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Strategy

There is not time in this class to develop this subject  in detail.

Strategy: 
give backround sufficient for correct calculation of
SNR, spectral densities, correlation functions, 
signal correlations, error rates.

More detail can be found in my noise class notes (on the web),
or in the literature. Van der Zeil's book is comprehensive.
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Topics
Math: 
distributions, random variables, expectations, 
pairs of RV, joint distributions, covariance and correlations. 
Random processes, stationarity, ergodicity, correlation functions, autocorrelation function, power spectral density. 

Noise models of devices: 

thermal and shot noise. 
Models of resistors, diodes, transitors, antennas. 

Circuit noise analysis: 
network representation. Solution. 
Total output noise. Total input noise. two-generator model. 
En/In model. Noise figure, noise temperature. 
Signal /  noise ratio.
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random variables
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The first step: random Variables 

2

1

1 2

1 2

During an experiment, a  random variable  takes on a particular value .
The probability that  lies between  and  is  

{ } ( )

( ) is the probability distribution function.
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Example: The Gaussian Distribution

( )2

22

2

The Gaussian distribution:

1( ) exp
22

We will  define shortly the mean ( )  and the standard deviation ( ).

*central limit theorem*:  
if a random variable  is defined as a sum 

1
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of independent random variables  , each with the same probability distribution, then
as , the probability distribution of X, at least at in its central region, converges towards a Gaussi
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Because of the *central limit theorem*, physical random processes arising
from the sum of many independent small effects have probability distributions close to that of the Gaussian.
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Mean values and expectations 

[ ]

[ ]

2

2 2 2

Expectation of a function g(X) of the random variable X

( ) ( ) ( )

 Mean Value of X

( )
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( )
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Variance 

( ) ( )[ ] ( )

 variance theofroot  square the
simply  is X of  deviation standard The

)(

 valueaverage its from
 deviation square-mean-root its is X of   varianceThe
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Returning to the Gaussian Distribution

( )2

22

The notation describing the Gaussian distribution:

1( ) exp
22

should now be clear.

X
xx

x x
f x

σσ
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Variance vs Expectation of the Square

( ) ( )( )

( )

( )

( )
( )

22

22

22

22

22 2

      2

      2

      2

The variance is the expectation of the square
minus the square of the expectation. 
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Pairs of Random Variables

To understand random processes,  
we  must first understand pairs of random variables.

In an experiment, a pair of random variables X and Y 
takes on specific particular values x and y.

Their joint behavior is described by the joint distribution ( , )

{  and } ( , )

XY
D B

XY
C A

f x y

P A x B C y D f x y dxdy< < < < =  
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Pairs of Random Variables

Marginal distributions must also be defined

{  } ( , )

                       ( )

and similarly for Y:

{  } ( , )

                       ( )

B

XY
A

B

X
A

D

XY
C
D

Y
C

P A x B f x y dxdy

f x dx

P C y D f x y dxdy

f y dy

+∞

−∞
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−∞
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=
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=
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
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
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Statistical Independence 

In the case where
( , ) ( ) ( ) , 

the variables are  said to be statistically independent. 

This is not generally expected.

XY X Yf x y f x f y=
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Expectations of a pair of random variables

[ ]

[ ]

2

2 2 2

The expectation of a function g(X,Y) of the random variables Y and Y is

( , ) ( , ) ( , )

Expectation of :

( , ) ( )

 Expectation of 

XY

XY X

XY

E g x y g x y f x y dxdy

X

E X x xf x y dxdy xf x dx
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E X X x f
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Correlation between random variables

[ ]

( )( ) [ ]

The correlation of X and Y is 

• ( , )

The covariance of X and Y is

       

Note that correlation and covariance are the same if either
X or Y 

XY XY

XY

XY

R E XY xy f x y dxdy

C E X x Y y E XY xY Xy xy

R x y

+∞ +∞

−∞ −∞

= =

= − − = − − +  
= − ⋅

 

have zero mean values.
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Correlation versus Covariance
When we are working with voltages and currents, we usually separate 
the  mean value (DC bias) from the time-varying component.   

