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Bipolar transistor structure
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Base charge storage (1)
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Base charge storage (2)

Normally: collector-base junction reverse-biased: 
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Collector charge storage

7

Current in  collector depletion region = 

electron velocity in depletion region = 10 cm/s (Si)

negative electron charge in depletion region =  /
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Total stored charge and diffusion capacitance

Total stored charge

=( + )  

forward transit time = +

Diffusion capacitance
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 is a mathematical trick to turn transit time into capacitance.

 is nevertheless 100% real and measurable.

    ...it  is just not a parallel plate capacitance.
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Depletion capacitances

, 0be depl je r E ebC C A W = =

0cb r E bcC A W =

In a real transistor, the area of the base-collector junction 

is much larger than the area of the base-emitter junction.

In a real transistor, the  base-collector depletion depth  

is much larger than

cW

 the area of the base-emitter depletion depth .ebW

,

In a real transistor, the current transiting the base-emitter 

depletion region adds additional terms to the expression for

.be deplC
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Fairly accurate high-frequency bipolar transistor model
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Simplified high-frequency bipolar transistor model
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....we will use this model in this class.
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Short-circuit current gain.
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f=short-circuit current gain cutoff frequency
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Variation of f with current
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Getting high-frequency BJT #s from SPICE model
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Getting high-frequency BJT #s from data sheet

cbV
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MOSFET physical structures

(image from Intel)

(image from Intel)

Cartoon of SOI device
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Physical structure and capacitanes

Gate-channel capacitance:

1 1
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semiconductor surface capacitance per unit area.
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          -even in strong inversion is not infinite (see 137A notes)

Inter-electrode capacitances:  

Gate-source capacitance: 

Gate-drain capacitance: 
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Note also the source, drain capacitances to the substrate
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Simplified Model of MOSFET capacitances

1

In modern MOSFETs, inter-electrode capacitances are large.

This tends to "hide" the variation of  with bias

We will use a very simple model:

Gate-source capacitance: 
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itance: 

Source-substrate capacitance: 

Drain-substrate capacitance: 

...  will be specified.

This model neglects the bias-dependence of all capacitances.

To make problems easier
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 to work, we will usually neglect 

 and  , even though this is a poor approximation.sb dbC C
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MOSFET short-circuit current gain
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