ECE145a / 218a Signal Flow Graphs

Mark Rodwell University of California, Santa Barbara

Signal Flow Graphs

Mason: control system theory

System of equations

(example: S - parameters)

$$b_1 = S_{11}a_1 + S_{12}a_2$$

$$b_2 = S_{21}a_1 + S_{22}a_2$$

Represent as below:

Variables represented as nodes: a_1

Value of variable = sum of entering branches
= sum of values of connecting nodes
times weight of branches.

Representation of Generator & Load

$$V^{+} = T_{s}V_{gen} + \Gamma_{s}V^{-}$$

$$\rightarrow V^{+}/\sqrt{Z_{0}} = T_{s}V_{gen}/\sqrt{Z_{0}} + \Gamma_{s}V^{-}/\sqrt{Z_{0}}$$

$$\rightarrow a_{1} = a_{gen} + \Gamma_{s}b_{1}$$

further : $a_2 = \Gamma_L b_2$

Representation:

2nd Example: Cascaded Amplifiers

Circuit

Representation

The signal flow graph compactly and visually represents the many equations describing the system.

Why Use Signal Flow Graphs?

Signal flow graphs most heavily used in control system theory:

- Organizes the representation of a set of linear equations
- Lends visual intuition in analysis.
- Provides efficient solution through * Mason's Gain Rules *

S.J. Mason: "Feedback theory – Some Properties of Signal Flow Graphs" Proc. IRE, 41, p. 1141, Sept. 1953.

or: Many texts on control system theory.

Manipulating Signal Flow Graphs

Elementary manipulations:

Reducing a Feedback Loop

System with feedback:

$$x_{2} = T_{12}x_{1}$$

$$x_{1} = a + T_{12}x_{2}$$

$$\rightarrow x_{2} = T_{12}a + T_{12}T_{21}x_{2}$$

$$x_2 = T_{12}a + T_{12}T_{21}x_2$$

$$\to x_2 = \frac{T_{12}}{1 - T_{12}T_{21}}a$$

$$\begin{array}{c}
T_{12} \\
\hline
1-T_{12}T_{21} \\
\hline
 & \times_2
\end{array}$$

Mason's Gain Rule

Define T = b/a ="transmission" How do we find T?

Define a path P_i as any route from a to b which does not go through any node twice.

Define a loop coefficient L_i as the product $(T_{12}T_{23}T_{31})$ of the transmission coefficients around any closed loop.

Mason's Gain Rule

$$T = \frac{b}{a} = \frac{P_1 \left[1 - \sum L(1)^{(1)} + \sum L(2)^{(1)} - \dots \right] + P_2 \left[1 - \sum L(1)^{(2)} + \sum L(2)^{(2)} - \dots \right] + \dots}{1 - \sum L(1) + \sum L(2) - \sum L(3) + \dots}$$

Where:

 $\sum L(1) = \text{sum of all loop coefficients}$

 $\sum L(1)^{(1)} = \text{sum of all loop coefficients for loops}$ which do not touch path P_1

$$\sum L(2) = \text{sum of all second - order loops}$$

A second - order loop is the product of the coefficients of any pair of non - touching loops.

$$\sum L(2)^{(1)} = \text{sum of all second - order loops which do not touch path } P_1.$$
 etc.

Analysis of Simple Amplifier

Find
$$T = b_2 / a_{gen}$$

$$T = \frac{P_1 \left[1 - \sum_{l=1}^{l} L(1)^{(1)} + \sum_{l=1}^{l} L(2)^{(1)} - \cdots \right]}{1 - \sum_{l=1}^{l} L(1) + \sum_{l=1}^{l} L(2)}$$

$$= \frac{S_{21}}{1 - \Gamma_s S_{11} - \Gamma_l S_{22} - \Gamma_s \Gamma_l S_{21} S_{12} + \Gamma_s S_{11} \Gamma_l S_{22}}$$

$$\sum_{l=1}^{l} L(1) \qquad \sum_{l=1}^{l} L(2)$$

= easy!

Input Reflection Coefficient

$$\Gamma_{in} = \frac{Z_{in} - Z_0}{Z_{in} + Z_0}$$

Overall Representation

Input Reflection Coefficient

Relationship between incident and reflected waves at input:

$$T = \frac{b_1}{a_1} = \Gamma_{in} = \frac{S_{11}[1 - S_{22}\Gamma_L] + S_{21}\Gamma_L S_{12}}{1 - S_{22}\Gamma_L}$$

$$\Gamma_{in} = S_{11} + \Gamma_{L} \frac{S_{21} S_{12}}{1 - S_{22} \Gamma_{L}}$$

Input
$$\begin{cases} \text{impedance} \\ \text{reflection coefficient} \end{cases}$$
 depends upon load $\begin{cases} \text{impedance} \\ \text{reflection coefficient} \end{cases}$ unless $S_{12}S_{21} = 0$.

