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Feedback loop stability
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We want to know whether 4., ()
has any poles in the right half of the S-plane.

Key point 1: poles of A, (s) are zeros of D(s)=1+4,, (s)L(s)
Key point 2: zeros of A, (s) are poles of D(s)=1+4,,(s)B(s)



Walking around the S-plane (1)
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We have a variable s. We have a function F'(s).

First: the trivial function F'(s) ==

If we move the point s around the s — plane,

The point F'(s) moves in an 1dentical trajectory (of course).



Walking around the S-plane (2): a zero

Now consider a zero F(s)=s—s5_
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If we move the point s once 1n a clockwise circle around the zero,

then the point /'(s) moves in one clockwise circle around the origin.



Walking around the S-plane (2): angles

F(s)=s-s.
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Given that F'(s) = s —s_, the angle of the point s with respect to the zero

has to equal to the angle of the point F'(s) with respect to the origin.

So, when s circles the zero, F'(s) must circle the origin,

and clockwise circling leads to clockwise circling.



Walking around the S-plane (3): missing the zero
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If our path 1n the s-plane does not circle the zero,

then the path in the F(s) plane will not circle the origin



Walking around the S-plane (3): multiple zeros

F(s)=(s =5 )(s=5.,)-.(s =5.)
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We can now see that, if our path 1n the s-plane wraps around N zeros,

going clockwise,
then the path in the F(s) plane will circle the origin N times,

going clockwise.



Walking around the S-plane (2): a pole
Now consider a pole F(s)=1/(s—s,)
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Note that because Z(1/(s—s.))=—-1*Z(s-5s.),

the angle has **changed sign™*.

(Also, the radius has inverted, but that 1s not important here.)

If we move the point s once 1n a *clockwise™ circle around the pole,
then

the point F'(s) moves in one *counter*clockwise circle around the origin.



Our prize: Cauchy's principle
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Let us travel clockwise around a closed loop in the s-plane

which wraps around Z zeros and P poles.

Then F'(s) will wrap * N * times *clockwise® around the origin,

where
N=/-P



Towards Nyquist's criterion
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If s follows the marked trajectory, then the # of times *N* that (1+T(s))
circles the origin, in a clockwise direction,

equals # zeros, Z, 1n (1+T(s)), minus # poles, P, in (1+T(s)),
N=Z-P, orZ=P+N



Towards Nyquist's criterion
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But: Z =# unstable poles in 4., (s), the closed loop gain

and: P =# unstable poles in 4, (s) 5(s), the loop transmission.

So: Z =P+ N, where

Z =# unstable poles in 4, (s), the closed loop gain

P =# unstable poles in 4, (s) B(s), the loop transmission.

N =# times (1+T(s)) wraps clockwise around the origin



Nyquist's criterion (finally)
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Let's plot T(s) instead of (1+T(s)).

So: Z =P+ N, where

Z =# unstable poles in 4, (s), the closed loop gain

P =# unstable poles in 4, (s)B(s), the loop transmission.

N =# times T(s) wraps clockwise around the the point (-1+ j0)



Nyquist's criterion: simplified case: stable before feedback
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Nyquist criterion applies even for systems which are unstable before feedback is applied !

Example: pitch (nose up/down) control on some fighter planes.

NOW: let's consider cases where the system is stable before feedback is applied.

In that case: P = # unstable poles in 4, (s) B(s), the loop transmission = *zero*

In that case: Z = N, where

Z =# unstable poles in 4., (s), the closed loop gain

N =# times T(s) wraps clockwise around the the point (-1+ j0)



Nyquist stability test: feedback with one pole
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Here the loop transmission has one pole.
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T(s), in the Nyquist test, does not wrap around the point (-1+70)



Nyquist stability test: feedback with two poles
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Here the loop transmission has two poles.

T(s), in the Nyquist test, still does not wrap around the point (-1+70)



Nyquist stability test: feedback with three poles
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Here the loop transmission has three poles.
Depending on the numerical parameters,

T(s), in the Nyquist test, might wrap twice clockwise
around the point (-1+0).

— Two unstable poles in 4, ()



Nyquist stability test: three poles, two zeros
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Here the loop transmission has three poles and two zeros
Depending on the numerical parameters, as shown

T(s), in the Nyquist test, might wrap *zero times* clockwise
around the point (-1+0).

— No unstable poles in 4, ()



