ECE ECE145B (undergrad) and ECE218B (graduate)

Mid-Term Exam. February 20, 2013

Do not open exam until instructed to.

Open notes, open books, etc

You have 1 hr and 15 minutes.

Use any and all reasonable approximations (5% accuracy is fine.), *AFTER STATING THEM*.

Problem	Points Received	Points Possible
1a	1 8	20
1b		10
2		20
3a	w	10
3b		10
3c	9	10
4a		10
4b		10
total (145b)		100

Name: Solation

Mark rodwell @ ECE. UCSb. EDU

Problem 1, 30 points

Circuit Noise calculations

To the left is shown a representation of a bipolar transistor amplifier, and below it the BJT small signal noise model.

Note that the only transistor parasitic element is the finite current gain β and hence the presence of the small signal resistance R_{be}

The base is biased at current I_{bo} , producing DC collector current $I_{co} = \beta I_{bo}$. The inductor and capacitor are both very large (infinite inductive reactance, infinite capacitive susceptance).

Part a, 20 points

We will assume that the generator ($V_{\rm gen}$, $R_{\rm gen}$) has thermal noise at an associated temperature of 300 Kelvin. Device by source transposition the spectral density of the total input-referred noise voltage, including the contributions of the amplifier and of the generator. Please reduce your answer to an algebraic expression involving *only* the following terms: kT, q, I_{co} , β , $R_{\rm gen}$.

Engen Rgen 9 mble Engen Ins Rgan Rgen (+)- (+)- (+) - (+) Rgen 7 Rbe 1 Ent

Part b, 10 points

Adjusting the collector current (by adjusting the base bias current) will cause the total input-referred noise voltage to vary. What value of collector bias current gives the smallest input-referred noise?

Hint: please simplify the calculus by assuming that R_{be} is much larger than R_{gen} .

expression for
$$I_{c,opt} =$$

$$I_{c,qpt} = \sqrt{\beta^{7}} \cdot kT$$

$$g_{kqm}$$

$$f_{rom} = \sqrt{\beta^{7}} \cdot kT$$

$$g_{kqm}$$

$$f_{rom} = \sqrt{\beta^{7}} \cdot kT$$

$$g_{kqm}$$

$$f_{rom} = \sqrt{\beta^{7}} \cdot kT$$

$$g_{kqm}$$

$$f_{res} = \sqrt{\beta^{7}} \cdot kT$$

We simplify by taky $R_2 \gg R_y \epsilon n$, which gives: $3 = 4 \times R_y \epsilon n + 2g = 1 \times R_y \epsilon n + 2 \times R_y \epsilon$

Problem 2, 20 points

More circuit noise calculations. A two-stage FET

amplifier is shown at

the right.

Ignore DC bias considerations; you don't need these.

The FETs have -zero parasitic capacitances, -zero parasitic gate, source, and drain resistances.

Both FETs have 10 mS transconductance and a channel noise parameter $\Gamma = 1.5$. R_{L1} = R_{L2} = 1k Ω , R_{gen} = 100 Ohms. Find the spectral density of the total (amplifier plus generator) input-referred noise voltage.

$$S_{En,t} = \frac{4.33 \cdot 10^{-18} \text{ V}^2/12}{\text{ (give units)}}$$

Problem 3, 30 points

En-In models of circuits, noise figure A FET is biased with an input resistor R_{gg} as shown.

The FET has

- -zero parasitic capacitances,
- -zero parasitic gate, source, and drain resistances.
- a channel noise parameter of $\,\Gamma\,$

Part a, 10 points

Calculate from the above the spectral density of E_{na} and of I_{na} , and their cross-spectral density

expression for
$$S_{En,a}=$$
 44717 expression for $S_{In,a}=$ 44717 $I_{In}=$ I_{I

+ (1) (F) - Ryg Ingy Ind/9m INRgg + Ind , 9 Rgg. 1 / Ena = 4KT I 9m = 4KT I 7 9m - 4kt + 4kt IIgm - 4kt + 4kt I' Rgg - gm Rgg - Rgg - gm Rgg -SELZAC = 9m SIND/INRY9 + 1 SIND. = 9 = SInd = 1 4KT 1790

Part b, 10 points

We now have a

different circuit with

$$S_{E_{na}} = 10^{-18} V^2 / Hz$$
,

$$\begin{split} S_{I_{na}} = & 10^{-22} \, A^2 \, / \, Hz \, , \\ \text{and} \quad S_{E_{n,a}I_{n,a}} = & 10^{-21} W \, / \, Hz \, . \end{split}$$

If the generator resistance is 100 Ohms, find the spectral density of the total input-referred noise voltage (including that of the generator).

$$S_{En,t} = 3.68.10^{-18} \text{ (give units)}$$

Part c, 10 points

Continuing with the same circuit, i.e.

$$S_{E_{na}} = 10^{-18} V^2 \, / \, Hz \; ,$$

$$S_{I_{na}} = 10^{-22} A^2 / Hz$$
,

and
$$S_{E_{n,a}I_{n,a}} = 10^{-21} W / Hz$$
.

If the generator resistance is 100 Ohms, find the noise figure.

