ECE 137 B: Notes Set 11 Negative Feedback

Mark Rodwell
Doluca Family Chair
University of California, Santa Barbara

Negative feedback in electrical circuits

Purpose is to

- reduce variability of circuit performance
- reduce distortion
- reduce DC errors in DC-coupled amplifiers

To simplify we have two choices, giving 4 main feeback topologies (actually, there are more):
-Feedback a measurement of output voltage: ("voltage sense")
or feedback a measurement of output current: ("current sense")
-Add fed-back signal in series with input signal (voltage sum)
or add fed-back signal in parallel with input signal (current sum)

First two topologies

Current sense, voltage sum (series-series)
$I_{\text {out }}=\frac{A_{D}}{R_{F}}\left(V^{+}-V^{-}\right)$
$\frac{A_{D}}{R_{F}}=A_{O L}=$ open-loop gain
$V^{+}=V_{\text {in }}$
$V^{-}=\beta I_{\text {out }}=\beta I_{\text {out }}$
$\beta=$ feedback factor $=R_{F}$

Second two topologies

Voltage sense, current sum (shunt-shunt)

Current sense, current sum (series-shunt)

Analysis: ideal voltage sense, voltage sum

$V_{\text {out }}=A_{D}\left(V^{+}-V^{-}\right)=A_{\text {oL }}\left(V^{+}-V^{-}\right)=$
but $V^{+}=V_{\text {in }}$ and $V^{-}=\beta V_{\text {out }}$
$\Rightarrow \frac{V_{\text {out }}}{V_{\text {in }}}=\frac{1}{\beta} \cdot \frac{T}{1+T}=A_{C L}=$ closed-loop gain
where:
$T=A_{D} \beta=A_{O L} \beta=$ loop transmission
$A_{D}=$ differential gain $=A_{O L}=$ open-loop gain
$\beta=\frac{Z_{2}}{Z_{f}+Z_{2}}=$ feedback factor

Assume (idealized analysis)
$Z_{\text {out }}=0 \Omega$
$Z_{\text {in }}=\infty \Omega$
If $T \gg 1$ then $\frac{V_{\text {out }}}{V_{\text {in }}}=\frac{1}{\beta}$
gain is then precisely controlled by the feedback loop

Be careful with terminology

$\frac{V_{\text {out }}}{V_{\text {in }}}=\frac{1}{\beta} \cdot \frac{T}{1+T}=A_{C L}=$ closed-loop gain
$T=A_{D} \beta=A_{O L} \beta=$ loop transmission
$A_{D}=$ differential gain $=A_{O L}=$ open-loop gain
$\beta=\frac{Z_{2}}{Z_{f}+Z_{2}}=$ feedback factor

Do not confuse $A_{C L}, T, A_{O L}$, or β.

Do not say "feedback gain": does this mean $A_{C L}, T, A_{O L}$, or β ????

Assume (idealized analysis)
$Z_{\text {out }}=0 \Omega$
$Z_{\text {in }}=\infty \Omega$

Analysis: ideal voltage sense, current sum

$$
V_{\text {out }}=-A_{D} V^{-}
$$

$V^{-}=\frac{Z_{f}}{Z_{f}+Z_{i}} \cdot V_{\text {in }}+\frac{Z_{i}}{Z_{f}+Z_{i}} \cdot V_{\text {out }}$
Combine these two equations:
$\frac{V_{\text {out }}}{V_{\text {in }}}=-\frac{Z_{f}}{Z_{i}} \frac{T}{1+T}$
where
$T=A_{D} \beta=$ loop transmission

Assume (idealized analysis)
$Z_{\text {out }}=0 \Omega$
$Z_{\text {in }}=\infty \Omega$
$\beta=\frac{Z_{i}}{Z_{i}+Z_{f}}=$ feedback factor

Key point: $\frac{V_{\text {out }}}{V_{\text {in }}} \neq \frac{1}{\beta} \frac{T}{1+T}$ (this is because the above red term $\neq 1$)

We will show later that, if $Z_{\text {out }}=0 \Omega$,
$\frac{V_{\text {out }}}{V_{\text {in }}}=A_{\infty} \frac{T}{1+T}$ where A_{∞} is the value of $\frac{V_{\text {out }}}{V_{\text {in }}}$ when $T \rightarrow \infty$

Somewhat more general feedback formula

Sophomore year approximate op-amp circuit analysis:

1) assume V^{+}and V^{-}inputs do not draw current.
2) $V_{\text {out }}=A_{D}\left(V^{+}-V^{-}\right)$so $\left(V^{+}-V^{-}\right)$if $A_{D}=\infty$.
3) From this, calculate $V_{\text {out }} / V_{\text {in }}$

Define: $A_{\infty}=V_{\text {out }} / V_{\text {in }}$ calculated using $(1,2,3)$.

