Switching circuits: basics and switching speed

Mark Rodwell,
University of California, Santa Barbara

Amplifiers vs. switching circuits

Some transistor circuit might have $V_{\text {in }}$ vs. $V_{\text {out }}$ characteristics like this:

The characteristics have a nearly linear amplification region:

Trivial example: CS stage with resistive load

Here, the lower limit on $V_{\text {out }}$ is set by saturation, and the upper limit by cutoff

Amplifiers vs. switching circuits

Biased in the linear region, and with a sufficiently small input, the circuit is an *amplifier*

But, if the input is large, then the output switches between the clipping values. This is a *switching circuit*

Switching circuits vs. logic gates

Logic gates are a particular *type* of switching circuit

A general switching cicuit might have a different range for $V_{\text {out }}$ and $V_{\text {in }}$. ...and might not perform *logic*

Switching circuits vs. logic gates

Logic gates are a particular *type* of switching circuit

A logic gate will have the same range for $V_{\text {out }}$ and $V_{\text {in }}$. ...and usually has multiple inputs to perform Boolean operations

CMOS NAND gate:

Switching circuits vs. logic gates

Our focus here is on switching circuits, and on calculating
DC $V_{\text {in }}-V_{\text {out }}$ transfer characteristics switching risetimes and falltimes

You should have, by now, studied basic logic gates in other classes

Noise margins

"Noise" margins: tolerance for component variation, EMI

Input low level can vary over a considerable range, yet always produce nearly the same output "high" level

Input high level can vary over a considerable range, yet always produce nearly the same output "low" level

Defining margins precisely is difficult for general switching circuits.easier for logic

Another switching circuit: CMOS

$$
V_{D D}=1 \mathrm{~V}
$$

$I_{D, N F E T}=I_{D, P F E T}$ and $V_{D S, P F E T}=V_{D D}-V_{D S, N F E T}$
From these relationships, we obtain the loadline constructions above
Both the positive and negative clipping limits, hence switched output voltage levels, are set by transistor saturation.

Another switch: emitter-coupled pair

One example of this: the digital 50Ω coaxial cable interface between the PRBS pulse generator and the LED/laser driver in lab project choice \#2.

Another switch: emitter-coupled pair

There are also logic families using bipolar differential pairs, current mode logic, left, and emitter coupled logic, right

emitter-coupled pair transfer characteristics

The stated levels on the diagram are easily found.
But, how do we find $\Delta V_{i n}$?

emitter-coupled pair transfer characteristics

DC bias $V_{\text {in }}$ at zero Volts, then apply a small signal: what is the gain?
$g_{m}=g_{m 1}=g_{m 2}=I_{o} / 2 V_{T}, A_{v}=\partial V_{\text {out }} / \partial V_{\text {in }}=g_{m} R_{L} / 2=I_{o} R_{L} / 4 V_{T}$

emitter-coupled pair transfer characteristics

so, the slope of the switching region is $I_{o} R_{L} / 4 V_{T}$,
while the output voltage swing is $I_{o} R_{L}$,
so the input voltage range must be the ratio of these:

$$
\Delta V_{i n}=\left(I_{o} R_{L}\right) /\left(I_{o} R_{L} / 4 V_{T}\right)=4 V_{T}=4 \mathrm{kT} / q
$$

emitter-coupled pair: comments

You can repeat this calculation for a differential input \rightarrow different $\Delta V_{\text {in }}$

We have assume that Q_{1}, Q_{2} don't saturate over the logic swing. if they do, then this will change the $V_{\text {in }}-V_{\text {out }}$ characteristics

Limiting mechanisms: current-steering

We can design differential current-steering circuits such that both $V_{\text {out,high }}$ and $V_{\text {out,low }}$ are set by cutoff.

Limiting mechanisms: CS or CE

In these common-source-like and common-emitter-like circuits either or both $V_{\text {out , high }}$ and $V_{\text {out }, \text { low }}$ are set by saturation.

Limiting mechanisms: CS or CE

When BJT's saturate, they usually store large amounts of minority carrier change.

Switching speed is then very slow.

