ECE137B Final Exam

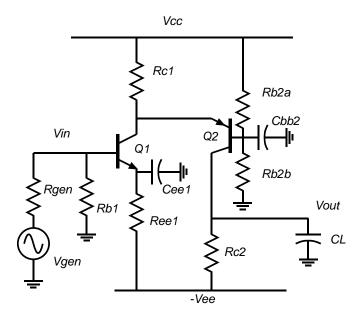
There are 6 problems on this exam and you have 3 hours

Do not open this exam until told to do so

Show all work:

Credit will not be given for correct answers if supporting work is not shown.

Class Crib sheets and 4 pages of your own notes permitted.


Don't panic.

Time function	LaPlace Transform
$\delta(t)$	1
U(t)	1/s
$e^{-at}U(t)$	1
	$s + \alpha$
$e^{-\alpha t}\cos(\omega_d t)U(t)$	$s + \alpha$
, ,	$\left(\mathbf{S}+\mathbf{\alpha}\right)^2+\omega_{d}^2$
$e^{-\alpha t} \sin(\omega_d t) U(t)$	$\frac{\omega_{\rm d}}{2}$
	$\left(\mathbf{s}+\boldsymbol{\alpha}\right)^2+\omega_{d}^2$

Problem 1, 20 points

transistor circuit analysis

part a, 5 points

In the circuit, the power supplies are +/- 10 volts. The transistors have beta=1000, ft=1 GHz, and Ccb=0.5 pF. CL=1 pF. Va=infinity.

Cee1 and Cbb2 are very large (AC short-circuits)

Rgen=1kOhm, Rb1=10 kOhm

Rb2a and Rb2b are chosen to bias the base of Q2 at +4.3 volts.

Q1 and Q2 are each biased at 1 mA emitter current.

Rc2 is chosen to set the DC output voltage to zero volts.

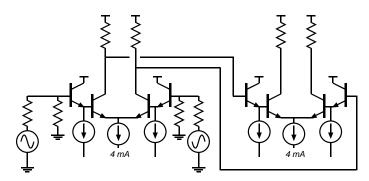
Find Ree1, Rc1, Rc2

Ree1=______ Rc2=_____

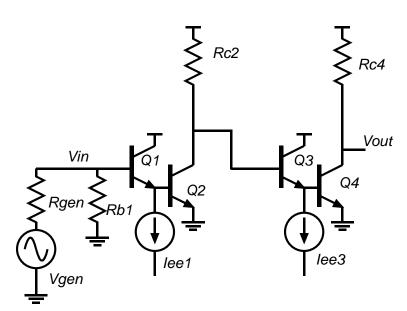
Part b, 5 points

Find the mid-band value of Vout/Vgen.

Vout/Vgen=____


Part c, 10	points
------------	--------

Find Cpi of transistors Q1 and Q2.	Give the frequency, in Hz	(not rad/sec), of the 3 majo
poles in the transfer function.		


Cpi1=_____ Cpi2=_____ fp1=____ fp2=____ fp3=____

Problem 2, 20 points

method of first-order time constants

A basic differential video amplifier is shown on the left. This circuit is fully differential, and so can be analyzed by the half-circuit method, where the connected emitters of the differential pairs become virtual grounds.

The circuit we therefore analyze is to the left. This is an AC equivalent circuit: It does not represent the DC.

All transistors have ft=500 MHz and Ccb=1 pF. Beta=infinity, Va=infinity

Rgen=Rb1=50 Ohms.

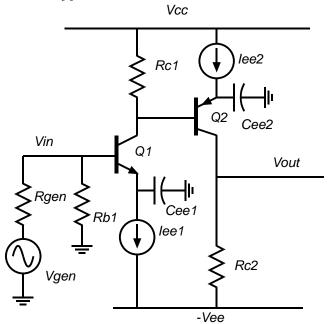
Q1 and Q3 are each biased at 1 mA. Q2 and Q4 are each biased at 2 mA.

Rc2 and Rc4 are 100 Ohms

Part a, 5 points

Find Cpi of Q1-Q4.

Cpi1=_____Cpi2=_____ Cpi3=_____Cpi4=____


Part b, 15 points

Using the method of time constants, find the dominant time constant a_1 of the transfer function $V_{out}(s)/V_{gen}(s)$. Give the components of a_1 due to each transistor capacitance.

$a_1 =$	seconds	
component of a_1 due to Ccb.	[=	_ seconds
component of a_1 due to Ccb2	2=	_ seconds
component of a_1 due to Ccb3	3=	_ seconds
component of a_1 due to Ccb-	4=	_ seconds
component of a_1 due to Cpi1	=	seconds
component of a_1 due to Cpi2	=	seconds
component of a_1 due to Cpi3	=	seconds
component of a_1 due to Cpi4	=	seconds

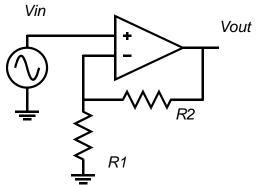
Problem 3, 20 points

method of first-order and second-order time constants

Q1 has *Cbe=10 pF*, *Ccb=1 pF*. Beta=infinity, Va=infinity.

