The Nyquist Feedback Stability Criterion

Mark Rodwell, University of California, Santa Barbara

Feedback loop stability

We want to know whether $A_{CL}(s)$ has any poles in the right half of the S-plane.

Key point 1: poles of $A_{CL}(s)$ are zeros of $D(s) = 1 + A_{OL}(s)\beta(s)$ Key point 2: zeros of $A_{CL}(s)$ are poles of $D(s) = 1 + A_{OL}(s)\beta(s)$

Walking around the S-plane (1)

 $s \rightarrow F(s)$

We have a variable *s*. We have a function F(s). First: the trivial function F(s) = s

If we move the point *s* around the s – plane, The point F(s) moves in an identical trajectory (of course).

Walking around the S-plane (2): a zero

Now consider a zero $F(s) = s - s_z$

 $s \rightarrow F(s)$

If we move the point *s* once in a clockwise circle around the zero, then the point F(s) moves in one clockwise circle around the origin.

Walking around the S-plane (2): angles

Given that $F(s) = s - s_z$, the angle of the point *s* with respect to the zero has to equal to the angle of the point F(s) with respect to the origin.

So, when *s* circles the zero, F(s) must circle the origin, and clockwise circling leads to clockwise circling.

Walking around the S-plane (3): missing the zero

 $F(s) = s - s_z$

If our path in the s-plane does not circle the zero, then the path in the F(s) plane will not circle the origin

Walking around the S-plane (3): multiple zeros

 $F(s) = (s - s_{z1})(s - s_{z2})...(s - s_{zM})$

 $s \rightarrow F(s)$

We can now see that, if our path in the s-plane wraps around N zeros, going clockwise,

then the path in the F(s) plane will circle the origin N times, going clockwise.

Walking around the S-plane (2): a pole

Now consider a pole $F(s) = 1/(s - s_p)$ $s \rightarrow F(s)$

Note that because $\angle (1/(s-s_z)) = -1*\angle (s-s_z)$,

the angle has **changed sign**.

(Also, the radius has inverted, but that is not important here.)

If we move the point *s* once in a *clockwise* circle around the pole, then

the point F(s) moves in one *counter*clockwise circle around the origin.

Our prize: Cauchy's principle

 $s \rightarrow F(s)$

Let us travel clockwise around a closed loop in the s-plane which wraps around Z zeros and P poles.

Then F(s) will wrap *N* times *clockwise* around the origin, where

N = Z - P

Towards Nyquist's criterion

 $s \rightarrow 1 + T(s)$

If *s* follows the marked trajectory, then the # of times **N** that (1+T(s)) circles the origin, in a clockwise direction, equals # zeros, *Z*, in (1+T(s)), minus # poles, *P*, in (1+T(s)), N = Z - P, or Z = P + N

Towards Nyquist's criterion

 $s \rightarrow 1 + T(s)$

But: Z = # unstable poles in $A_{CL}(s)$, the closed loop gain and: P = # unstable poles in $A_{OL}(s)\beta(s)$, the loop transmission.

So: Z = P + N, where

Z = # unstable poles in $A_{CL}(s)$, the closed loop gain

P = # unstable poles in $A_{OL}(s)\beta(s)$, the loop transmission.

N = # times (1+T(s)) wraps clockwise around the origin

Nyquist's criterion (finally)

 $s \rightarrow T(s)$

Let's plot T(s) instead of (1+T(s)).

So: Z = P + N, where

Z = # unstable poles in $A_{CL}(s)$, the closed loop gain

P = # unstable poles in $A_{OL}(s)\beta(s)$, the loop transmission.

N = # times T(s) wraps clockwise around the point (-1 + j0)

Nyquist's criterion: simplified case: stable before feedback

Nyquist criterion applies even for systems which are unstable before feedback is applied ! Example: pitch (nose up/down) control on some fighter planes.

NOW: let's consider cases where the system is stable before feedback is applied. In that case: P = # unstable poles in $A_{OL}(s)\beta(s)$, the loop transmission = *zero* In that case: Z = N, where Z = # unstable poles in $A_{CL}(s)$, the closed loop gain N = # times T(s) wraps clockwise around the the point (-1+ j0)

Nyquist stability test: feedback with one pole

Here the loop transmission has one pole.

T(s), in the Nyquist test, does not wrap around the point (-1+j0)

Nyquist stability test: feedback with two poles

Here the loop transmission has two poles.

T(s), in the Nyquist test, still does not wrap around the point (-1+j0)

Nyquist stability test: feedback with three poles

Here the loop transmission has three poles.

Depending on the numerical parameters,

T(s), in the Nyquist test, might wrap twice clockwise around the point (-1+j0).

 \rightarrow Two unstable poles in $A_{CL}(s)$

Nyquist stability test: three poles, two zeros

Here the loop transmission has three poles and two zeros Depending on the numerical parameters, as shown T(s), in the Nyquist test, might wrap *zero times* clockwise around the point (-1+j0).

 \rightarrow No unstable poles in $A_{CL}(s)$