ECE137B Final Exam

There are 5 problems on this exam and you have 3 hours There are pages 1-19 in the exam: please make sure all are there.

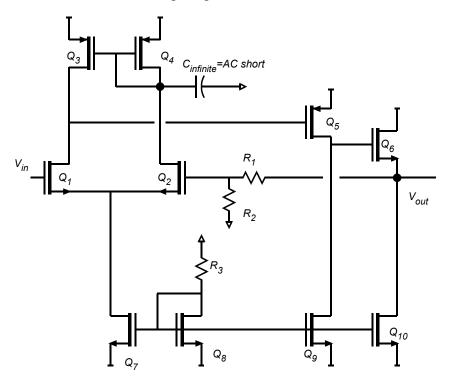
Do not open this exam until told to do so

Show all work:

Credit will not be given for correct answers if supporting work is not shown.

Class Crib sheets and 2 pages (front and back→ 4 surfaces) of your own notes permitted. Don't panic.

Time function	LaPlace Transform
$\delta(t)$	1
U(t)	1/s
$e^{-\alpha t} \cdot U(t)$	$\frac{1}{s+\alpha}$ or $\frac{1/\alpha}{1+s/\alpha}$
$e^{-\alpha t}\cos(\omega_d t)\cdot U(t)$	$\frac{s+\alpha}{(s+\alpha)^2+\omega_d^2}$
$e^{-\alpha t}\sin(\omega_d t)\cdot U(t)$	$\frac{\omega_d}{(s+\alpha)^2 + \omega_d^2}$


Name:

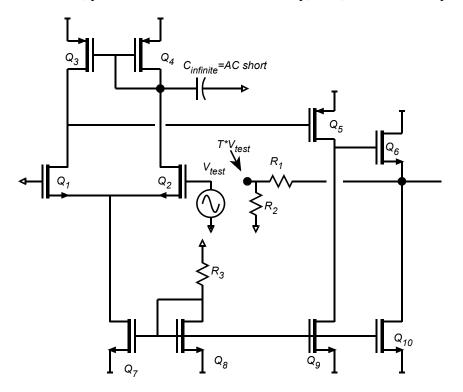
Problem	points	possible	Problem	points	possible
1a		3	2		10
1b		8	3a		7
1c		5	3b		13
1d		12	4a		10
1e		7	4b		5
1f		5	5a		5
			5b		5
			5c		5

Problem 1, 40 points

method of first-order and second-order time constants, some feedback theory

The circuit below is an op-amp

Part a, 3 points DC analysis


Find all transistor DC emitter currents, find all node voltages. Make these on the circuit diagrm.

$\lambda = 1/50 \text{ V}$ for Q3 and Q9.	$\lambda = 0$ for all other transistors
$ V_{th} =0.3 \text{ V for all transistors}, g_m=2 \text{ mS for all transistors}.$	
Q5 : $C_{gs} = 5$ fF, $C_{gd} = 0.5$ fF.	Q6: $C_{gs} = 0$ fF, $C_{gd} = 0.5$ fF.
All other transistors: $C_{gs} = C_{gd} = 0$ fF.	
The DC component of Vin is zero volts	
The supplies are +/- 2 Volts.	
Pick R3 so that the DC drain current of Q8 is 0.5 mA	
R1=1 MegOhm R2=100 kOhm	

Part b, 8 points mid-band analysis

Find the low-frequency loop transmission: T(f=0 Hz) =

To do this, you need to cut the feedback loop, thus, to find the loop transmission

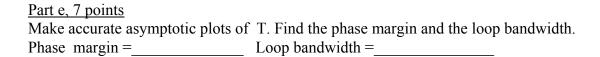
Part c, 5 points feedback theory

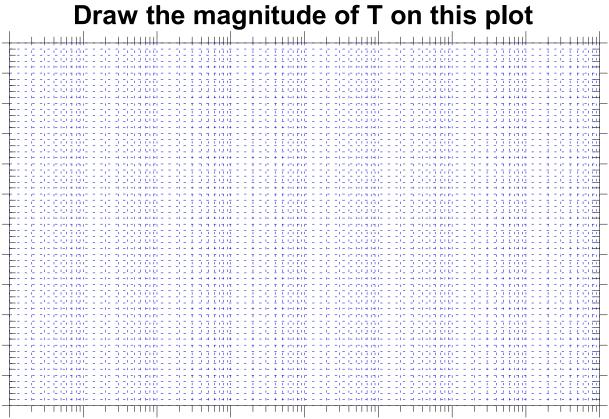
At low frequencies, what is the closed-loop gain $V_{\it out}/V_{\it in}$?

