
Component Pre-distortion
for Sallen Key Filters

Introduction
This revision obsoletes the previous revision of this Applica-
tion Note, and covers additional material.

This Application Note shows a simple component
pre-distortion method that works for many popular
Sallen-Key (also called KRC or VCVS [voltage-controlled,
voltage-source]) filter sections. This method compensates
for voltage-feedback and current-feedback op amps. Several
examples illustrate this method.

KRC active filter sections use an op amp and two resistors to
set a non-inverting gain of K. resistors and capacitors placed
around this amplifier provide the desired transfer function.
The op amp’s finite bandwidth causes K to be a function of
frequency. For this reason, KRC filters typically operate at
frequencies well below the op amp’s bandwidth (f << f3dB).

’Pre-distortion’ compensates for the op amp’s finite band-
width by modifying the nominal resistor and capacitor val-
ues. The pre-distortion method in the Application Note com-
pensates for the op amp’s group delay which is
approximately constant when f<< f3dB.

One possible design sequence for KRC filters is:

1. Design the filter assuming an ideal op amp (K is as-
sumed constant over frequency)

• Select components for low sensitivities

• Do a worst case analysis

• Do a temperature analysis

1. Pre-distort the resistors and capacitors to compensate
for the op amp’s group delay

2. Compensate for parasitic elements

Filter Component Pre-Distortion
This section outlines a simple pre-distortion method that
works for many popular Sallen-Key filters using
current-feedback or voltage-feedback op amps. Other more
general pre-distortion methods are available (see reference
[4]) which require more design effort.

To pre-distort your filter components:

1. Calculate the op amp’s delay:

where φ(f) is the op amp phase response in degrees,
and fc is the cutoff frequency (passband edge fre-
quency) of your filter

— Subtract the phase shift caused by your measure-
ment jig from any measured value of φ(fc)

— The group delay is specified at fc because it has the
greatest impact on the filter response near the fre-
quency.

— Other less accurate estimates of the op amp delay at
fc are:

— Step response propagation delay

— 1/(2πf3dB)

2. The time delay around the filter feedback loop (’electrical
loop delay’) adds to the op amp delay.

For this reason,

— Make the filter feedback loop as physically short as
possible.

— If you need greater accuracy in the following calcula-
tion, use the electrical loop delay (τeld) instead of the
op amp delay (τoa):

τeld ← τoa

See Appendix B for information on calculating τeld.

3. Replace K in the filter transfer function with a simple
approximation to the op amp’s frequency response

— Start with a simple, single pole approximation:

K ← K/(1 + τoas) , s= jω
— Alter the approximation to K and simplify:

— Do not create new terms (a coefficient times a new
power of s) in the transfer function after simplifying

— Convert (1 + τoas) to the exponential form (a pure
time delay) when it multiplies, or divides, the entire
transfer function

— Do not change the gain at ω ≈ ωp in allpass sec-
tions

— The most useful alterations to K are:

All of these approximations are valid when: ω <<
1/τoa

4. Use an op amp with adequate bandwidth (f3db) and slew
rate (SR):

f3db ≥ 10fH
SR > 5fHVpeak

Where fH is the highest frequency in the passband of the
filter, and Vpeak is the largest peak volage. This increases the
accuracy of the pre-distortion algorithm. It also reduces the
filter’s sensitivity to op amp performance changes over tem-
perature and process. Make sure the op amp is stable at the
gain of Av = K.

Appendix A contains examples using transfer functions. The
next section will apply the results from Appendix A.

KRC Lowpass Biquad
The biquad shown in Figure 1 is a Sallen-Key lowpass
biquad. Vin needs to be a voltage source with low output
impedance. R1and R2 attenuate Vin to keep the signal within
the op amp’s dynamic range. Using Example 2 in Appendix
A, we can show:
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KRC Lowpass Biquad (Continued)

After selecting α and R12, calculate R1 and R2 as:

To pre-distort this filter:

1. Design the filter assuming K constant (τoa = 0). Use low
values for K so that:

— τoa will have less impact on the biquad’s response.

— For voltage-feedback op amps, τoa will be smaller
(τoa ≈ K divided by the gain-bandwidth products).

2. Recalculate the resistors and capacitors using the
pre-distorted values of ωp and Qp (ωp(pd) and Qp(pd) that
will compensate for τoa:

where ωp(nom) and Qp(nom) are the nominal values of ωp

and Qp

3. Repeat step 2 until ωp ≈ ωp(nom) and Qp ≈ Qp(nom),
where:

Design Example
The circuit shown in fig 2 is a 3rd-order Chebyshev lowpass
filter. Section A is a buffered single pole section, and Section
B is a lowpass biquad. Use a voltage source with low output
impedance, such as the CLC111 buffer, for Vin.