5

If the amplifier were not prosent, then

$$5 = 4407 Rga = 1.66.10^{-18} V Ille.$$
 $5 = 3.68.10^{-18} V Ille = 3.68$
 $1.66.10^{-18}$
 $1.66.10^{-18}$
 $1.66.10^{-18}$
 $1.66.10^{-18}$
 $1.66.10^{-18}$
 $1.66.10^{-18}$
 $1.66.10^{-18}$
 $1.66.10^{-18}$
 $1.66.10^{-18}$
 $1.66.10^{-18}$
 $1.66.10^{-18}$
 $1.66.10^{-18}$
 $1.66.10^{-18}$
 $1.66.10^{-18}$
 $1.66.10^{-18}$
 $1.66.10^{-18}$
 $1.66.10^{-18}$
 $1.66.10^{-18}$
 $1.66.10^{-18}$
 $1.66.10^{-18}$
 $1.66.10^{-18}$
 $1.66.10^{-18}$
 $1.66.10^{-18}$
 $1.66.10^{-18}$
 $1.66.10^{-18}$
 $1.66.10^{-18}$
 $1.66.10^{-18}$
 $1.66.10^{-18}$
 $1.66.10^{-18}$
 $1.66.10^{-18}$
 $1.66.10^{-18}$
 $1.66.10^{-18}$
 $1.66.10^{-18}$
 $1.66.10^{-18}$
 $1.66.10^{-18}$
 $1.66.10^{-18}$
 $1.66.10^{-18}$
 $1.66.10^{-18}$
 $1.66.10^{-18}$
 $1.66.10^{-18}$
 $1.66.10^{-18}$
 $1.66.10^{-18}$
 $1.66.10^{-18}$
 $1.66.10^{-18}$
 $1.66.10^{-18}$
 $1.66.10^{-18}$
 $1.66.10^{-18}$
 $1.66.10^{-18}$
 $1.66.10^{-18}$
 $1.66.10^{-18}$
 $1.66.10^{-18}$
 $1.66.10^{-18}$
 $1.66.10^{-18}$
 $1.66.10^{-18}$
 $1.66.10^{-18}$
 $1.66.10^{-18}$
 $1.66.10^{-18}$
 $1.66.10^{-18}$
 $1.66.10^{-18}$
 $1.66.10^{-18}$
 $1.66.10^{-18}$
 $1.66.10^{-18}$
 $1.66.10^{-18}$
 $1.66.10^{-18}$
 $1.66.10^{-18}$
 $1.66.10^{-18}$
 $1.66.10^{-18}$
 $1.66.10^{-18}$
 $1.66.10^{-18}$
 $1.66.10^{-18}$
 $1.66.10^{-18}$
 $1.66.10^{-18}$
 $1.66.10^{-18}$
 $1.66.10^{-18}$
 $1.66.10^{-18}$
 $1.66.10^{-18}$
 $1.66.10^{-18}$
 $1.66.10^{-18}$
 $1.66.10^{-18}$
 $1.66.10^{-18}$
 $1.66.10^{-18}$
 $1.66.10^{-18}$
 $1.66.10^{-18}$
 $1.66.10^{-18}$
 $1.66.10^{-18}$
 $1.66.10^{-18}$
 $1.66.10^{-18}$
 $1.66.10^{-18}$
 $1.66.10^{-18}$
 $1.66.10^{-18}$
 $1.66.10^{-18}$
 $1.66.10^{-18}$
 $1.66.10^{-18}$
 $1.66.10^{-18}$

Problem 4, 20 points

Signal/noise calculations

Part a, 10 points

We are now analyzing a generator whose noise voltage is $E_{n,gen}$, connected to an amplifier whose total noise voltage is $E_{n,g}$

We are working in a music recording studio, for which R_{gen} is standardized at 600 Ohms for microphones. The generator noise is thermal at 300K. $E_{nt,a}$ has a spectral density whose **square root** is 5 nV/Hz^{1/2}. Working with a standard audio system bandwidth of 20Hz-20kHz, what RMS voltage is required from V_{gen} to obtain a 30 dB signal/noise ratio? What available signal power does that correspond to?

RMS value of $V_{gen} = \frac{83.6 \mu V}{\text{(give units)}}$

Available signal power from the generator= 2, 7 pW (give units)

Region Englan Enta

(N)

(N) 1 Senge = 44TRyun = 9.94(10-18) VY/Z. 1 Sence = (SAV/1/27) = 25, 10-18, UY/1/8 1 Sent = 5 enger + Senec = 350, 10 14/12 Bandwidth = 2016-2016 - approximately 2016 2 $E(v^2) = 3.5(10^{-17})^{2}/4.2.10^{4}/2 = 7.0.10^{-12}v^{2}$ $V_{\nu} = \sqrt{E(v^2)} = 2.64 \text{ mV}$ 2 $f_{\mu} = 300/3 \text{ swR}, \text{ wte 1122d Vym Viccool; 1 bijger than this }$ $V_{\mu} = 83.6 \text{ mV}$ 2 | Powe = $(83.6\mu V)^2 = 2.9.10^{-12}W = 2.9pW$ 14 (600 R) 14 (600 R) 20 RHz = 1.46.10⁻¹²W/z

Part b, 10 points

We are now analyzing a radio receiver.

The antenna radiation resistance is at 300K. The antenna has negligible conductor resistance. The amplifier has 3 dB noise figure.

The receiver is receiving QPSK data at 100 megabits/second data rate.

If we use ideal raised-cosine filters with zero excess bandwidth ($\beta = 0$), what receiver

bandwidth do we need?

receiver bandwidth= 100 M/Z Hz

If no error-correcting code is used, we need a signal/noise ratio of 36:1 to obtain 10⁻⁹ bit error rate. What is the corresponding received signal power?

Signal power = $\frac{-75.3}{30} \frac{dMn}{1} \frac{1}{2}$ (give units)

or 30pW Σ ; there answer fine.

Ps = 10/0910(36) - 173,8 ABM (1/2) +30/15 + 10/0910 (1/12)

= 15,56 dB-173.8 dBm+3 dB+8 udB