We will show later that, if $Z_{\text {out }}=0 \Omega$,
$\frac{V_{\text {out }}}{V_{\text {in }}}=A_{\infty} \frac{T}{1+T}$

where T is the gain around the feedback loop

Feedback circuit examples (1)

Feedback circuit examples (2)

Source degeneration is negative feedback

"Degeneration" = old, original name for "negative feedback"
$I_{\text {out }}=g_{m}\left(V_{\text {in }}-V^{-}\right) \ldots . g_{m}$ is the open-loop gain
$V^{-}=R_{S} I_{\text {out }} \ldots . R_{S}$ is the feedback factor
so
$I_{\text {out }}=g_{m}\left(V_{\text {in }}-V^{-}\right)=g_{m} V_{\text {in }}-g_{m} R_{S} I_{\text {out }}$
$\frac{I_{\text {out }}}{V_{\text {in }}}=\frac{1}{R_{S}} \frac{g_{m} R_{S}}{1+g_{m} R_{S}}=\frac{g_{m}}{1+g_{m} R_{S}}=\frac{1}{1 / g_{m}+R_{S}}$

Compare to op-amp
$V_{\text {out }}=A_{O L}\left(V_{\text {in }}-V^{-}\right) \ldots . A_{O L}$ is the open-loop gain
$V^{-}=\beta V_{\text {out }} \ldots . \beta$ is the feedback factor
so
$V_{\text {out }}=A_{\text {oL }}\left(V_{\text {in }}-V^{-}\right)=A_{\text {oL }} V_{\text {in }}-A_{\text {oL }} \beta V_{\text {out }}$
$\frac{V_{\text {out }}}{V_{\text {in }}}=\frac{1}{\beta} \frac{A_{\text {oL }} \beta}{1+A_{\text {oL }} \beta}$

Effect of feedback on $\mathrm{Z}_{\text {in }}$: Voltage summation

Assume zero amplifier output impedance
$\beta=Z_{2} /\left(Z_{2}+Z_{f}\right) ; Z_{\beta}=Z_{2} \| Z_{f}$
Superposition:
$V^{-}=V_{\text {in }} \frac{Z_{\beta}}{Z_{\text {in }, A m p}+Z_{\beta}}+\beta V_{\text {out }} \frac{Z_{\text {in }, A m p}}{Z_{\text {in }, A m p}+Z_{\beta}}=V_{\text {in }}(1-\gamma)+\gamma \beta V_{\text {out }}$
where $\gamma=Z_{i n, A m p} /\left(Z_{i n, A m p}+Z_{\beta}\right)$
$V_{\text {out }}=A_{D}\left(V_{\text {in }}-V^{-}\right)=\gamma A_{D} V_{\text {in }}-\gamma A_{D} \beta V_{\text {out }}=\gamma A_{D} V_{\text {in }}-T V_{\text {out }}$

where $T=\gamma A_{D} \beta$; this is the loop transmission
$\frac{V_{\text {out }}}{V_{\text {in }}}=\frac{1}{\beta} \frac{T}{1+T}$ this is the closed-loop gain.
$I_{\text {in }}=\frac{V^{+}-V^{-}}{Z_{\text {in,Amp }}}=\frac{V_{\text {out }} / A_{D}}{Z_{\text {in,Amp }}}=V_{\text {in }} \frac{1}{\beta A_{D}} \frac{T}{1+T} \frac{1}{Z_{i n, A m p}}$

$Z_{\text {in,closed-loop }}=\frac{V_{\text {in }}}{I_{\text {in }}}=Z_{\text {in,Amp }}(1+T)$ this is closed-loop input impedance

Effect of feedback on $Z_{\text {in }}$: current summation

Assume zero amplifier output impedance
$I_{F}=V^{-}\left(1+A_{D}\right) / Z_{F}$

So:
$Z_{x}=Z_{i n, A m p} \|\left(Z_{F} /\left(1+A_{D}\right)\right)$

So:
$Z_{\text {in,closed-loop }}=V_{\text {in }} / I_{\text {in }}=Z_{i}+Z_{\text {in,Amp }} \|\left(Z_{F} /\left(1+A_{D}\right)\right)$ this is closed-loop input impedance

Effect of feedback on $Z_{\text {out }}$: voltage sensing

Assume infinite amplifier input impedance
$I_{\text {test }}=\left(V_{\text {test }}-V_{\text {out }}\right) / Z_{\text {out amp }}$
$I_{\text {test }}=\left(V_{\text {test }}+A_{D} \beta V_{\text {test }}\right) / Z_{\text {out }, \text { amp }}$
$\frac{V_{\text {test }}}{I_{\text {test }}}=\frac{Z_{\text {out }, \text { amp }}}{1+A_{D} \beta}$
this is closed-loop output impedance

General effect of feedback on $Z_{\text {in }}$ and $Z_{\text {out }}$

Be cautious about expressions like
$Z_{\text {out,closed-loop }}=Z_{\text {out, open-loop }} /(1+T) \ldots$.

Feedback decreases or increases $Z_{\text {in }}$ depending on whether voltages or currents are summed at input.

Feedback decreases or increases $Z_{\text {out }}$ depending on whether voltages or currents are sensed at output.

We've analyzed effect on $Z_{\text {in }}$ while assuming $Z_{\text {out }}$ is zero. We've analyzed effect on $Z_{\text {out }}$ while assuming $Z_{\text {in }}$ is infinite. General relationships are complicated.

Options for general case (more advanced than ece137B) nodal analysis
Blackman's formulas.