Treat C_{infinite} as an AC short (not a capacitor) in the MOTC analysis.

$$V_{out}/V_{in} =$$

Part d, 12 points

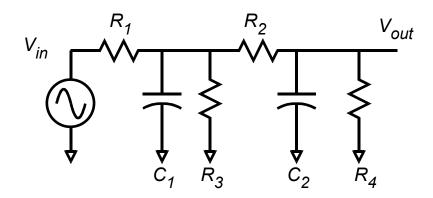

motc


Using MOTC, you will find the frequency, in Hz (not rad/sec), of the *two* major poles in the transfer function.

capacitor 1: Cgs of Q5	capacitor 2: Cgd of Q5	capacitor 3: Cgd of Q6
$R_{11}^{0} =$	$R_{22}^0 =$	$R_{33}^{0} =$
$R_{22}^1 =$	$R_{33}^1 =$	$R_{33}^2 =$
f_{p1} =	$f_{p2} =$	

Remember to treat $C_{infinite}$ as an AC short (not a capacitor) in the MOTC analysis.

9 b


Frequency, Hz

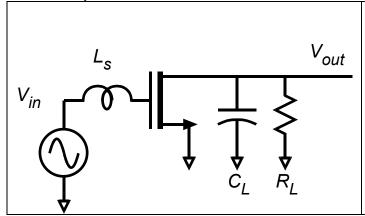
Part f, 5 points

What is the gain and bandwidth of the closed-loop amplifier?		
low frequency Vout/Vgen=	bandwidth of Vout/Vgen=	

Problem 2: 10 points

method of time constants analysis

R1=1 KOhm, R2=2kOhm, R3=3kOhm, R4=4 kOhm, C1= 1 fF C2=2 fF Using MOTC, find the coefficients a1 and a2 of transfer function Vout(s)/Vgen(s), given a


transfer function in the standard form $\frac{V_{out}(s)}{V_{gen}(s)} = \frac{V_{out}}{V_{gen}} \bigg|_{DC} \frac{1 + b_1 s + b_2 s^2 + \dots}{1 + a_1 s + a_2 s^2 + \dots}$

$$R_{11}^{0} =$$
 $R_{22}^{0} =$ $R_{22}^{1} =$ $a_{1} =$ $a_{2} =$

$$R_{22}^{0} =$$
 R_{2}^{1} $a_{1} =$ a_{2}

Problem 3: 20 points

Nodal analysis and transistor circuit models

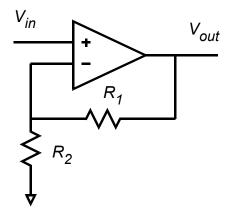
Ignore DC bias; you don't need it. $C_{gs} = 0$ fF $C_{gd} = 100$ fF, $g_m = 10$ mS, $R_{ds} = \infty$, so you don't need to draw it. $R_L = 10$ kOhm, $C_L = 100$ fF, $L_S = 100$ nH

Part a, 7 points

Draw an accurate small-signal equivalent circuit model of the circuit above.

Part b, 13 points

Using NODAL ANALYSIS, find the transfer function Vout(s)/Vin(s)


The answer must be in standard form $\frac{V_{out}(s)}{V_{in}(s)} = \frac{V_{out}}{V_{in}}\bigg|_{midband} \times \frac{1 + b_1 s + b_2 s^2 + \dots}{1 + a_1 s + a_2 s^2 + \dots}$,

