ECE 145A / 218 C, notes set 2:
Transmission Line Parasitics

Mark Rodwell
University of California, Santa Barbara

rodwell@ece.ucsb.edu 805-893-3244, 805-893-3262 fax



Transmission Lines

Approximate properties of microstrip line.

Skin Effect Losses

substrate modes and loss by coupling into these.

Lateral modes on lines

Excitation of unwanted circuit-like modes, ground continuity

Packaging and power supply resonances



Skin Loss



Wave equation inside metal (ignore x variation)

kf +k? =k* wherek’ = (jou)(joes + o)

The wavelength along the transmission - line is long,
and the penetration distance of current into the metal is small,

sok; >>k; > k; =k* =(jou)(jos +0)

In a metal, at low frequencies jwe << o, SO
y

k§ = Jouo T




In a metal, at low frequencies joe << o, S0

K, =+ jouc =1+ J)(”Lz"j

Defining the*skin depth*as & = /2/ wuo :

E(z)=Ee"%e V"

Thefield dies down exponentially withdistance into the metal.
The (1/e) penetration depthis theskin deptho

O varies as w '?
At100GHziIn Gold, o6 =200nm Yy

T

Z




Let us treat this approximately :
The conductor only carries current in a layer of thickness o.

With conductivity o and widthW,
the conductor has resistance per unit length

IL=1/coW =1/ oW)-Jouoc 12 =(LIW)-Joul 2c

Rseries

A more careful treatment develops the concept of surface impedance.
See theappendix.
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—  ~W +2H «—I

Transmission - lines have skin effect in both
thesignal and ground conductors. For microstrip :

R /L~11 1 1 (1 1 jl 1

SoW 6oW+2H \W W+2H Jéo Péo
In general, we can write this as

R/ L=1/06P =(L/P)-Joul2c
where P Is the effective current - carrying periphery.




LBZ (Rseries/L)SZ LSZ (Rseries/L)SZ
XX __f'O'\ /\/\, fb.\ /\/\, XX

TCBZ TCSZ TCSZ

Revieo/L=(/P)-\Joul 2o

From our earlier transmission - line analysis,
this introduces attenuation per unit distance

Rseries / L o oC \/5

27,

|12

04

This is called skin loss



Loss Tangent



Loss Tangent

Common dielectrics also introduce high - frequency attenuation.

This effect iIs quantified by a *loss tangent *
gr — gr,real + jgr,imaginary — gr,real (1+ J tan(é))

We should be aware of dielectric losses,
but we will not discuss these further in this class.



transverse
transmission-line
modes
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Lateral Modes (1)

+jkyy

B

+ jk,z

In dielectric : waves of form E e!“'e* e "¢

k2 +kZ+k?=k*=¢0"/c’=2r/2y)

Waves can propagate™ laterally * on transmission - line :
k,=0andk, =nz/W for n=0,1,2,...

—ski=gw’/c*—(nz/WY



Lateral Modes (2]

k2 =g.0®/c*—(nz /WY

1) Multi- mode propagation if W > A,/2.
B, = \/5ra)2/c2 —(nz /WY

2) Evanescent propagation e ““ if W < 4,/2:

= \/(ﬂﬂ'/W)Z —g.0°/c?
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Lateral Modes---and Junction Parasitics (3)

/
.
vt oxf Ty 7

Z

field field /4 I

1 3.

Evanescent propagation e ““ if W = 4,/2:

Reactive power In evanescent modes — junction parasitics
ADSIlibrary junction models, or electromagnetic simulation.
Lessons:
lines must be much narrower than a half - wavelength.
must model junction parasitics - 00— —

T




Substrate Modes
and
Radiation L0OSS
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i g Y
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field field -t

> |

+jkyy

+ jk,z

In dielectric : waves of form E e'“e**e" e

k2 +k2+kZ=k*>=¢.0”/c’ =(2r/2y)

We can have standing waves across the substratethickness:
k,=nz/h for n=0,1,2,..



y y
b
S /
field " field -t

increasing frequency
y A4
y y y v
x /

_ A4
h
field field field f

Substrate with top,bottommetal surfaces
— modes withh =14, /2, 4,,34,/2...

