ECE 137 B: Notes Set 2
 - Common-emitter / common-souce
 - General circuit transfer function analysis

Mark Rodwell
Doluca Family Chair
University of California, Santa Barbara

Common-emitter amplifier

This lecture: consider only high-frequency response:
$\Rightarrow C_{\text {in }}=C_{\text {out }}=C_{E E}=\infty$ Farads

Aside: setting up a relationship to use later

$$
\begin{aligned}
V_{i n} & =R_{i} I_{i n}=\left(R_{g e n} \| R_{i n, A}\right)\left(\frac{V_{g e n}}{R_{g e n}}\right) \\
& =\frac{R_{g e n} R_{i n, A}}{R_{g e n}+R_{i n, A}} \frac{V_{g e n}}{R_{g e n}}=\frac{R_{i n, A}}{R_{g e n}+R_{i n, A}} V_{g e n}
\end{aligned}
$$

Learn to recognize that
$R_{i} I_{i n}=\frac{R_{i n, A}}{R_{g e n}+R_{i n, A}} V_{g e n}$
$V_{\text {gen }} / R_{\text {gen }} R_{\text {gen }} \quad R_{\text {in,amp }}$

Simplifying the circuit

We are solving this problem for *2 reasons*

1) to get the answer
2) to review how solve circuit transfer functions, poles, zeros.

Problem is easier if we write

$$
\begin{aligned}
& Y_{i n}=1 / R_{i}+s C_{b e}=G_{i}+s C_{b e} \\
& Y_{L}=1 / R_{L, e q}+s C_{L}=G_{L, e q}+s C_{L} \\
& Y_{f}=s C_{c b}
\end{aligned}
$$

$$
I_{i n}=V_{g e n} / R_{g e n} \quad R_{i} \quad C_{B E} \quad V_{i n} C_{C B} g_{m} V_{B E} \quad R_{L, e q} C_{L}
$$

Nodal Analysis: why we learn this.

Please note: only on this note set will I show you all steps for nodal analysis. Please review your sophomore circuits analysis.

Though both nodal \& mesh analysis are taught in the sophomore year, nodal analsis is usually easier and quicker.

In a circuit with N unknown node voltages, nodal analysis will always give you the N *linearly independent* equations you need to solve for these unknowns.

Nodal analysis: write $\Sigma I=0$ at each node for which you do not
Model of Bus Suspension System (1/4 Bus)
 know the node voltage.

You can use very similar methods to compute the dynamics of mechanical systems: acoustics, cars, planes, robotics, control systems

Nodal Analysis: setting up equations

$\Sigma I=0 @ V_{i n}:$
$-I_{\text {in }}+V_{\text {in }} Y_{\text {in }}+\left(V_{\text {in }}-V_{\text {out }}\right) Y_{f}=0$
$\Rightarrow\left(Y_{\text {in }}+Y_{f}\right) V_{\text {in }}+\left(-Y_{f}\right) V_{\text {out }}=I_{\text {in }}$
$\Sigma I=0 @ V_{\text {out }}:$
$g_{m} V_{\text {in }}+\left(V_{\text {out }}-V_{\text {in }}\right) Y_{f}+V_{\text {out }} Y_{L}=0$
$\Rightarrow\left(g_{m}-Y_{f}\right) V_{\text {in }}+\left(Y_{L}+Y_{f}\right) V_{\text {out }}=0$

this can be written in matrix form:
$\left[\begin{array}{cc}Y_{\text {in }}+Y_{f} & -Y_{f} \\ g_{m}-Y_{f} & Y_{L}+Y_{f}\end{array}\right]\left[\begin{array}{c}V_{\text {in }} \\ V_{\text {out }}\end{array}\right]=\left[\begin{array}{c}I_{\text {in }} \\ 0\end{array}\right]$

Systems of equations can be solved many ways.
Use your favorite method.
One method (not a particularly efficient one) is Cramer's rule.