The nominal filter specification are:

fc = 50MHz (passband edge frequency)

fs = 100MHz (stopband edge frequency)

Ap = 0.5dB (maximum passband ripple)

As = 19dB (minimum stopband attenuation)

Ho = 0dB (DC voltage gain)

The 3rd-order Chebyshev filter meets our specifications (see
References [1-4]. The resulting -3dB frequency is 58.4MHz.
The pole frequencies and quality factors are:

01278504

FIGURE 1. Lowpass Biquad

01278507

FIGURE 2. Lowpass Filter
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Design Example (Continued)

Section A B

ωp/2π [MHz] 53.45 31.30

Qp [ ] 1.706 –

Overall Design:

1. Use the CLC111 for section A. This is a closed loop
buffer

— f3dB = 800MHz > 10fc = 500MHz

— SR = 3500V/µs, while a 50MHz, 2Vpp sinusoid re-
quires more than 250V/µs

— τoa ≈ 0.28ns at 50MHz

— Cni(111) = 1.3pF (input capacitance)

2. Use the CLC446 for section B. This is a current feed-
back op amp

— f3dB = 400MHz ≈ 10fc = 500MHz

— SR = 2000V/µs > 250V/µs (see item #1)

— τoa ≈ 0.56ns at 50MHz

— Cni(446) = 10pF (non-inverting capacitance)

3. Use 1% resistors (chip metal film, 1206 SMD,
25ppm/˚C)

4. Use 1% capacitors (ceramic chip, 1206 SMD,
100ppm/˚C)

5. Use standard resistor and capacitor values

6. See Reference [6] for the low-sensitivity design of this
biquad.

Section A Pre-distortion:

We selected R1A for noise, distortion and to properly isolate
the CLC111’s output and C2A. The pole is then set by C2A .
The pre-distorted value of R1A, that also compensates for
Cni(111), is (see Example 1 in Appendix A):

R1A = (1/ωp - τoa)/(C2A

+ Cni(111))

The resulting components are in the table below:

• The Initial Value column shows the values before
pre-distortion

• The Adjusted Value column shows the values after
pre-distortion, and adjusting C2A for Cni(111)

• The Standard Value column shows the nearest available
standard 1% resistor and capacitor values

Component Value

Initial Adjusted Standard

R1A 108Ω 100Ω 100Ω
C2A 47pF 47pF 47pF

Cni(111) – 1.3pF 1.3pF

Section B Pre-distortion:

1. The design started with these values:

ωp(nom) = 2π (53.45MHz)
Qp(nom) = 1.706

KB = 1.50
αB = 0.667

C4B + Cni(446) = 4.7pF
C5B = 47pF

2. Iteration 0 shows the initial design results. Iterations 1-3
pre-distort R12B and R3B to compensate for the
CLC446’s group delay:

Iteration 0 1 2 3

ωp(pd)/2π
[MHz]

53.45 63.21 60.65 61.21

Qp(pd) [ ] 1.706 1.443 1.503 1.490

R12B [Ω] 64.00 50.17 53.32 52.63

R3B [Ω] 627.0 571.9 584.9 581.9

KτoaR12BC5B

[ns2]
2.527 1.981 2.105 2.078

ωp/2π [MHz] 47.15 55.18 53.08 53.53

Qp [ ] 1.934 1.653 1.718 1.703

3. The resulting components are:

Component Value

Initial Adjusted Standard

R1B 96.0Ω 78.9Ω 78.7Ω
R2B 192Ω 158Ω 158Ω
R3B 627Ω 582Ω 576Ω
C4B 4.7pF 3.7pF 3.6pF

Cni(446) – 1.0pF 1.0pF

C5B 47pF 47pF 47pF

RfB 348Ω 348Ω 348Ω
RgB 696Ω 696Ω 698Ω

Figure 3 and Figure 4 show simulated gains for the following
conditions:

1. Ideal (Initial Values, τoa = 0)

2. Without Pre-distortion (Initial Values, τoa ≠ 0)

3. Without Pre-distortion (Standard Values, τoa ≠ 0)
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Design Example (Continued)

SPICE Models
SPICE models are available for most of Comlinear’s ampli-
fiers. These models support nominal DC, AC, AC noise and
transient simulations at room temperature.

