ECE137B Final Exam

There are 5 problems on this exam and you have 3 hours There are pages 1-19 in the exam: please make sure all are there.

Do not open this exam until told to do so Show all work: Credit will not be given for correct answers if supporting work is not shown. Class Crib sheets and 4 pages of your own notes permitted. Don't panic.

Time function	LaPlace Transform
$\delta(t)$	1
U(t)	1/s
$e^{-\alpha t} \cdot U(t)$	$\frac{1}{s+\alpha}$ or $\frac{1/\alpha}{1+s/\alpha}$
$e^{-\alpha t}\cos(\omega_d t) \cdot U(t)$	$\frac{s+\alpha}{\left(s+\alpha\right)^2+\omega_d^2}$
$e^{-\alpha t}\sin(\omega_d t)\cdot U(t)$	$\frac{\omega_d}{\left(s+\alpha\right)^2+\omega_d^2}$

Name: _____

Problem	points	possible	Problem	points	possible
1a			3a		
1b			3b		
1c			4		
1d			5a		
2a			5b		
2b					

Problem 1, 25 points

method of first-order and second-order time constants

Q1, Q2, and Q3 have $v_{sat}c_{ox}W_g =$ 10 mS, $|V_t| = 0.5$ volts, and $\lambda = 0$ V⁻¹. Vdd and Vss are +/- 3.3 Volts. Rgen=50 kOhm and Iss=2 mA.

a

Q1 has $C_{gs} = 10C_{gd} = 15.9$ fF. Q2 has $C_{gs} = 10C_{gd} = 15.9$ fF. Q3 has $C_{gs} = 0, C_{gd} = 31.8$ fF.

Part 1, 4 points

Q1 and Q2 are to be biased at 1 mA drain current,Q3 is to be biased at 2mA drain current and Vout is to be at zero volts DC.

Find Rd1 and Rd3

Rd1=_____Rd3=_____

Part b, 5 points

Find the mid-band value of Vout/Vgen. Vout/Vgen=_____

Part c, 4 points

Find the f_{τ} of transistors Q1 and Q3.

Q1: f_{τ} =_____ Q3: f_{τ} =_____

Part d, 12 points Using MOTC, you will find the frequency, in Hz (not rad/sec), of the *two* major poles in the transfer function. The degeneration approximation may help.

capacitor 1: Cgs of transistor 1	capacitor 2: Cgd of transistor 1	capacitor 3: Cgd of transistor 3			
(possibly the degernerated Cgs)					
$R_{11}^0 =$	$R_{22}^0 =$	$R_{33}^0 =$			
	_				
$R_{22}^1 =$	$R_{33}^1 =$	$R_{33}^2 =$			
_					
<i>f</i> _{<i>p</i>1} =	f _{p2} =				
	-				

Problem 2: 20 points

method of time constants analysis

R1=1 KOhm R2=2 KOhm R3=3 KOhm R4=4 KOhm C1=1 nF C2=2nF C3=3 nF

<u>Part a, 15 points</u> Using MOTC, find the transfer function Vout(s)/Vgen(s). Give the answer in standard

Part b, 5 points

Draw a Bode Plot (Straight-line asymptotes) of the circuit transfer function Vout/Vgen, labeling all pole and zero frequencies and labeling the slopes of all asymptotes.

dB

Frequency

Problem 3 20 points

Nodal analysis and transistor circuit models

Above is the AC small signal representation of transistor circuit.

Rb=2000 Ohms. RL=10,000 Ohms. The transistor is biased at 2 mA DC emitter current, so that re=13Ohms.

 $\tau_f = 0$ ps, $C_{be,depl} = 0$ fF, $C_{cb} = 20$ fF. β = infinity, V_A = infinity volts.

Part a, 7 points

Draw an accurate small-signal equivalent circuit model of the circuit above, with the transistor represented by the common-base T model

Part b, 13 points Using NODAL ANALYSIS, find the transfer function Vout(s)/Vgen(s).

The answer must be in standard form $\frac{V_{out}(s)}{V_{gen}(s)} = \frac{V_{out}}{V_{gen}} \bigg|_{DC} \frac{1 + b_1 s + b_2 s^2 + \dots}{1 + a_1 s + a_2 s^2 + \dots}$

HINT: Think carefully; how many nodal equations are really needed here

(note that a3, a4, ..., b3,b4, ... are all zero)

Problem 4, 20 points

The amplifier has a differential gain of $2 \cdot 10^7$. R1=1 kOhm, R2=19 kOhm. The op-amp has infinite differential input impedance and zero differential output impedance.

The differential amplifier has 2 poles in its openloop transfer function at 1 kHz, and one pole at 10 MHz. It has a single zero in its transfer function at 10 MHz.

Using the Bode plot on the next page, plot the open-loop gain (A_d or A_{ol}), the inverse of the feedback factor (1/ β), closed loop gain (A_{CL}), and determine the following:

Loop bandwidth=_____ phase margin=_____ Vout/Vgen at DC=_____

16

Problem 5: 15 points

transfer functions

Part a, 5 points

A transistor circuit has a step response (input is a 1-V step function) as shown.

What is the circuits' 3-dB bandwidth ? $f_{3dB} =$ _____

Part b, 10 points

Another transistor circuit has a step response (input is a 1-V step function) as shown.

This is clearly a second-order response.

Approximately what is the damped resonant frequency ? $f_n =$ ______ Estimate the damping factor ? $\zeta =$ ______ (35% accuracy is fine here)

Sketch the transfer function below, labeling both axes, key slopes, and key frequencies.

dB

Bode Magnitude plot-please label axes

Frequency