ECE137B Final Exam

There are 6 problems on this exam and you have 3 hours
Do not open this exam until told to do so
Show all work:
Credit will not be given for correct answers if supporting work is not shown.
Class Crib sheets and 4 pages of your own notes permitted.
Don't panic.

Time function	LaPlace Transform
$\delta(\mathrm{t})$	1
$\mathrm{U}(\mathrm{t})$	$1 / \mathrm{s}$
$\mathrm{e}^{-\alpha t} \mathrm{U}(\mathrm{t})$	$\frac{1}{\mathrm{~s}+\alpha}$
$\mathrm{e}^{-\alpha \mathrm{t}} \cos \left(\omega_{\mathrm{d}} \mathrm{t}\right) \mathrm{U}(\mathrm{t})$	$\frac{\mathrm{s}+\alpha}{(\mathrm{s}+\alpha)^{2}+\omega_{\mathrm{d}}^{2}}$
$\mathrm{e}^{-\alpha \mathrm{t}} \sin \left(\omega_{\mathrm{d}} \mathrm{t}\right) \mathrm{U}(\mathrm{t})$	$\frac{\omega_{\mathrm{d}}}{(\mathrm{s}+\alpha)^{2}+\omega_{\mathrm{d}}^{2}}$

Name: \qquad

Problem 1, 20 points
transistor circuit analysis
part a, 5 points

In the circuit, the power supplies are +/- 10 volts. The transistors have beta $=1000, \mathrm{ft}=1 \mathrm{GHz}$, and $\mathrm{Ccb}=0.5 \mathrm{pF}$. $\mathrm{CL}=1 \mathrm{pF}$. $\mathrm{Va}=$ infinity.

Cee1 and Cbb2 are very large (AC short-circuits)

Rgen $=1 \mathrm{kOhm}, \mathrm{Rb} 1=10 \mathrm{kOhm}$
Rb 2 a and Rb 2 b are chosen to bias the base of Q 2 at +4.3 volts.

Q1 and Q2 are each biased at 1 mA emitter current.

Rc2 is chosen to set the DC output voltage to zero volts.

Find Ree1, Rc1, Rc2
Ree1= \qquad Rc1= \qquad Rc2= \qquad

Part b, 5 points
Find the mid-band value of Vout/Vgen.
Vout/Vgen=

Part c, 10 points
Find Cpi of transistors Q1 and Q2. Give the frequency, in Hz (not $\mathrm{rad} / \mathrm{sec}$), of the 3 major poles in the transfer function.

Cpi1 $=$
Cpi2 $=$
fp $1=$ $\mathrm{fp} 2=$ fp3=

Problem 2, 20 points

method of first-order time constants

The circuit we therefore analyze is to the left. This is an AC equivalent circuit: It does not represent the DC.

All transistors have $\mathrm{ft}=500$ MHz and $\mathrm{Ccb}=1 \mathrm{pF}$.
Beta=infinity, Va=infinity
Rgen $=$ Rb1 $=50$ Ohms.
Q1 and Q3 are each biased at 1 mA . Q2 and Q 4 are each biased at 2 mA .

Rc2 and Rc4 are 100 Ohms

Part a, 5 points
Find Cpi of Q1-Q4.
Cpi1 $=$ \qquad Cpi2= \qquad
Cpi3= \qquad Cpi4= \qquad

Part b, 15 points

Using the method of time constants, find the dominant time constant a_{1} of the transfer function $V_{\text {out }}(s) / V_{\text {gen }}(s)$. Give the components of a_{1} due to each transistor capacitance.
$a_{1}=$ \qquad seconds
component of a_{1} due to Ccb1= \qquad seconds component of a_{1} due to Ccb2= \qquad seconds component of a_{1} due to Ccb3= \qquad seconds
component of a_{1} due to Ccb4= \qquad seconds
component of a_{1} due to Cpi1= \qquad seconds component of a_{1} due to Cpi2= seconds
component of a_{1} due to $\mathrm{Cpi} 3=$ seconds component of a_{1} due to Cpi4= \qquad seconds

Problem 3, 20 points method of first-order and second-order time constants

Q1 has $\boldsymbol{C b e}=\mathbf{1 0} \boldsymbol{p F}, \boldsymbol{C c b}=\mathbf{1} \boldsymbol{p F}$. Beta=infinity, Va=infinity.

Q1 has $\boldsymbol{C b e}=\mathbf{0} \boldsymbol{p F}, \boldsymbol{C c b}=\mathbf{1} \boldsymbol{p F}$. Beta=infinity, Va=infinity.

Cee 1 and Cee 2 are very large (AC short-circuits)

The supplies (Vcc and -Vee) are +/- 10 volts.
Iee1=1 mA. Iee2=2 mA.
Rgen=Rb1=50 Ohms.
Rc1=100 Ohms. Rc2=400 Ohms.

Use the method of time constants to find the frequencies of the first two poles of the transfer function Vout(s)/Vgen(s).

Problem 410 points

 negative feedback

Loop bandwidth= \qquad Vout/Vgen at DC= \qquad

Problem 515 points

negative feedback, again

The differential amplifier has infinite differential input impedance and zero output impedance. Its low-frequency gain is 10^{6}, and it has a single pole in its transfer function at 2 Hz .
$\mathrm{R} 1=100$ Ohms. R2=9.9 kOhm. $\mathrm{C}=1.59$ microfarads.

Part a, 5 points
Find the feedback factor $\beta(s)$, using standard form $\beta(s)=\beta_{d c} \frac{1+b_{1} s+b_{2} s^{2}+\ldots}{1+a_{1} s+a_{2} s^{2}+\ldots}$
$\beta(s)=$ \qquad

Part b, 10 points

Use the Bode plot below to plot the closed loop transfer function $A_{C L}$, the differential gain A_{d}, and the inverse of the feedback factor $1 / \beta$. List all the poles and zero frequencies of $A_{C L}$

Poles in Acl at frequencies Hz

Zeros in Acl at frequencies _ Hz

Problem 615 points

nodal analysis

Inductance, often present in the emitter lead of a common-emitter amplifier, can have a serious effect on high frequency response. Working from the small-signal equivalent circuit on the right, with Rgen=zero Ohms, $\mathrm{Rc}=100 \mathrm{Ohms}, \mathrm{L}=1 \mathrm{nH}$, $\mathrm{re}=26 \mathrm{Ohms}$, $\mathrm{Cbe}=1 \mathrm{pF}, \mathrm{Ccb}=\boldsymbol{0} \boldsymbol{p} \boldsymbol{F}$, beta=infinity, $\mathrm{Va}=$ infinity, find Vout/Vgen by nodal analyis. Give the answer in standard form $\frac{V_{\text {out }}(s)}{V_{\text {gen }}(s)}=\left.\frac{V_{\text {out }}}{V_{\text {gen }}}\right|_{D C} \frac{1+b_{1} s+b_{2} s^{2}+\ldots}{1+a_{1} s+a_{2} s^{2}+\ldots}$
\qquad