Substrate with no top metal — tranverse E - mode;
strongly confined as 4, /4 — T; weakly confined at low frequencies.
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increasing frequency

y y1

i

field field field

These dielectric slab modes can propagein xand in z.

Nonzeromode coupling ("radiation™) loss at all frequencies.
Very strong mode coupling when h> 4, /4



| bt

Substrate modes are allowed when A, < 2-(substratethickness)

tjkyy

field

B

field field

e]a)t + jk, X + jk,z

Waves are of form E
— Kk +kZ+k?=k* wherek® =c?/¢,.0” =(27/4, ) and k, =(nz/h)

(03

e e
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Modescouple strongly when k| ., =k

y,substratemode

Given thick substrate, H >> 4, :

mode coupling loss,dB/mm oc (Iine transverse dimensions)2 -frequency
"radiation loss"
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Transmission-Line Losses

If we use narrow lines and thin substrates
then skin - effect losses will be large.

If we use wide lines and thick substrates
then lateral modes and substrateradiation
will be major problems.



Loss of Goaxial Gahle
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=
o

Attenuation, dB/meter

0.01

adl 1 mm cable:
14 dB/m at

- 3 mm cable:
3.1 dB/m at
33 GHz cutoff

O

" 10 mm cable:
0.7 dB/m at
10 GHz cutoff

100 GHz cutoff

¢ =21 tan(5)=3-10"
T I R UL
1 10 100 1000
Frequency, GHz
Single - mode propagation requires f <c-(2/x)& " 2(Dinner + Douter)_1
oc fY2/ Dy e —> LOSS oty o /7

SKkin loss &

skin

inner skin



‘circult-type"
parasitic modes
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Transmission-Line Parasitic Modes

Nominal Coplanar Waveguide Nominal Coplanar Strips

ground  signal ground +signal  -signal

substrate substrata
backside ground plane (intentional) backside ground plane (intentional)
ar wafer chuck (accidental) or wafer chuck (accidental)
k I I
+\ +\ A # +

microstrip mode

ov o
| | | |
-\ o ' A Y
coplanar strip
or slot mode
ov o

coplanar waveguide
mode

owv

- Total number of quasi-TEM modes is one less than # of conductors
- Care must be taken to avoid excitation of parasitic modes
- unexpected results will otherwise arise...



To Avoid "Circuit-Type” Parasitic Modes

1) Where do the currents flow?

2) Which conductors have what voltages for which modes?
Be aware that:

- currents must flow in the ground planes of unbalanced
transmission lines. The currents flow close to the edge of
the ground plane nearest the signal conductor.

* there are equal and opposite voltages on the 2 conductors

of balanced transmission lines. This seriously restricts the
types of junctions allowable.
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| — —>< —> | —
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1/2 172

A slot-line mode is excited
at a CPW junction

The fix...

this is one of many possible
examples...
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1-180 GHz HEMT amplifier (UCSB / HRL)
Note the ground bridges

HUGHES 13 50152

B. Agarwal UCSB, M. Matloubian, HRL



package resonance
and grounding
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ADC
input

buffer

digital
sections

L 2 N 4

ground

bounce
noise

L
+ ground return
ground AV, currents
* |

"Ground" simply means a reference potential shared between many circuit paths.