Vout(s)/Vin(s)=_____

Problem 4, 15 points

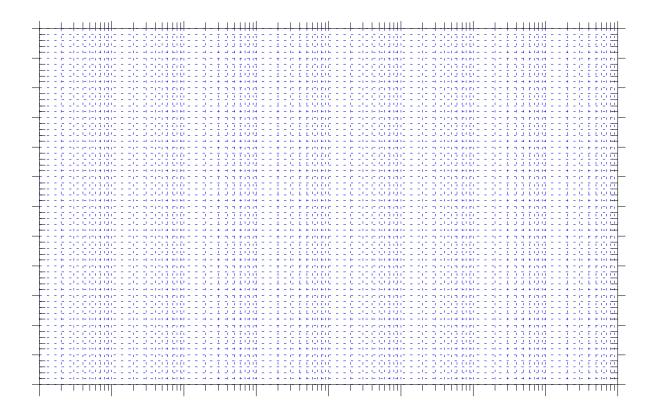
negative feedback

part a, 10 points

The amplifier has a differential gain of 10⁵. R1=99 kOhm, R2=1 kOhm. The op-amp has infinite differential input impedance and zero differential output impedance.

The differential amplifier has 2 poles in its open-loop transfer function.

One, the dominant pole, is at a low frequency, and can be adjusted by appropriately adjusting a compensation capacitor internal to the op-amp. The second one is at 500 MHz


To repeat:

 f_{p1} = dominant pole frequency= you must find the required value f_{p2} = second pole frequency= 500 MHz

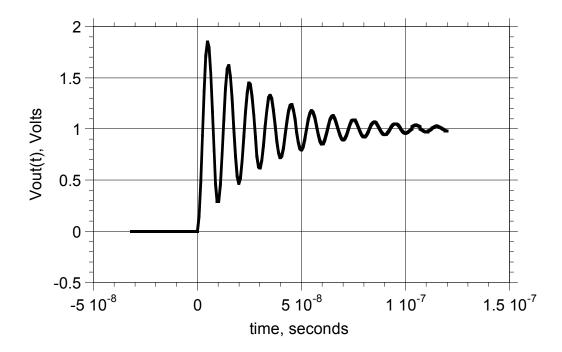
PICK f_{p1} so that the phase margin is 168.7 degrees.

Using the Bode plot on the next page, plot the open-loop gain (A_d or A_{ol}), the inverse of the feedback factor ($1/\beta$), closed loop gain (A_{CL}). Label all axes, slopes, pole/zero frequencies, etc. Determine the following:

$f_{p1} = $	Loop bandwidth=	
Vout/Vgen at DC=		

Frequency, Hz

part b, 5 points What is the gain and bandwidth of the close	ed-loop amplifier ?
low frequency Vout/Vgen=	bandwidth of Vout/Vgen=


Frequency, Hz

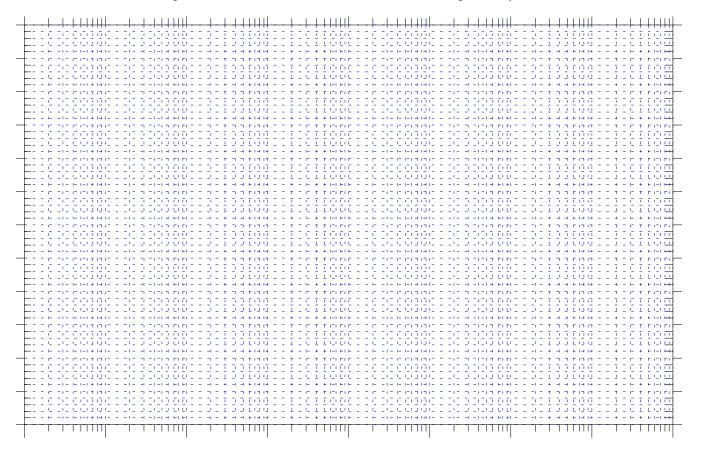
Problem 5: 15 points

transfer functions

Part a, 5 points

A transistor circuit has a step response (input is a 1-V step function) as shown.

Determine the frequency and damping factor of the dominant poles of the transfer function.


Part b, 5 points

Give the transfer function

Vout(s)/Vgen(s). Give the answer in standard form
$$\frac{V_{out}(s)}{V_{gen}(s)} = \frac{V_{out}}{V_{gen}}\Big|_{DC} \frac{1 + b_1 s + b_2 s^2 + \dots}{1 + a_1 s + a_2 s^2 + \dots}$$

Part c, 5 points

Draw an accurate Bode plot of the transfer function. LABEL AXES precisely

Frequency, Hz