## ECE137B Final Exam

There are 5 problems on this exam and you have 3 hours
There are pages 1-19 in the exam: please make sure all are there.
Do not open this exam until told to do so
Show all work:
Credit will not be given for correct answers if supporting work is not shown.
Class Crib sheets and 4 pages of your own notes permitted.
Don't panic.

| Time function | LaPlace Transform |
| :--- | :--- |
| $\delta(t)$ | 1 |
| $\mathrm{U}(\mathrm{t})$ | $1 / \mathrm{s}$ |
| $e^{-\alpha t} \cdot U(t)$ | $\frac{1}{s+\alpha}$ or $\frac{1 / \alpha}{1+s / \alpha}$ |
| $e^{-\alpha t} \cos \left(\omega_{d} t\right) \cdot U(t)$ | $\frac{s+\alpha}{(s+\alpha)^{2}+\omega_{d}^{2}}$ |
| $e^{-\alpha t} \sin \left(\omega_{d} t\right) \cdot U(t)$ | $\frac{\omega_{d}}{(s+\alpha)^{2}+\omega_{d}^{2}}$ |

Name: $\qquad$

| Problem | points | possible | Problem | points | possible |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 1 a |  |  | 3 a |  |  |
| 1b |  |  | 3 b |  |  |
| 1c |  |  | 4 |  |  |
| 1 d |  |  | 5 a |  |  |
| 2 a |  |  | 5 b |  |  |
| 2 b |  |  |  |  |  |

## Problem 1, 25 points

method of first-order and second-order time constants


## Part 1, 4 points

Q1 and Q2 are to be biased at 1 mA drain current, Q 3 is to be biased at 2 mA drain current and Vout is to be at zero volts DC.

Find Rd1 and Rd3
Rd1= $\qquad$ Rd3= $\qquad$

Part b, 5 points
Find the mid-band value of Vout/Vgen.
Vout/Vgen=

## Part c, 4 points

Find the $f_{\tau}$ of transistors Q1 and Q3.
Q1: $f_{\tau}=$ Q3: $f_{\tau}=$

Part d, 12 points
Using MOTC, you will find the frequency, in Hz (not rad/sec), of the two major poles in the transfer function. The degeneration approximation may help.

| capacitor 1: Cgs of transistor 1 <br> (possibly the degernerated Cgs) | capacitor 2: Cgd of transistor 1 | capacitor 3: Cgd of transistor 3 |
| :--- | :--- | :--- |
| $R_{11}^{0}=$ | $R_{22}^{0}=\ldots$ | $R_{33}^{0}=$ |
| $R_{22}^{1}=$ | - | $R_{33}^{1}=$ |
| - | $R_{p 3}^{1}=$ |  |
| $f_{p 1}=$ |  |  |

## Problem 2: 20 points

method of time constants analysis


R1 $=1$ KOhm R2=2 KOhm R3 $=3 \mathrm{KOhm}$ R4=4 KOhm
$\mathrm{C} 1=1 \mathrm{nF} \quad \mathrm{C} 2=2 \mathrm{nF} \quad \mathrm{C} 3=3 \mathrm{nF}$

Part a, 15 points
Using MOTC, find the transfer function Vout(s)/Vgen(s). Give the answer in standard
form $\frac{V_{\text {out }}(s)}{V_{\text {gen }}(s)}=\left.\frac{V_{\text {out }}}{V_{\text {gen }}}\right|_{D C} \frac{1+b_{1} s+b_{2} s^{2}+\ldots}{1+a_{1} s+a_{2} s^{2}+\ldots}$
HINT: $b_{1}=R_{1} C_{1}$ and $0=b_{2}=b_{3}=\cdots$
$R_{11}^{0}=$ $\qquad$
$\qquad$ $R_{33}^{0}=$ $\qquad$
$R_{22}^{1}=$ $\qquad$ $R_{33}^{1}=$ $\qquad$ $R_{33}^{2}=$ $\qquad$
$\left.\frac{V_{\text {out }}}{V_{\text {gen }}}\right|_{D C}=\square$
$a_{1}=$ $\qquad$ $a_{2}=$

Part b, 5 points
Draw a Bode Plot (Straight-line asymptotes) of the circuit transfer function Vout/Vgen, labeling all pole and zero frequencies and labeling the slopes of all asymptotes.


Frequency

## Problem 320 points

Nodal analysis and transistor circuit models


Above is the AC small signal representation of transistor circuit.
$\mathrm{Rb}=2000$ Ohms. $\mathrm{RL}=10,000 \mathrm{Ohms}$. The transistor is biased at 2 mA DC emitter current, so that re $=13 \mathrm{Ohms}$.
$\tau_{f}=0 \mathrm{ps}, C_{b e, d e p l}=0 \mathrm{fF}, C_{c b}=20 \mathrm{fF} . \beta=$ infinity, $V_{A}=$ infinity volts.

Part a, 7 points
Draw an accurate small-signal equivalent circuit model of the circuit above, with the transistor represented by the common-base T model

## Part b, 13 points

Using NODAL ANALYSIS, find the transfer function Vout(s)/Vgen(s).
The answer must be in standard form $\frac{V_{\text {out }}(s)}{V_{\text {gen }}(s)}=\left.\frac{V_{\text {out }}}{V_{\text {gen }}}\right|_{D C} \frac{1+b_{1} s+b_{2} s^{2}+\ldots}{1+a_{1} s+a_{2} s^{2}+\ldots}$
HINT: Think carefully; how many nodal equations are really needed here
$\left.\frac{V_{\text {out }}}{V_{\text {gen }}}\right|_{D C}=$ $\qquad$
$\qquad$ , $a_{2}=$
$b_{1}=$ $\qquad$ , $b_{2}=$ $\qquad$
(note that $\mathrm{a} 3, \mathrm{a} 4, \ldots, \mathrm{~b} 3, \mathrm{~b} 4, \ldots$ are all zero)

Problem 4, 20 points
negative feedback


The amplifier has a differential gain of $2 \bullet 10^{7}$. $\mathrm{R} 1=1 \mathrm{kOhm}, \mathrm{R} 2=19 \mathrm{kOhm}$. The op-amp has infinite differential input impedance and zero differential output impedance.

The differential amplifier has 2 poles in its openloop transfer function at 1 kHz , and one pole at 10 MHz . It has a single zero in its transfer function at 10 MHz .

Using the Bode plot on the next page, plot the open-loop gain ( $A_{d}$ or $A_{o l}$ ), the inverse of the feedback factor $(1 / \beta)$, closed loop gain $\left(A_{C L}\right)$, and determine the following:

Loop bandwidth= phase margin= $\qquad$
Vout/Vgen at DC= $\qquad$

## Draw open loop gain and 1/beta on this plot


draw closed loop gain on this bode plot


Problem 5: 15 points
transfer functions

Part a, 5 points
A transistor circuit has a step response (input is a 1-V step function) as shown.


What is the circuits' 3-dB bandwidth? $f_{3 d B}=$

Part b, 10 points
Another transistor circuit has a step response (input is a 1-V step function) as shown.


This is clearly a second-order response.
Approximately what is the damped resonant frequency? $f_{n}=$ $\qquad$ Estimate the damping factor? $\zeta=$ $\qquad$ (35\% accuracy is fine here)

Sketch the transfer function below, labeling both axes, key slopes, and key frequencies.
Bode Magnitude plot-please label axes


Frequency