To the extent that it has nonzero impedance, circuits will couple in unexpected ways

RFI, resonance, oscillation, frequently result from poor ground systems
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Lsignal line — —
-— -—
I 1 @ line 1
“ground” () “ground”
[signal line @
ground I 1
plane T common-lead inductance

coupling / EMI due to poor ground system integrity is common in high-frequency systems
whether on PC boards
...or on ICs.
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Ground Bounce: IC Packaging with Top-Surface-0Only Ground

Peripheral grounding allows parallel plate mode resonance
die dimensions must be <0.4mm at 100GHz

IC: parallel-plane transmission line

Bond wire inductance aggravates the —*> % %
@ @

effect: resonates with through-wafer
capacitance at 5-20 GHz

peripheral peripheral
bond inductances bond inductances
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cl
- - - -
Substrate Microstrip: Eliminates Ground Return Problems
|

Brass carrier and |C with backside
assembly ground ground plane & vias
interconnect

substrate

IC vias

eliminate

on-wafer
near-zero ground
ground-ground loops

inductance



power-supply resonance
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Resonates at f =1/27z1/Lb0ndCon_

gain peak / suckout, oscillation, etc.

Active (AC) supply regulation

Passive filter synthesis
R= L, /Cl

supply impedance is R at all frequencies ~




Power Supply Resonances; Power Supply Dam
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90 GHz--local resonance between power supply capacitance and supply lead inductance

~N*5GHz resonances--global standing wave on power supply bus

Power supply is certain to resonate: we must model, simulate, and add damping during design.
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Interconnects:
Summary,
Design Strategy
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Conlanar Waveguide: Summary

No ground vias Hard to ground IC
No need (???) to to package
thin substrate

O e ==

Parasiticynicrostrip mode

+V

ground plane breaks — loss of ground integrity substrate mode coupling gg\gi_msulaﬁng

substrate— substrate
or substrate losses K, mode coupling
Vv 0 +V Silicon
conducting substrate
— substrate
conductivity losses
0

Parasitit slot mode

Repairing ground plane with ground straps is effective only in simple ICs
In more complex CPW ICs, ground plane rapidly vanishes
— common-lead inductance — strong circuit-circuit coupling

L J -
S Ceam NIBOL
1

40 Gb/s differential TWA modulator driver 35 GHz master-slave latch in CPW 175 GHz tuned amplifier in CPW
note CPW lines, fragmented ground plane note fragmented ground plane note fragmented ground plane
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Glassic Substrate Microstrip: Summary

Zero ground ety round bround piane & vias
inductance \ /
in package

_>W<_

Thick Substrate
— low skin loss

No ground plane

breaks in IC .
ciminate
on-wafer

near-zero ground
ground-ground  100P
k,
TM substrate
inductance mode coupling
12 pH for 100 um substrate -- 7.5 2 @ 100 GHz Strong coupling when substrate approaches ~A4,/ 4 thickness
lines must be ground vias must be
widely spaced widely spaced
Line spacings must be ~3*(substrate thickness) all factors require very thin substrates for >100 GHz ICs

— lapping to ~50 um substrate thickness typical for 100+ GHz



I1I-U MIMIC Interconnects -- Thin-Film Microstrip
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narrow line spacing — IC density

no substrate radiation, no substrate losses

fewer breaks in ground plane than CPW

... but ground breaks at device placements

still have problem with package grounding

®» O 0 0

...need to flip-chip bond

thin dielectrics — narrow lines
— high line losses
— low current capability
— no high-Z, lines

O

Ground Plane

thin-film microstip line

~
I

——Via

0

~

o

1/2
8['

[

W +H

J

InP mm-wave PA
(Rockwell)
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I1I-U MIMIC Interconnects -- Inverted Thin-Film Microstrip

narrow line spacing — IC density @ inverted microstip line

Ground Plane

Low &

=1 Nia Via

PN

(I
Some substrate radiation / substrate losses <m>
~—

()
No breaks in ground plane (\ )
~—

° 0
... no ground breaks at device placements (\ />
~—~

still have problem with package grounding @ InP 150 GHz master-slave latch

HE B ER R ERERBEBSN
...need to flip-chip bond 2 0.0 S

==

- , , @ ’ ST
thin dielectrics — narrow lines i .-
— high line losses ’ LR
— low current capability e
— no high-Z, lines

InP 8 GHz clock rate delta-sigma ADC
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VLSI Interconnects with Ground Integrity & Gontrolied Z,

narrow line spacing — IC density @

o0
no substrate radiation, no substrate losses (u)

.. . [ N
negligible breaks in ground plane (\/)

& metal 6:
microstrip
lines

PN == = = M5 = =1 = == metal 5—
.. : e o microstrip
negligible ground breaks @ device placemen \_J crossovers
e————cta == metal 4:
ground
plane
= | — — (— ey — | 1=||=| — —
| — | | — | — N —| Mz, — —
E M1
still have problem with package grounding Sii btrat
ilicon substrate

...need to flip-chip bond

thin dielectrics — narrow lines @
— high line losses

— low current capability
— no high-Z, lines
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No clean ground return 2 — interconnects can't he modeled !