Nodal Analysis: solving equations (1)

$$
\left[\begin{array}{cc}
Y_{\text {in }}+Y_{f} & -Y_{f} \\
g_{m}-Y_{f} & Y_{L}+Y_{f}
\end{array}\right]\left[\begin{array}{c}
V_{\text {in }} \\
V_{\text {out }}
\end{array}\right]=\left[\begin{array}{c}
I_{\text {in }} \\
0
\end{array}\right]
$$

Cramer's rule:

$$
\begin{aligned}
& V_{\text {out }}=\frac{N}{D}=\frac{\left|\begin{array}{cc}
Y_{i n}+Y_{f} & I_{i n} \\
g_{m}-Y_{f} & 0
\end{array}\right|}{\left|\begin{array}{lc}
Y_{i n}+Y_{f} & -Y_{f} \\
g_{m}-Y_{f} & Y_{L}+Y_{f}
\end{array}\right|} \\
& N=\left|\begin{array}{ll}
Y_{i n}+Y_{f} & I_{\text {in }} \\
g_{m}-Y_{f} & 0
\end{array}\right|=\left(Y_{i n}+Y_{f}\right)(0)-\left(I_{i n}\right)\left(g_{m}-Y_{f}\right)=-\left(I_{i n}\right)\left(g_{m}-s C_{c b}\right)
\end{aligned}
$$

Put in dimensionless polynomial form:

$$
\begin{aligned}
N & =-I_{i n}\left(1-s C_{c b} / g_{m}\right)=-g_{m} I_{i n}\left(1-s C_{c b} / g_{m}\right) \\
& =-g_{m} I_{i n}\left(1+b_{1} s\right) \text { where } b_{1}=-C_{c b} / g_{m}
\end{aligned}
$$

Nodal Analysis: solving equations (2)

$$
\begin{aligned}
& D=\left|\begin{array}{cc}
Y_{i n}+Y_{f} & -Y_{f} \\
g_{m}-Y_{f} & Y_{L}+Y_{f}
\end{array}\right|=\left(Y_{i n}+Y_{f}\right)\left(Y_{L}+Y_{f}\right)-\left(-Y_{f}\right)\left(g_{m}-Y_{f}\right) \\
& =Y_{i n} Y_{L}+Y_{i n} Y_{f}+Y_{f} Y_{L}+Y_{f}^{2}+g_{m} Y_{f}-Y_{f}^{2} \\
& =Y_{i n} Y_{L}+Y_{i n} Y_{f}+Y_{f} Y_{L}+g_{m} Y_{f} \\
& =\left(G_{i}+s C_{b e}\right)\left(G_{L, e q}+s C_{L}\right)+\left(G_{i}+s C_{b e}\right) s C_{c b}+s C_{c b}\left(G_{L, e q}+s C_{L}\right)+g_{m} s C_{c b}
\end{aligned}
$$

As you multiply out, organize by powers of s, i.e. s^{0}, s^{1}, and s^{2} :

$$
\begin{aligned}
D= & G_{i} G_{L, e q} \\
& +s\left(G_{i} C_{L}+G_{L, e q} C_{b e}+G_{i} C_{c b}+G_{L, e q} C_{c b}+g_{m} C_{c b}\right) \\
& +s^{2}\left(C_{c b} C_{b e}+C_{c b} C_{L}+C_{b e} C_{L}\right)
\end{aligned}
$$

Nodal Analysis: solving equations (3)

We must put D into dimensionless polynomial form:

Do this by dividing each term in D by $G_{i} G_{\text {Leq }}=1 / R_{i} R_{\text {Leq }}$:

$$
D=\left(R_{i} R_{L, e q}\right)^{-1}\left(1+a_{1} s+a_{2} s^{2}\right)
$$

where

$$
\begin{aligned}
a_{1} & =R_{L, e q} C_{c b}+R_{L e q} C_{L}+R_{i} C_{b e}+R_{i} C_{c b}+R_{i} R_{L, e q} g_{m} C_{c b}= \\
& =R_{i} C_{b e}+R_{L, e q} C_{c b}+R_{L, e q} C_{L}+R_{i}\left(1+g_{m} R_{L, e q}\right) C_{c b}
\end{aligned}
$$

