{\omega_{d}}{(s+\alpha)^{2}+\omega_{d}^{2}}$

Name: \qquad

Problem	points	possible	Problem	points	possible
1a		3	2		10
1b		8	3 a		7
1c		5	3 b		13
1d		12	4 a		10
1e		7	4 b	5	
1f		5	5 a		5
			5 b		5
			5 c		5

Problem 1, 40 points
method of first-order and second-order time constants, some feedback theory
The circuit below is an op-amp

Part a, 3 points
DC analysis
Find all transistor DC emitter currents, find all node voltages. Make these on the circuit diagrm.

$\lambda=1 / 20 \mathrm{~V}$ for Q 3 and Q9.	$\lambda=0$ for all other transistors
$\left\|V_{t h}\right\|=0.3 \mathrm{~V}$ for all transistors, $g_{m}=1 \mathrm{mS}$ for all transistors.	
$\mathrm{Q} 5: C_{g s}=2 \mathrm{fF}, C_{g d}=0.5 \mathrm{fF}$.	$\mathrm{Q} 6: C_{g s}=0 \mathrm{fF}, C_{g d}=0.5 \mathrm{fF}$.
All other transistors: $C_{g s}=C_{g d}=0 \mathrm{fF}$.	
The DC component of Vin is zero volts	
The supplies are $+/-2$ Volts.	
Pick R3 so that the DC drain current of Q8 is 0.3 mA	
$\mathrm{R} 1=1$ MegOhm R2 $=100$ kOhm	

Part b, 8 points

mid-band analysis
Find the low-frequency loop transmission:
$\mathrm{T}(\mathrm{f}=0 \mathrm{~Hz})=$ \qquad

To do this, you need to cut the feedback loop, thus, to find the loop transmission

Part c, 5 points
feedback theory
At low frequencies, what is the closed-loop gain $V_{\text {out }} / V_{\text {in }}$?
Treat $C_{\text {infinite }}$ as an $A C$ short (not a capacitor) in the MOTC analysis.
$V_{\text {out }} / V_{\text {in }}=$

Part d, 12 points
motc
Using MOTC, you will find the frequency, in Hz (not $\mathrm{rad} / \mathrm{sec}$), of the $\boldsymbol{t w o}$ major poles in the transfer function.

capacitor 1: Cgs of Q5	capacitor 2: Cgd of Q5	capacitor 3: Cgd of Q6
$R_{11}^{0}=$	$R_{22}^{0}=$	$R_{33}^{0}=$
$R_{22}^{1}=$	$R_{33}^{1}=$	$R_{33}^{2}=$
$f_{p 1}=$	$f_{p 2}=$	

Remember to treat $C_{\text {infinite }}$ as an $A C$ short (not a capacitor) in the MOTC analysis.

Part e, 7 points

Make accurate asymptotic plots of T. Find the phase margin and the loop bandwidth.
Phase margin = \qquad Loop bandwidth $=$ \qquad

Draw the magnitude of T on this plot

Frequency, Hz

Part f, 5 points

What is the gain and bandwidth of the closed-loop amplifier?
low frequency Vout/Vgen= \qquad bandwidth of Vout/Vgen=

Problem 2: 10 points

method of time constants analysis

$\mathrm{R} 1=1 \mathrm{KOhm}, \mathrm{R} 2=2 \mathrm{kOhm}, \mathrm{R} 3=3 \mathrm{kOhm}, \mathrm{R} 4=4 \mathrm{kOhm}, \quad \mathrm{C} 1=1 \mathrm{fF} \mathrm{C} 2=2 \mathrm{fF}$ Using MOTC, find the coefficients al and a2 of transfer function Vout(s)/Vgen(s), given a tranfer function in the standard form $\frac{V_{\text {out }}(s)}{V_{\text {gen }}(s)}=\left.\frac{V_{\text {out }}}{V_{\text {gen }}}\right|_{D C} \frac{1+b_{1} s+b_{2} s^{2}+\ldots}{1+a_{1} s+a_{2} s^{2}+\ldots}$
$R_{11}^{0}=$

$$
R_{22}^{0}=
$$

\qquad

$$
R_{22}^{1}=
$$

$\left.\frac{V_{\text {out }}}{V_{\text {gen }}}\right|_{D C}=\square$
$a_{1}=$ \qquad $a_{2}=$
\qquad
\qquad

Problem 3: 20 points
Nodal analysis and transistor circuit models

Part a, 7 points
Draw an accurate small-signal equivalent circuit model of the circuit above.

Part b, 13 points

Using NODAL ANALYSIS, find the transfer function Vout(s)/Vin(s)
The answer must be in standard form $\frac{V_{\text {out }}(s)}{V_{\text {in }}(s)}=\left.\frac{V_{\text {out }}}{V_{\text {in }}}\right|_{\text {midband }} \times \frac{1+b_{1} s+b_{2} s^{2}+\ldots}{1+a_{1} s+a_{2} s^{2}+\ldots}$,

Vout(s)/Vin(s)=

Problem 4, 15 points
negative feedback
part a, 10 points

The amplifier has a differential gain of 10^{4}. $\mathrm{R} 1=9 \mathrm{kOhm}, \mathrm{R} 2=1 \mathrm{kOhm}$. The op-amp has infinite differential input impedance and zero differential output impedance.

The differential amplifier has 2 poles in its openloop transfer function.

One, the dominant pole, is at a low frequency, and can be adjusted by appropriately adjusting a compensation capacitor internal to the op-amp. The second one is at 200 MHz
To repeat:
$f_{p 1}=$ dominant pole frequency $=$ you must find the required value
$f_{p 2}=$ second pole frequency $=200 \mathrm{MHz}$
PICK $f_{p 1}$ so that the phase margin is 161.6 degrees.
Using the Bode plot on the next page, plot the open-loop gain (A_{d} or $A_{o l}$), the inverse of the feedback factor $(1 / \beta)$, closed loop gain $\left(A_{C L}\right)$. Label all axes, slopes, pole/zero frequencies, etc. Determine the following:

$$
f_{p 1}=\ldots \quad \text { Loop bandwidth }=
$$

Vout/Vgen at DC=

Frequency, Hz
part b, 5 points
What is the gain and bandwidth of the closed-loop amplifier?
low frequency Vout/Vgen= bandwidth of Vout/Vgen= Draw a plot of the closed loop gain, labeling all axes, slopes, pole/zero frequencies, etc.
draw closed loop gain on this bode plot

Frequency, Hz

Problem 5: 15 points
transfer functions

Part a, 5 points

A transistor circuit has a step response (input is a 1-V step function) as shown.

Determine the frequency and damping factor of the dominant poles of the transfer function.

Part b, 5 points

Give the transfer function
$\operatorname{Vout}(\mathrm{s}) / V g e n(\mathrm{~s})$. Give the answer in standard form $\frac{V_{\text {out }}(s)}{V_{\text {gen }}(s)}=\left.\frac{V_{\text {out }}}{V_{\text {gen }}}\right|_{D C} \frac{1+b_{1} s+b_{2} s^{2}+\ldots}{1+a_{1} s+a_{2} s^{2}+\ldots}$
Vout(s)/Vgen(s)=

Part c, 5 points

Draw an accurate Bode plot of the transfer function. LABEL AXES precisely

Frequency, Hz