With a few exceptions, saturation is avoided in bipolar switching circuits

Computing risetimes: charge control method

Charge control method: hand estimate switching circuit delay, risetime -Compute total charge on all capacitors at high $Q_{\text {high }}$ and low levels $Q_{\text {low }}$ -Compute voltage on node at high level $V_{\text {high }}$ and low level $V_{\text {low }}$ -Compute change in charge $\Delta Q=Q_{\text {high }}-Q_{\text {low }}$ and voltage $\Delta V=V_{\text {high }}-V_{\text {low }}$ -If node is charged by constant current I, then charging is linear

$$
T_{\text {risel fall }}=\Delta Q / I \text { and } T_{\text {delay }}=T_{\text {risel fall }} / 2
$$

-If node is charged through resistance R, then charging is exponential
Equivalent capacitance $C=\Delta Q / \Delta V$, time constant $\tau=R C$

$$
T_{\text {risel fall }}=2.2 \tau \text { and } T_{\text {delay }}=\tau \ln (2)
$$

Charging through a current source

The input voltage falls suddenly, turning the FET off.
Let's ignore, just for now,
the PFET knee voltage; treat as current source.
Now, constant current charges capacitance.
Charging is linear

$$
T_{\text {risel fall }}=\Delta Q / I_{0} \text { and } T_{\text {delay }}=T_{\text {risel fall }} / 2
$$

Charging through a resistance

The input voltage falls suddenly, turning the FET off.
Node is charged through resistance R; charging is exponential
Equivalent capacitance $C=\Delta Q / \Delta V$, time constant $\tau=R C$

$$
T_{\text {risel fall }}=2.2 \tau \text { and } T_{\text {delay }}=\tau \ln (2)
$$

Example: Waveform at Q1 drain

$V_{i n}$ switches at $t=0$.

We will estimate $V_{D 1}(t)$.

Example: Waveform at Q1 drain

Note:

1) $V_{D 1}(t)$ initially swings negative: $V_{\text {in }}(t)$ couples to $V_{D 1}(t)$ though a capacitive voltage divider between $C_{g d 1}$ and $\left(C_{g d 2}, C_{g d 3}, C_{g s 3}\right)$ 2) $V_{D 1}(t)$ then charges towards +1 V .

Between $V_{D 1}=0 \mathrm{~V}$ and $0.8 \mathrm{~V}, Q_{2}$ is a constant-current source
Between $V_{D 2}=0.8 \mathrm{~V}$ and $1 \mathrm{~V}, Q_{2}$ acts as a resistance (saturation)

Example: Waveform at Q1 drain

Switching time between A and C : 1 st part: charging to 0.8 V change in charge in:

$$
\begin{aligned}
& C_{g d 1}: @ \mathrm{~A}: Q=-1 \mathrm{~V} \cdot C_{g d 1}, @ \mathrm{C}: Q=0.8 \mathrm{~V} \cdot C_{g d 1}, \Delta Q=1.8 \mathrm{~V} \cdot C_{g d 1} \\
& C_{g d 2}: @ \mathrm{~A}: Q=-0.8 \mathrm{~V} \cdot C_{g d 2}, @ \mathrm{C}: Q=0 \mathrm{~V} \cdot C_{g d 2}, \Delta Q=0.8 \mathrm{~V} \cdot C_{g d 2} \\
& C_{g d 3}: @ \mathrm{~A}: Q=-1 \mathrm{~V} \cdot C_{g d 3}, @ \mathrm{C} Q=0.8 \mathrm{~V} \cdot C_{g d 3}, \Delta Q=1.8 \mathrm{~V} \cdot C_{g d 3} \\
& C_{g s 3}: @ \mathrm{~A}: Q=0 \mathrm{~V} \cdot C_{g s 3}, @ \mathrm{C}: Q=0.8 \mathrm{~V} \cdot C_{g s 3}, \Delta Q=0.8 \mathrm{~V} \cdot C_{g d 3}
\end{aligned}
$$

Time for drain of Q 1 to charge to 0.8 V :

$$
T_{1}=\left(1.8 \mathrm{~V} \cdot C_{g d 1}+0.8 \mathrm{~V} \cdot C_{g d 2}+1.8 \mathrm{~V} \cdot C_{g d 3}+0.8 \mathrm{~V} \cdot C_{g d 3}\right) / 1 \mathrm{~mA}
$$

Example: Waveform at Q1 drain

Switching time between C and $\mathrm{D}: 2$ nd part: charging from 0.8 V towards 1 V

$$
\begin{aligned}
& C_{g d 1}: @ \mathrm{C}: Q=0.8 \cdot C_{g d 1}, @ \mathrm{D}: Q=1 \mathrm{~V} \cdot C_{g d 1}, \Delta Q=0.2 \mathrm{~V} \cdot C_{g d 1} \\
& C_{g d 2}: @ \mathrm{C}: Q=0 \mathrm{~V} \cdot C_{g d 2}, @ \mathrm{D}: Q=0.2 \mathrm{~V} \cdot C_{g d 2}, \Delta Q=0.2 \mathrm{~V} \cdot C_{g d 2} \\
& C_{g d 3}: @ \mathrm{C}: Q=0.8 \mathrm{~V} \cdot C_{g d 3}, @ \mathrm{D}: Q=1 \mathrm{~V} \cdot C_{g d 3}, \Delta Q=0.2 \mathrm{~V} \cdot C_{g d 3} \\
& C_{g 33}: @ \mathrm{C}: Q=0.8 \mathrm{~V} \cdot C_{g s 3}, @ \mathrm{D}: Q=1 \mathrm{~V} \cdot C_{g s 3}, \Delta Q=0.2 \mathrm{~V} \cdot C_{g d 3}
\end{aligned}
$$