and
$a_{2}=R_{i} R_{\text {Leq }}\left(C_{c b} C_{b e}+C_{c b} C_{L}+C_{b e} C_{L}\right)$
$V_{\text {out }}=\frac{N}{D}=\frac{-g_{m} I_{\text {in }}\left(1+b_{1} s\right)}{\left(R_{i} R_{L, e q}\right)^{-1}\left(1+a_{1} s+a_{2} s^{2}\right)}=-g_{m} I_{\text {in }} R_{i} R_{L, e q} \frac{1+b_{1} s}{1+a_{1} s+a_{2} s^{2}}$
but $I_{i n} R_{i}=V_{g e n} \frac{R_{i n, A}}{R_{i n, A}+R_{g e n}}$ so:
$\frac{V_{\text {out }}}{V_{\text {gen }}}=-g_{m} R_{L, e q} \frac{R_{i n, A}}{R_{\text {in, }, A}+R_{\text {gen }}} \frac{1+b_{1} s}{1+a_{1} s+a_{2} s^{2}}$

Nodal Analysis: solution

$\frac{V_{\text {out }}(s)}{V_{\text {gen }}(s)}=-g_{m} R_{L, e q} \frac{R_{i n, A}}{R_{i n, A}+R_{\text {gen }}} \frac{1+b_{1} s}{1+a_{1} s+a_{2} s^{2}}$
where
$a_{1}=R_{i} C_{b e}+R_{L, e q} C_{c b}+R_{L, e q} C_{L}+R_{i}\left(1+g_{m} R_{L, e q}\right) C_{c b}$
$a_{2}=R_{i} R_{\text {Leq }}\left(C_{c b} C_{b e}+C_{c b} C_{L}+C_{b e} C_{L}\right)$
$b_{1}=-C_{c b} / g_{m}$

This has been slow because all steps have been shown (just this once).

Answer has both the DC gain and the frequency response.

Since we know easier methods (from 137A) to find DCgain we will often dorp constants during the AC analysis.

The answer, though complicated, makes perfect sense, and you will become familiar with it.
$I_{\text {in }}=V_{\text {gen }} / R_{\text {gen }} \quad R_{\text {gen }} R_{B 1} R_{B 2} R_{B E} C_{B E} V_{i n} C_{C B} g_{m} V_{B E} R_{C E} R_{C} R_{L} C_{L}$

Mid-band gain and Frequency response

$$
\frac{V_{\text {out }}(s)}{V_{\text {gen }}(s)}=-g_{m} R_{L, e q} \frac{R_{i n, A}}{R_{i n, A}+R_{\text {gen }}} \frac{1+b_{1} s}{1+a_{1} s+a_{2} s^{2}}=\left.\frac{V_{\text {out }}}{V_{\text {gen }}}\right|_{\text {mid }- \text { band }} \quad \cdot \frac{1+b_{1} s}{1+a_{1} s+a_{2} s^{2}}
$$

where

$$
\left.\frac{V_{\text {out }}}{V_{g e n} \|_{\text {mid }- \text { band }}} \right\rvert\,=\mathrm{ECE} 137 \mathrm{~A} \text { answer }=-g_{m} R_{L, e q} \frac{R_{i l, A}}{R_{i n, A}+R_{g e n}}
$$

Finding the poles and zeros.
$\frac{V_{\text {out }}(s)}{V_{\text {gen }}(s)}=\left.\frac{V_{\text {out }}}{V_{\text {gen }}}\right|_{\text {mid-band }} \cdot \frac{1+b_{1} s}{1+a_{1} s+a_{2} s^{2}}$

In general, we can write
$1+a_{1} s+a_{2} s^{2}=1+s\left(2 \zeta / \omega_{n}\right)+s^{2} / \omega_{n}^{2}$
$\omega_{n}=a_{2}^{-1 / 2}$ and $\zeta=a_{1} \omega_{n} / 2=a_{1} a_{2}^{-1 / 2} / 2$

Pole locations are then found as to the right.