35 GHz static divider
interconnects have no clear local ground return
interconnect inductance is non-local
interconnect inductance has no compact model

8 GHz clock-rate delta-sigma ADC
thin-film microstrip wiring
every interconnect can be modeled as microstrip
some interconnects are terminated in their Zo
some interconnects are not terminated

...but ALL are precisely modeled

InP 8 GHz clock rate delta-sigma ADC



End



Appendix
(optional)
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Given a plane wave perpendicularly incident
in direction z ontoa sheet of metal :

E:—ja)yH and @:—(ja)g+0')E
0z 0z

Hence E(z) = E,e ” where y = ./ jou(jws + o)

If we << o, then y = \/ja)/m' = \/a),u0'/2 + JaJouol 2

Defining theskin depthas ¢ = \/2/ wuo we find that
E(Z) — Eoe—2/5e—j2/5

...thefield dies down exponentially withdistance into the metal.

Wave impedance in the metal is:

E_ | Jou | Jlou _ |ou . |ou
Thetal = - . = - + ]
H Jowe+ o o 20 20

hence,

Metal = i + i <« notetheresistive and inductive terms
fore) fo70)

Thisis theSURFACE IMPEDANCE.
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—  ~W +2H 4—1

In a transmission line, the wave travels parallel, not perpendicular to
the metal surface, but thesame surface impedance is seen, provided that
the transmission - line wavelengt h is much larger than theskin depth

The transmission - line then has an added series impedance per unit distance of

1a+)) , Where P is the effective current - carrying periphery.

series

For this microstrip line, there is surface impedance bothin thesignal

and ground lines

Zseriesz i+ 1 (1+ J)
W W+2H ) oo
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L L L

| U Zseries | O Zseries | U Zseries

! C/2 ! C/2 ! C/2

This then introduces both loss and dispersion

series:£(1+ J) %a_vz_(jwl—_'_zseries)l anda_lz_ja)CV
P oo 0z 0z

—> 7

V'(z2) |joL+Zg [|JoL+1/Poo+ jlIPoo
°17(2) jaC JaC
....some secondary change in characteristicimpedance

—V (z) =V,e""* where
Viine = \/( JC()L + Zseries) JC()C = JCO\/LC\/1+ Zseries/ jC()L
~ joLC(L+ Z,, ../ j2al) = jo/LC +zser,es(\/c:/ )2

JLC +Z,,..12Z, = joLC + J
7/I|ne Ja) series JO) ZZ P&T ZZ P5G

Skin Loss  dispersion

Z

series
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The impulse response )2 e
of the transmission h(t)=C* U(t/r)( /T) " exp(-7/t)
line can then be g
found. ,

(Wiginton and _ u
Nahman, Proc. IRE, where T = |l E 4Z,pP
February 1957) -

Skin effect causes pulse broadening proportional to distance?

Skin effect impulse response
DDE 1 1 § § 1 [ § 1 § § | 1 1 | § | § 1 1 1

0.025 —
0.02 -

0.015

hit)

0.0 -

0.005 -

T T T T T T T T T T T T T T T T T T T
0 5 10 15 20

tft (normalized time)
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The step response is the integral of the impulse response.
Note the initial fast rise and the subsequent "dribble-up" characteristic of
skin effect losses.

response to 1 V input step function

Skin Effect Step Response

still hasn't reached 0.9 Volts !

0 5 10 15 20 25 30

i/t (normalized time)