Effective capacitance :
$C_{e f f}=\left(0.2 \mathrm{~V} \cdot C_{g d 1}+0.2 \mathrm{~V} \cdot C_{g d 2}+0.2 \mathrm{~V} \cdot C_{g d 3}+0.2 \mathrm{~V} \cdot C_{g d 3}\right) / 0.2 \mathrm{~V}=\ldots$
Time constant $\tau=R_{D S, s a t} C_{e f f}=R_{D S, s a t}\left(C_{g d 1}+C_{g d 2}+C_{g d 3}+C_{g d 3}\right)$
Exponential charging: $V_{D 1}(t)=0.8 \mathrm{~V}+(1 \mathrm{~V}-0.8 \mathrm{~V})\left(1-\exp \left(\left(t-T_{1}\right) / \tau\right)\right)$

Example: bipolar differential switch

Let us calculate the risetime at the base of Q3

Example: bipolar differential switch

Let us calculate the risetime at the base of Q3
Times are relative to the time at which the collector current of Q2 switches to zero.

Example: bipolar differential switch

Switching time between A and B:
change in charge in:

$$
\begin{aligned}
& C_{c b 2}: @ \mathrm{~A}: Q=V_{l o w} \cdot C_{c b 2}, \text { @ B: } Q=V_{\text {high }} \cdot C_{c b 2}, \Delta Q=\left(V_{\text {high }}-V_{l o w}\right) \cdot C_{c b 2} \\
& C_{c b 3}: @ \mathrm{~A}: Q=\left(V_{l o w}-V_{c C}\right) \cdot C_{c b 3}, @ \mathrm{~B}: Q=\left(V_{\text {high }}-V_{C C}\right) \cdot C_{c b 3}, \Delta Q=\left(V_{\text {high }}-V_{l o w}\right) \cdot C_{c b 3} \\
& C_{\text {je2 }}: @ \mathrm{~A}: Q=\left(V_{l o w}-V_{0}+\phi\right) \cdot C_{\text {je2 }}, @ \mathrm{~B}: Q=\left(V_{\text {high }}-V_{\text {high }}+\phi\right) \cdot C_{j e 2}, \Delta Q=\left(V_{0}-V_{l o w}\right) \cdot C_{\text {je2 }} \\
& C_{d i f f 2}: @ \mathrm{~A}: Q=0 \mathrm{~mA} \cdot \tau_{f 2}, @ \mathrm{~B}: Q=I_{0} \cdot \tau_{f 2}, \Delta Q=I_{0} \cdot \tau_{f 2}
\end{aligned}
$$

Effective capacitance:

$$
\begin{aligned}
C_{\text {eff }} & =\Delta Q /\left(V_{\text {high }}-V_{\text {low }}\right) \\
& =\left(\left(V_{\text {high }}-V_{\text {low }}\right) \cdot C_{c b 2}+\left(V_{\text {high }}-V_{\text {low }}\right) \cdot C_{c b 3}+\left(V_{0}-V_{\text {low }}\right) \cdot C_{\text {je2 }}+I_{0} \cdot \tau_{f 2}\right) /\left(V_{\text {high }}-V_{\text {low }}\right)
\end{aligned}
$$

Example: bipolar differential switch

Effective capacitance:
$C_{e f f}=C_{c b 2}+C_{c b 3}+C_{j e 2} \frac{V_{0}-V_{\text {low }}}{V_{\text {high }}-V_{\text {low }}}+\frac{I_{0} \cdot \tau_{f 2}}{V_{\text {high }}-V_{\text {low }}}$ but $V_{\text {high }}-V_{\text {low }}=I_{0} R_{L}$
Charging time constant:
$\tau_{\text {charge }}=R_{L} C_{e f f}=R_{L} C_{c b 2}+R_{L} C_{c b 3}+R_{L} C_{\text {je2 }} \frac{V_{0}-V_{\text {low }}}{V_{\text {high }}-V_{\text {low }}}+\tau_{f 2}$
Voltage waveform:
$V_{b 3}(t)=V_{\text {low }}+\left(V_{\text {high }}-V_{\text {low }}\right)\left(1-\exp \left(-t / \tau_{\text {charge }}\right)\right)$

Limitations of charge control

1) the method is very approximate
2) We do not predict the detailed shape of the switching waveform More detailed analysis can find secondary switching transients at one or move points within the overall waveform. In some cases, spikes are produced. This is more advanced material
