ECE ECE145B (undergrad) and ECE218B (graduate)

Mid-Term Exam. February 20, 2013

Do not open exam until instructed to.

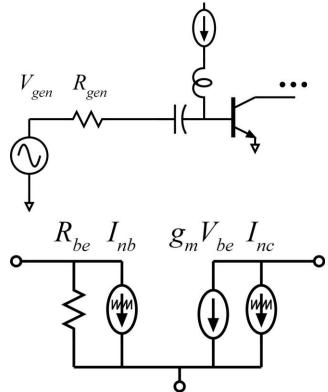
Open notes, open books, etc

You have 1 hr and 15 minutes.

Use any and all reasonable approximations (5% accuracy is fine.), *AFTER STATING THEM*.

Problem	Points Received	Points Possible
1a		20
1b		10
2		20
3a		10
3b		10
3c		10
4a		10
4b		10
total (145b)		100

Name: _____


Problem 1, 30 points

Circuit Noise calculations

To the left is shown a representation of a bipolar transistor amplifier, and below it the BJT small signal noise model.

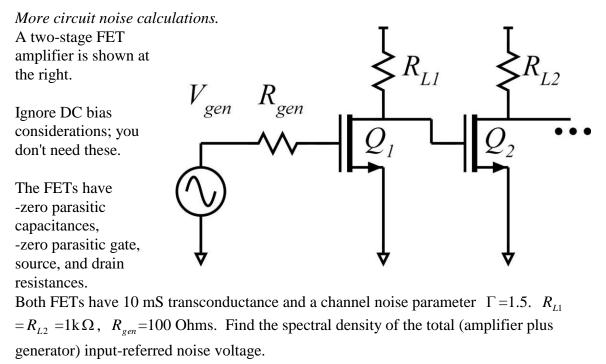
Note that the only transistor parasitic element is the finite current gain β and hence the presence of the small signal resistance R_{be}

The base is biased at current I_{bo} , producing DC collector current $I_{co} = \beta I_{bo}$. The inductor and capacitor are both very large (infinite inductive reactance, infinite capacitive susceptance).

Part a, 20 points

We will assume that the generator (V_{gen}, R_{gen}) has thermal noise at an associated temperature of 300 Kelvin. Device by source transposition the spectral density of the total input-referred noise voltage, including the contributions of the amplifier and of the generator. Please reduce your answer to an algebraic expression involving *only* the following terms: kT, q, I_{co} , β , R_{gen} .

expression for $S_{En,t} =$

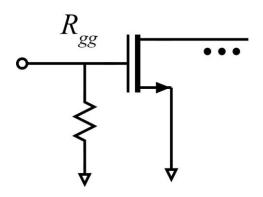

Part b, 10 points

Adjusting the collector current (by adjusting the base bias current) will cause the total input-referred noise voltage to vary. What value of collector bias current gives the smallest input-referred noise ?

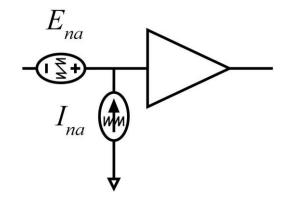
Hint: please simplify the calculus by assuming that R_{be} is much larger than R_{gen} .

expression for $I_{c,opt}$ =

Problem 2, 20 points



 $S_{Ent} =$ (give units)

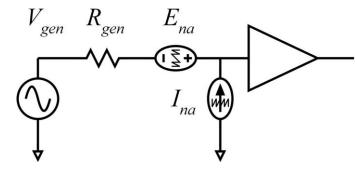

Problem 3, 30 points

En-In models of circuits, noise figure A FET is biased with an input resistor R_{gg} as shown.

The FET has
-zero parasitic capacitances,
-zero parasitic gate, source, and drain resistances.
- a channel noise parameter of Γ

<u>Part a, 10 points</u> Calculate from the above the spectral density of E_{na} and of I_{na} , and their cross-spectral density

expression for $S_{En,a} =$

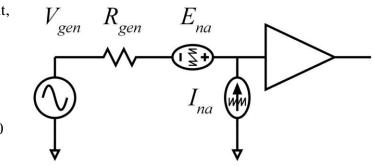

expression for $S_{In,a} =$

expression for $S_{E_{n,a}I_{n,a}} =$

<u>Part b, 10 points</u> We now have a *different circuit* with $S_{E_{na}} = 10^{-18} V^2 / Hz$, $S_{I_{na}} = 10^{-22} A^2 / Hz$, and $S_{E_{n,a}I_{n,a}} = 10^{-21} W / Hz$.

 $S_{En.t} =$

If the generator resistance is 100 Ohms, find the spectral density of the total input-referred noise voltage (including that of the generator).

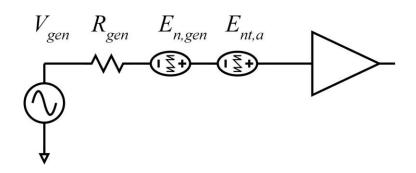


(give units)

Part c, 10 points Continuing with the same circuit, i.e.

$$\begin{split} S_{E_{na}} &= 10^{-18} V^2 / Hz \,, \\ S_{I_{na}} &= 10^{-22} A^2 / Hz \,, \\ \text{and} \quad S_{E_{n,a} I_{n,a}} &= 10^{-21} W / Hz \,. \end{split}$$

If the generator resistance is 100 Ohms, find the noise figure.

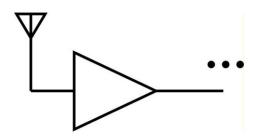

noise figure =______ (specify whether the answer is in linear units or dB)

Problem 4, 20 points

Signal/noise calculations

Part a, 10 points

We are now analyzing a generator whose noise voltage is $E_{n,gen}$, connected to an amplifier whose total noise voltage is $E_{nt,a}$


We are working in a music recording studio, for which R_{gen} is standardized at 600 Ohms for microphones. The generator noise is thermal at 300K. $E_{nt,a}$ has a spectral density whose *square root* is 5 nV/Hz^{1/2}. Working with a standard audio system bandwidth of 20Hz-20kHz, what RMS voltage is required from V_{gen} to obtain a 30 dB signal/noise ratio ? What available signal power does that correspond to ?

RMS value of $V_{gen} =$ _____(give units)

Available signal power from the generator=______(give units)

Part b, 10 points We are now analyzing a radio receiver.

The antenna radiation resistance is at 300K. The antenna has negligible conductor resistance. The amplifier has 3 dB noise figure.

The receiver is receiving QPSK data at 100 megabits/second data rate.

If we use ideal raised-cosine filters with zero excess bandwidth ($\beta = 0$), what receiver bandwidth do we need ? receiver bandwidth= ______Hz

If no error-correcting code is used, we need a signal/noise ratio of 36:1 to obtain 10^{-9} bit error rate. What is the corresponding received signal power ?

Signal power =_____ (give units)