The Nyquist Feedback Stability Criterion

Mark Rodwell,
University of California, Santa Barbara

Feedback loop stability

$$
\begin{aligned}
A_{C L}(s) & =\frac{A_{O L}(s)}{1+A_{O L}(s) \beta(s)}=\frac{A_{O L}(s)}{1+T(s)} \\
& =\frac{N(s)}{D(s)}
\end{aligned}
$$

We want to know whether $A_{C L}(s)$ has any poles in the right half of the S-plane.

Key point 1: poles of $A_{C L}(s)$ are zeros of $D(s)=1+A_{O L}(s) \beta(s)$ Key point 2: zeros of $A_{C L}(s)$ are poles of $D(s)=1+A_{O L}(s) \beta(s)$

Walking around the S-plane (1)

$$
s \rightarrow F(s)
$$

We have a variable s. We have a function $F(s)$.
First: the trivial function $F(s)=s$

If we move the point s around the s-plane,
The point $F(s)$ moves in an identical trajectory (of course).

Walking around the S-plane (2): a zero

Now consider a zero $F(s)=s-s_{z}$

$$
s \rightarrow F(s)
$$

If we move the point s once in a clockwise circle around the zero, then the point $F(s)$ moves in one clockwise circle around the origin.

Walking around the S-plane (2): angles

$$
F(s)=s-s_{z}
$$

$$
s \rightarrow F(s)
$$

Given that $F(s)=s-s_{z}$, the angle of the point s with respect to the zero has to equal to the angle of the point $F(s)$ with respect to the origin.

So, when s circles the zero, $F(s)$ must circle the origin, and clockwise circling leads to clockwise circling.

Walking around the S-plane (3): missing the zero

$$
F(s)=s-s_{z}
$$

$$
s \rightarrow F(s)
$$

If our path in the s-plane does not circle the zero, then the path in the $\mathrm{F}(\mathrm{s})$ plane will not circle the origin

Walking around the S-plane (3): multiple zeros

$F(s)=\left(s-s_{z 1}\right)\left(s-s_{z 2}\right) \ldots\left(s-s_{z M}\right)$

$$
s \rightarrow F(s)
$$

We can now see that, if our path in the s-plane wraps around N zeros, going clockwise, then the path in the $\mathrm{F}(\mathrm{s})$ plane will circle the origin N times, going clockwise.

Walking around the S-plane (2): a pole

Now consider a pole $F(s)=1 /\left(s-s_{p}\right)$

$$
s \rightarrow F(s)
$$

Note that because $\angle\left(1 /\left(s-s_{z}\right)\right)=-1^{*} \angle\left(s-s_{z}\right)$, the angle has **changed sign**.
(Also, the radius has inverted, but that is not important here.)
If we move the point s once in a *clockwise* circle around the pole, then
the point $F(s)$ moves in one $*$ counter*clockwise circle around the origin.

Our prize: Cauchy's principle

$$
s \rightarrow F(s)
$$

Let us travel clockwise around a closed loop in the s-plane which wraps around Z zeros and P poles.

Then $F(s)$ will wrap $* N^{*}$ times *clockwise* around the origin, where
$N=Z-P$

Towards Nyquist's criterion

$$
s \rightarrow 1+T(s)
$$

If s follows the marked trajectory, then the \# of times ${ }^{*} N^{*}$ that $(1+\mathrm{T}(\mathrm{s}))$ circles the origin, in a clockwise direction, equals \# zeros, Z, in $(1+\mathrm{T}(\mathrm{s}))$, minus \# poles, P, in $(1+\mathrm{T}(\mathrm{s}))$, $N=Z-P$, or $Z=P+N$

Towards Nyquist's criterion

$$
s \rightarrow 1+T(s)
$$

But: $Z=\#$ unstable poles in $A_{C L}(s)$, the closed loop gain and: $P=\#$ unstable poles in $A_{O L}(s) \beta(s)$, the loop transmission.

So: $Z=P+N$, where
$Z=\#$ unstable poles in $A_{C L}(s)$, the closed loop gain
$P=\#$ unstable poles in $A_{O L}(s) \beta(s)$, the loop transmission.
$N=\#$ times $(1+\mathrm{T}(\mathrm{s}))$ wraps clockwise around the origin

Nyquist's criterion (finally)

Let's plot $\mathrm{T}(\mathrm{s})$ instead of $(1+\mathrm{T}(\mathrm{s}))$.

So: $Z=P+N$, where
$Z=\#$ unstable poles in $A_{C L}(s)$, the closed loop gain
$P=\#$ unstable poles in $A_{O L}(s) \beta(s)$, the loop transmission.
$N=$ \# times T(s) wraps clockwise around the the point $(-1+j 0)$

Nyquist's criterion: simplified case: stable before feedback

$s \rightarrow T(s)$

Nyquist criterion applies even for systems which are unstable before feedback is applied ! Example: pitch (nose up/down) control on some fighter planes.

NOW: let's consider cases where the system is stable before feedback is applied. In that case: $P=\#$ unstable poles in $A_{O L}(s) \beta(s)$, the loop transmission $={ }^{*}$ zero* In that case: $Z=N$, where
$Z=\#$ unstable poles in $A_{C L}(s)$, the closed loop gain $N=\#$ times $\mathrm{T}(\mathrm{s})$ wraps clockwise around the the point $(-1+j 0)$

Nyquist stability test: feedback with one pole

Here the loop transmission has one pole.
$\mathrm{T}(\mathrm{s})$, in the Nyquist test, does not wrap around the point $(-1+\mathrm{j} 0)$

Nyquist stability test: feedback with two poles

Here the loop transmission has two poles.
$\mathrm{T}(\mathrm{s})$, in the Nyquist test, still does not wrap around the point $(-1+\mathrm{j} 0)$

Nyquist stability test: feedback with three poles

Here the loop transmission has three poles.
Depending on the numerical parameters,
$\mathrm{T}(\mathrm{s})$, in the Nyquist test, might wrap twice clockwise around the point $(-1+j 0)$.
\rightarrow Two unstable poles in $A_{C L}(s)$

Nyquist stability test: three poles, two zeros

Here the loop transmission has three poles and two zeros
Depending on the numerical parameters, as shown
T(s), in the Nyquist test, might wrap *zero times* clockwise around the point $(-1+\mathrm{j} 0)$.
\rightarrow No unstable poles in $A_{C L}(s)$