But, if $a_{2} / a_{1} \ll a_{1}$, there is a simpler way of solving this

$\omega_{d}=\omega_{n} \cdot \sqrt{1-\zeta^{2}}$

$\omega_{d}=\omega_{n} \cdot \sqrt{\zeta^{2}-1}$

Separated pole approximation

$\frac{V_{\text {out }}(s)}{V_{\text {gen }}(s)}=\left.\frac{V_{\text {out }}}{V_{\text {gen }}}\right|_{\text {mid-band }} \cdot \frac{1+b_{1} s}{1+a_{1} s+a_{2} s^{2}}$

Consider a system with two real poles
$\left(1+s \tau_{1}\right)\left(1+s \tau_{2}\right)=1+s\left(\tau_{1}+\tau_{2}\right)+s^{2} \tau_{1} \tau_{2}$
Now suppose than $\tau_{1} \gg \tau_{2}$:
$\left(1+s \tau_{1}\right)\left(1+s \tau_{2}\right) \cong 1+s \tau_{1}+s^{2} \tau_{1} \tau_{2}$

This means we can approximately factor $1+a_{1} s+a_{2} s^{2}$:
$1+a_{1} s+a_{2} s^{2} \cong\left(1+a_{1} s\right)\left(1+\left(a_{2} / a_{1}\right) s\right) * i f f * a_{1} \gg a_{2} / a_{1}$
$\left.\frac{V_{\text {out }}(s)}{V_{\text {gen }}(s)} \cong \frac{V_{\text {out }}}{V_{\text {gen }}}\right|_{\text {mid-band }} \cdot \frac{1+b_{1} s}{\left(1+a_{1} s\right)\left(1+\left(a_{2} / a_{1}\right) s\right)} * i f f * a_{1} \gg a_{2} / a_{1}$
dominant pole: $f_{p 1} \cong 1 / 2 \pi a_{1}$; secondary pole: $f_{p 2} \cong 1 / 2 \pi\left(a_{2} / a_{1}\right)$

Pole-zero constellation -20 dB/decade

The Miller approximation (1)

Not a good way to find transfer functions.
Helpful for comprehensoin.

Analyze first the section to the right of the dotted line.
Note: We are ignoring the output impedance:

this is why it is the Miller *approximation*.
$I_{\text {in }}=s C_{f}\left(V_{\text {in }}-V_{\text {out }}\right)=s C_{f}\left(V_{\text {in }}+A_{v} V_{\text {in }}\right)=s C_{f} V_{\text {in }}\left(1+A_{v}\right)$
$Z_{\text {in }}=\frac{V_{\text {in }}}{I_{\text {in }}}=\frac{1}{s C_{f}\left(1+A_{v}\right)}=\frac{1}{s C_{\text {Miller }}}$
where $C_{\text {Miller }}=C_{f}\left(1+A_{v}\right)$

The Miller approximation (2)

$\frac{V_{\text {out }}(s)}{V_{\text {gen }}(s)}=\left.\frac{V_{\text {out }}}{V_{\text {gen }}}\right|_{\text {mid-band }} \frac{1}{1+s R_{i} C_{\text {Miller }}}$ where $C_{\text {Miller }}=C_{f}\left(1+A_{v}\right)$

Referring back to the common-emitter amplifier analysis:
$a_{1}=R_{i} C_{b e}+R_{\text {Leq }} C_{c b}+R_{\text {Leq }}$

Using Miller Approximation to understand CE response

Now use the Miller approximation to understand the frequency reponse of the common emitter stage

Mid-band gain from $V_{\text {in }}$ to $V_{\text {out }}$ is $-g_{m} R_{\text {Leq }}$.
Miller approximation:
replace $C_{c b}$ between $V_{\text {in }}$ and $V_{\text {out }}$ with $C_{\text {Miller }}$ between $V_{\text {in }}$ and ground.

2 poles:
$f_{p 1}: \quad 1 / 2 \pi f_{p 1}=R_{i} C_{b e}+R_{i} C_{c b}\left(1+g_{m} R_{L, e q}\right)$
$f_{p 2}: \quad 1 / 2 \pi f_{p 2}=R_{L, e q} C_{L}$
$f_{p 1}$ is wrong by a little; $f_{p 2}$ is very wrong.