Q1 has *Cbe=0 pF*, *Ccb=1 pF*. Beta=infinity, Va=infinity.

Cee1 and Cee2 are very large (AC short-circuits)

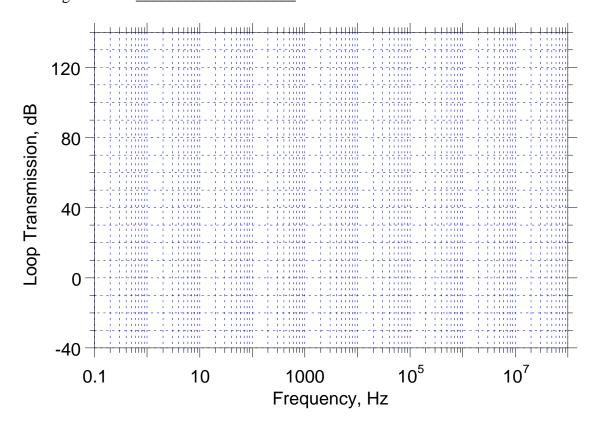

The supplies (Vcc and -Vee) are +/- 10 volts. Iee1=1 mA. Iee2=2 mA.

Rgen=Rb1=50 Ohms. Rc1=100 Ohms. Rc2=400 Ohms.

Use the method of time constants to find the frequencies of the first two poles of the transfer function Vout(s)/Vgen(s).

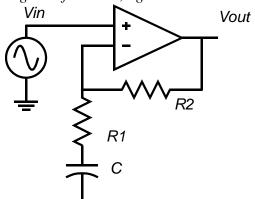
Problem 4 10 points

negative feedback



The amplifier has a differential gain of 10^7 . R1=1 kOhm, R2=19 kOhm. The op-amp has infinite differential input impedance and zero differential output impedance.

The differential amplifier has poles in its open-loop transfer function at 20 Hz and 100 kHz.


Using the Bode plot below, determine the following

Loop bandwidth=_____ phase margin=_____ Vout/Vgen at DC=_____

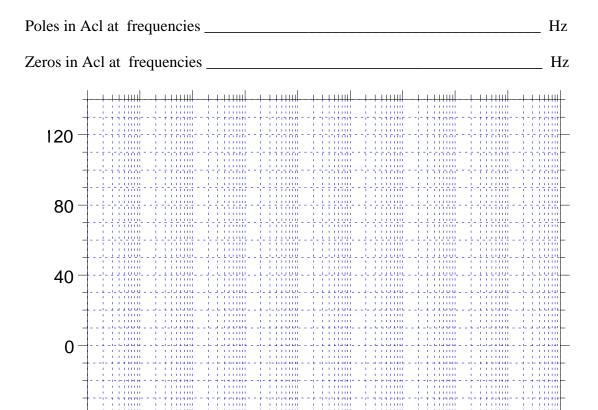
Problem 5 15 points

negative feedback, again

The differential amplifier has infinite differential input impedance and zero output impedance. Its low-frequency gain is 10⁶, and it has a single pole in its transfer function at 2 Hz.

R1=100 Ohms. R2=9.9 kOhm. C=1.59 microfarads.

Part a, 5 points


Find the feedback factor $\beta(s)$, using standard form $\beta(s) = \beta_{dc} \frac{1 + b_1 s + b_2 s^2 + ...}{1 + a_1 s + a_2 s^2 + ...}$

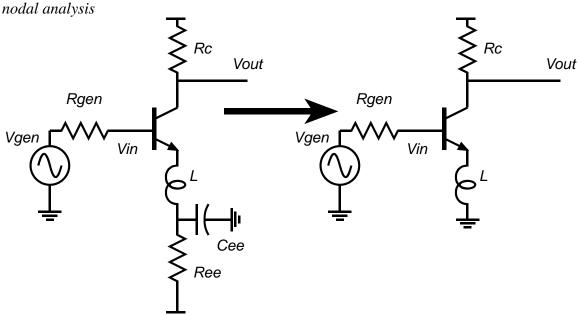
 $\beta(s) =$

Part b, 10 points

0.1

Use the Bode plot below to plot the *closed loop transfer function* A_{CL} , the differential gain A_d , and the inverse of the feedback factor $1/\beta$. List all the poles and zero frequencies of A_{CL}

1000


Frequency, Hz

10

10⁵

10⁷

Problem 6 15 points

Inductance, often present in the emitter lead of a common-emitter amplifier, can have a serious effect on high frequency response. Working from the small-signal equivalent *circuit on the right*, with Rgen=*zero* Ohms, Rc=100 Ohms, L=1 nH, re=26 Ohms, Cbe=1 pF, Ccb=0pF, beta=infinity, Va=infinity, find Vout/Vgen by nodal analyis. Give

the answer in standard form $\frac{V_{out}(s)}{V_{gen}(s)} = \frac{V_{out}}{V_{gen}} \bigg|_{DC} \frac{1 + b_1 s + b_2 s^2 + ...}{1 + a_1 s + a_2 s^2 + ...}$

Vout(s)/Vgen(s)=_____