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Not just about transistor circuits
Negative feedback is used widely in transistor circuits.

Negative feeback is used far more widely than just in transistor circuits.
Home heating control (thermostat, etc)
Modern aircraft: electronic control of roll, pitch, yaw.
Cars: anti-lock braking, electronic stability enhancement, air/fuel mixture...
Robotics and machinery...

Most of the compenstation techniques discussed here can be used in 
general feedback control systems.

Exception: pole-splitting is specific to transistor circuits



3

class notes, M. Rodwell, copyrighted 2012-2023

One method of obtaining stability (1)
From the Bode criterion, once clear way to have adequate 
phase margin is for the 2nd, 3rd, and higher pole frequencies
to all be well above , the loop bandwidthloopf

|| ( 2 ) ||OLA j fπ

1/ 10β =

angle of ( 2 )OLA j fπ

|| || (dB)T
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1 1

This can be understood by recollecting that,
if the poles in ( ) are  real 

( ) arctan( / ) arctan( / ) ...
               arctan( / ) arctan( / ) ...

So, if  is well 
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contribute very little phase shift, while the term arctan( / )

will contribute approximately -90  phase shift.
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One method of obtaining stability (2)
From the Bode criterion, once clear way to have adequate 
phase margin is for the 2nd, 3rd, and higher pole frequencies
to all be well above , the loop bandwidthloopf

|| ( 2 ) ||OLA j fπ

1/ 10β =

angle of ( 2 )OLA j fπ

|| || (dB)T
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This can be understood by recollecting that,
if the poles in ( ) are  real 

( ) arctan( / ) arctan( / ) ...
               arctan( / ) arctan( / ) ...

So, if  is well 

loop loop z loop z

loop p loop p

loop
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T f f f f f

f f f f

f

∠ = + +
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0

below , ,.... then each of these poles will 
contribute very little phase shift, while the term arctan( / )

will contribute approximately -90  phase shift.
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Dominant pole compensation
|| ( 2 ) ||OLA j fπ

1/ 10β =

angle of ( 2 )OLA j fπ
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0

Make  small enough that (1 ) ....

Then , at , the higher poles  ....
will contribute very little phase shift, 
while the first pole will contribute approximately -90  

p loop p p p

loop p p

f f f T f f

f f f

= + <<

1

phase shift.

In the op-amp below, we do this by adding capacitance to the node
that is already providing the lowest pole frequency .pf 300 kHzloopf =

80 kHzloopf =
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Pole-splitting compensation (1)
|| ( 2 ) ||OLA j fπ

1/ 10β =

angle of ( 2 )OLA j fπ
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We seek to make  , ,....,  so that the poles at ,  don't 
contribute significant phase shift at  .

If we could increase , ,...., then we could not need to decrease
  and  

loop p p p p

loop

p p

p loop

f f f f f
f

f f
f f

<

2 3 as much as would be needed if , ,...., remained constant.

This can be done with a pole-splitting capacitor, as shown

p pf f

600 kHz
loopf =

300 kHzloopf =
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Pole-splitting compensation (2)

( )
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Pole-splitting compensation (3)

6 5

5

What, physically, is happening ?

The amplifier has poles arising in part from the capacitances 
associated with , together with . These capacitances are 
charged through the output impedance of .

DSM C
M

5 5 5

5 5 5
5

But, while  at DC, as frequency increases, ( )
short-circuits together the gate and drain of 5.  So, at high frequencies, 

1|| || 1/

Consequently, with a large ,

out DS dg C

out DS i m
m

C

Z R C C
M

Z R R g
g

C

= +

 
= ≅ 
 

5 6

we have one low pole frequency, but the
pole associated with the output of  , and the poles associated with  ,
are driven to higher frequencies.

M M
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Lead compensation in forward path
|| ( 2 ) ||OLA j fπ

1/ 10β =

angle of ( 2 )OLA j fπ
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The resistor  introduces a zero into ( ) with 1/ ( 1/ )

If  is negative (left half of -plane) , 
then the zero adds postive phase shift.

We place  somewhat above .

Placing 

z OL zero C z m

zero

zero loop

R A s s C R g

s s

f f

= − −

the zero carelessly can result in a large increase 
in , with consequent loop instabilityloopf

600 kHzloopf =
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Lead compensation in feedback path (1)
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Lead compensation in feedback path (2)

1,2 2 1

2 1

1 2 1

1

infinite op-amp gain

First find  :

Use KCL at 
( ) / 2 ( )( ) 0

but 

( )( ) 0
( ) ( ) 0
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gen F F z out F z

out F F

gen

A

V
V V sC V G V V G sC

V V V

V G V V G sC
V G G sC V G sC

V G GA
V

∞
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∞
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So, the frequency-dependent feedback has added a pole-zero pair to .
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Lead compensation in feedback path (3)
Now find  ( ) :
To do this, we *unwrap* the feedback loop, replacing it with an infinite chain of forward gain ( ) and feeback ( ) elements.
We insert a test voltage , and compute the voltage tha

OL

test

T s
A

V
β

t reaches the identical point after passing once through a forward gain 
( ) element and once through a  feeback ( ) element. This keeps the loading impedance of each node unchanged.
(you will better 

OLA β
2avoid loading anomalies by comparing the points  and , but that requires more work).test testTV T V
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Lead compensation in feedback path (4)
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The loop transmission involves ( ),
including its poles, and the feedback network ( )

( ) involves a voltage divider between || ( / 2)
and || .
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We have introduced a zero ( = 1/ )  into ( ),  improving
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Lead compensation in feedback path (5)
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phase margin,
but added a , which may or may not be desirable.

At higher frequencies, we have also added a .
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Lag or Integral Compensation
We add a pole-zero pair to the amplifier while
increasing its DC gain.

Overall loop banwidth remains constant
Phase margin is decreased (not good)
Loop transmission, ,  is greatly increased at low frequenT cies.
This provides greater loop precision, distortion suppression.
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1

2

3

8

4

6

1

10

added 100 kHz
add

( ) 10
5 Hz 5 

z

Hz
2 MHz 2 MHz
20 M 0

ed 1

z

 

H 2  MHz

kH
z

p

p

p

p

OLA

f

f
f

DC
f

f

=
= →

= →

=

→

=

→

=

300 kHzloopf =

600 kHz
loopf =

20 dB/decade−

40 dB/decade−
20 dB/decade−

20 dB/decade −|| || (dB)T