Using Miller Approximation to understand CE response

Exact (nodal analysis) solution
$\frac{V_{\text {out }}(s)}{V_{\text {gen }}(s)}=\left.\frac{V_{\text {out }}}{V_{\text {gen }}}\right|_{\text {mid-band }} \cdot \frac{1+b_{1} s}{1+a_{1} s+a_{2} s^{2}}$
where
$a_{1}=R_{i} C_{b e}+R_{L, e q} C_{c b}+R_{L, e q} C_{L}+R_{i}\left(1+g_{m} R_{L, e q}\right) C_{c b}$
$a_{2}=R_{i} R_{\text {Leq }}\left(C_{c b} C_{b e}+C_{c b} C_{L}+C_{b e} C_{L}\right)$
$b_{1}=-C_{c b} / g_{m} \rightarrow 1 / 2 \pi f_{z}=-C_{c b} / g_{m}$
...and if we can use the separated pole approximation:
$1 / 2 \pi f_{p 1} \cong a_{1}=R_{i} C_{b e}+R_{L, e q} C_{c b}+R_{L, e q} C_{L}+R_{i}\left(1+g_{m} R_{L, e q}\right) C_{c b}$
$1 / 2 \pi f_{p 2} \cong \frac{a_{2}}{a_{1}}=\frac{R_{i} R_{L e q}\left(C_{c b} C_{b e}+C_{c b} C_{L}+C_{b e} C_{L}\right)}{R_{i} C_{b e}+R_{L, e q} C_{c b}+R_{L, e q} C_{L}+R_{i}\left(1+g_{m} R_{L, e q}\right) C_{c b}}$
Approximate (Miller) solution
$f_{p 1}: \quad 1 / 2 \pi f_{p 1}=R_{i} C_{b e}+R_{i} C_{c b}\left(1+g_{m} R_{L, e q}\right)$
$f_{p 2}: \quad 1 / 2 \pi f_{p 2}=R_{L, e q} C_{L}$
$f_{p 1}$ is wrong by a little; $f_{p 2}$ is very wrong.
f_{z} has been entirely lost

Nodal analysis (exact) solution

Miller approximation solution

Comments about use of Miller approximation

We have used the Miller approximation
only as a way to
---HELP US UNDERSTAND---
the results of nodal analysis.

We *will not* use the Miller approximation
to actually solve circuit problems.

Frequency response of common-source stage

Clearly the same problem, except for different notation
$\frac{V_{\text {out }}(s)}{V_{\text {gen }}(s)}=\left.\frac{V_{\text {out }}}{V_{\text {gen }}}\right|_{\text {mid-band }} \cdot \frac{1+b_{1} s}{1+a_{1} s+a_{2} s^{2}}$
where
$a_{1}=R_{i} C_{g s}+R_{L, e q} C_{g d}+R_{L, e q} C_{L}+R_{i}\left(1+g_{m} R_{L, e q}\right) C_{g d}$
$a_{2}=R_{i} R_{L e q}\left(C_{g s} C_{g d}+C_{g s} C_{L}+C_{g d} C_{L}\right)$
$b_{1}=-C_{g d} / g_{m} \rightarrow 1 / 2 \pi f_{z}=-C_{g d} / g_{m}$
...and if we can use the separated pole approximation:
$1 / 2 \pi f_{p 1} \cong a_{1}=R_{i} C_{g s}+R_{L, e q} C_{g d}+R_{L, e q} C_{L}+R_{i}\left(1+g_{m} R_{L, e q}\right) C_{g d}$
$1 / 2 \pi f_{p 2} \cong \frac{a_{2}}{a_{1}}=\frac{R_{i} R_{L e q}\left(C_{g s} C_{g d}+C_{g s} C_{L}+C_{g d} C_{L}\right)}{R R_{i} C_{g s}+R_{L, e q} C_{g d}+R_{L, e q} C_{L}+R_{i}\left(1+g_{m} R_{L, e q}\right) C_{g d}}$