We recommend simulating with Comlinear’s SPICE models
to:

• Predict the op amp’s influence on filter response

• Support quicker design cycles

Include board and component parasitics to obtain a more
accurate prediction of the filter’s response, and to further
improve your design.

To verify your simulations, we recommend bread-boarding
your circuit.

Summary
This Application Note demonstrates a component
pre-distortion method that:

• Works for popular Sallen-Key filter sections

• Is quick and simple to use

• Shows the op amp’s effect on the filter response

• Gives reasonable op amp selection criteria

Appendix A and the Design Example section contain illustra-
tions of this method.

Appendix A – Transfer Function
Examples
Example 1:

Single pole section, K in the numerator:

where τ1 is a time constant set by resistors and capacitors.

To include the op amp’s group delay, substitute for K and
simplify:

Notice that:

• There are no new powers of s in the transfer function

• Changing the resistor and capacitor values can compen-
sate for τoa

• The approximation is reasonably accurate when f <<
f3dB

To pre-this filter section, recalculate the resistors and
capacitors using the equation:

τ1 = 1/ωp - τoa

Example 2:

Single pole allpass section, K times the numerator:

where τ1 and τ2 are time constants set by resistors and
capacitors. This section operates as an allpass filter when:

τ1 = τ2

01278508

FIGURE 3. Simulated Filter Magnitude Response

01278509

FIGURE 4. Simulated Filter Magnitude Response
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Appendix A – Transfer Function
Examples (Continued)

To include the op amp’s group delay, substitute for K and
simplify. Since this is an allpass transfer function, the ap-
proximation to K does not change gain at ω = ωp:

Notice that:

• There are no new powers of s in the transfer function

• The gain at ωp does not change (this is an allpass sec-
tion)

• Changing the resistor and capacitor values can compen-
sate for τoa

• The approximation is reasonably accurate when f <<
f3dB

To pre-distort this filter, recalculate the resistor and capaci-
tors using the equations:

τ2 = /ωz - τoa/2
τ1 = /ωp - τoa/2

Example 3:

Biquad section, s term in the denominator that includes K:

where τ1, τ2 and τ3 are time constants set by resistors and
capacitors.

To include the op amp’s group delay, substitute for K and
simplify:

Notice that:

• There are no new powers of s in the transfer function

• Changing the resistor and capacitor values can compen-
sate for τoa

• The approximation is reasonably accurate when f <<
f3dB

To pre-distort this filter:

1. Design the filter assuming K constant (τoa = 0).

2. Recalculate the resistors and capacitors using the
pre-distorted values of ωp and Qp (ωp(pd) and Qp(pd) that
will compensate for τoa:

where ωp(nom) and Qp(nom) are the nominal values of ωp

and Qp

3. Repeat step 2 until ωp ≈ ωp(nom) and

Qp ≈ Qp(nom), where:

Example 4:

Biquad section, s2 term in the denominator multiplied by K:

where τ1 and τ2 are time constants set by resistors and
capacitors.

To include the op amp’s group delay, substitute for K and
simplify:

Notice that:

• The (1 + τoas) factor in the numerator was converted to
the exponential form, which represents a constant group
delay

• There are no new powers of s in the transfer function

• Changing the resistor and capacitor values can compen-
sate for τoa

• The approximation is reasonably accurate when f <<
f3dB

To pre-distort this filter:

1. Design the filter assuming K constant (τoa = 0).
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Appendix A – Transfer Function
Examples (Continued)

2. Recalculate the resistors and capacitors using the
pre-distorted values of ωp and Qp ωp(pd) and Qp(pd)) that
will compensate for τoa:

where ωp(nom) and Qp(nom) are the nominal values of ωp

and Qp

3. Repeat step 2 until ωp ≈ ωp(nom) and Qp ≈ Qp(nom),
where:

Appendix B – Electrical Loop
Delay
τeld can be calculated as:

where:

• x is the distance around the filter feedback loop, exclud-
ing the op amp

• is the equivalent relative permittivity of the PCB trace

• µr is the equivalent relative permeability of the PCB trace

• c is the speed of light in free space (3.00 x 108 m/s)

• τoa is the op amp group delay at fc
For a typical printed circuit board, . This gives:

τeld ≈ x · (0.067ns/cm) + τoa

where x is in centimeters, and τoa is in nanoseconds.
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Note: The circuits included in this application note have
been tested with National Semiconductor parts that may
have been obsoleted and/or replaced with newer prod-
ucts. Please refer to the CLC to LMH conversion table to
find the appropriate replacement part for the obsolete
device.
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