Output Reflection Coefficient

Relationship between incident and reflected waves at output:

 $\Gamma_{out} = S_{22} + \Gamma_S \frac{S_{21} S_{12}}{1 - S_{11} \Gamma_S}$

$$T = \frac{b_2}{a_2} = \Gamma_{out} = \frac{S_{22}[1 - S_{11}\Gamma_S] + S_{21}\Gamma_S S_{12}}{1 - S_{11}\Gamma_S}$$

$$T = \frac{b_2}{a_2} = \Gamma_{out} = \frac{S_{22} \left[1 - S_{11} \Gamma_S \right] + S_{21} \Gamma_S S_1}{1 - S_{11} \Gamma_S}$$

$$\Gamma_{S}$$
 S_{11}
 S_{12}
 S_{12}
 S_{12}
 S_{12}
 S_{12}
 S_{12}

Output
$$\begin{cases} \text{impedance} \\ \text{reflection coefficient} \end{cases}$$
 depends upon source $\begin{cases} \text{impedance} \\ \text{reflection coefficient} \end{cases}$ unless $S_{12}S_{21} = 0$.

Implication for Impedance Matching

$$\Gamma_{in} = S_{11} + \Gamma_L \frac{S_{21} S_{12}}{1 - S_{22} \Gamma_L}$$

$$\Gamma_{out} = S_{22} + \Gamma_S \frac{S_{21} S_{12}}{1 - S_{11} \Gamma_S}$$

If $S_{12}S_{21} = 0$, then either $S_{12} = 0$ or $S_{21} = 0$.

In either case, the amplifier cannot pass signals in both directions.

If $S_{12}S_{21} = 0$, the amplifier is * unilateral *.

Unilateral amplifiers have $\Gamma_{\rm in} = S_{11}$ and $\Gamma_{\rm out} = S_{22}$.

In this case, tuning the input match does not disturb the output tuning, nor does tuning the output match disturb the input tuning.

In bilateral amplifiers $(S_{12}S_{21} \neq 0)$, input and output tuning are interactive. Interactive tuning \rightarrow at a minimum: design is more difficult.

If $S_{12}S_{21}$ is sufficiently large, we will find that matching is not possible.

Origin of Nonzero S₁₂S₂₁

Reverse coupling in common-source FETs: C_{gd}

Reverse coupling in common-emitter BJTs: C_{cb}

Reverse coupling in common-gate FETs: L_g , C_{ds}

Reverse coupling in common - base BJTs: L_b , C_{ce}

Some of these are device parasitics, some arise only from poor interconnect design near the device terminals.

High reverse isolation (low S_{12}) increases amplifier stability and (usually) increases device maximum stable gain.

Available Source Power

$$P_{AV,G} = \left\| V_{gen} \right\|^2 / 4 \cdot \text{Re} \left\{ Z_{gen} \right\}$$

$$b_{gen} = T_s V_{gen} / \sqrt{Z_0} + \Gamma_s a_{gen}$$
$$b_{gen} = b_s + \Gamma_s a_{gen}$$

note that b_s is the wave amplitude launched

into a load $Z_L = Z_0$

Now: connect conjugate - matched load

$$Z_L = Z_S^*$$
 i.e. $\Gamma_L = \Gamma_S^*$

$$\Gamma_{S}$$

$$\Gamma_{L}=\Gamma^{*}_{S}$$

$$\Gamma_{L}=\Gamma^{*}_{S}$$

Available Source Power

Reverse Power =
$$\|b_s\|^2 \frac{\|\Gamma_L\|^2}{1 - \|\Gamma_S\|^2} = \|b_s\|^2 \frac{\|\Gamma_s\|^2}{1 - \|\Gamma_S\|^2}$$

Forward Power =
$$\|b_s\|^2 \frac{1}{\left[1 - \|\Gamma_S\|^2\right]^2}$$

Load Power = Available Power =
$$||b_s||^2 \frac{1}{1 - ||\Gamma_S||^2}$$

$$b_s \longrightarrow b_{gen}$$

$$P_{AVG} = \frac{\|b_s\|^2}{1 - \|\Gamma_S\|^2} \text{ where } \|b_s\|^2 \text{ is the power delivered to } Z_L = Z_0$$