The random variables then have zero mean. 

Correlation is then equal to covariance. 

It is therefore common in circuit noise analysis 
to use the two terms interchangably.

But, nonzero mean values can return when we e.g. calculate
conditional distributions. 

Be careful. 
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Correlation Coefficient

The correlation coefficient of X and Y is
/

Note the (standard) confusion in terminology 
between correlation and covariance.

XY XY X YCρ σ σ=
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Sum of TWO Random Variables

2 2 2 2

2 2

2 2 2

Sum of two random variables:  

( ) 2

          2

If  and  both have zero means

2

This emphasizes the role of correlation.

XY

XY

Z X Y

E Z E X Y E X XY Y

E X E Y R

X Y

E Z E X E Y C

= +

     = + = + +     
   = + +   

     = + +     
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Pairs of Jointly Gaussian Random Variables 

2

2 2

2 2 2

If X and Y are Jointly Gaussian:
1( , )

2 1

1 ( ) ( )( ) ( )                        exp
2(1 )

Using matrix notation, this definition can be extended to a 

XY

X Y XY

XY X X Y Y

f x y

x x x x y y y y

πσ σ ρ

ρ σ σ σ σ

=
−

  − − − −× − ⋅ + +  −   

1 2

larger # of variables, 
but, a pair of such variables is sufficient for this discussion.

In general, we can have a Jointly Gaussian random vector 
( , , , )
which is specified by a set of 

means , var

n

i

X X X

x



[ ]iances  , and covariances i i i jE x x E x x  
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Linear Operations on JGRV's 

If X and Y are Jointly Gaussian, and if we define 
   and 

Then  and  are also Jointly Gaussian.

This is stated without proof; the result arises because
convolution of 2 Gaussian functions

V aX bY W cX dY
V W

= + = +

 
produces a  Gaussian function.

The result holds for JGRVs of any number.
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Probability distribution after a Linear Operation on JGRV's

[ ] [ ]
[ ]

[ ]
[ ] [ ]

2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2

2 2

      and  

2 ( )

2 ( )

( )( )

        ( )

V

W

VW

V E V E aX bY aX bY W cX dY

E V V a E X b E Y ab E XY aX bY

E W W c E X d E Y cd E XY cX dY

C E VW VW E aX bY cX dY VW

E acX ad bc XY bdY

σ

σ

= = + = + = +

     = − = + + ⋅ − +     
     = − = + + ⋅ − +     

= − = + + −

 = + + + − 

[ ]2 2

2 2

2 2 22

            ( ) ( )( )

We  can now calculate the joint distribution of  and .

1 1 ( ) ( )( ) ( )( , ) exp
2(1 )2 1

VW
VW V V W WV W VW

VW

acE X ad bc E XY bd E Y aX bY cX dY

V W

v v v v w w w wf v w
ρ σ σ σ σπσ σ ρ

   = + + + ⋅ − + +   

  − − − −= × − ⋅ + +  −−   


tedious details
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Why are JGRV's Important ?

The math on the last slide was tedious but there is a clear conclusion:

With JGRV's subjected to linear operations,  it is sufficient to keep track 
of means, correlations, and variances. 

With this information, distribution functions can always be simply found. 

This vastly simplifies calculations of noise propagation  in linear systems
(linear circuits).
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Uncorrelated Variables.

Uncorrelated:
0

Statistically independent:
( , ) ( ) ( )

Independence implies zero correlation.
Zero correlation does not imply independence.  

For JGRV's, uncorrelated does imply independence

XY

XY X Y

C

f x y f x f y

=

=
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Summing of Noise (Random) Voltages

[ ]

1 2

1 2

2 2 2
1 2 1 1 2 2

2 2
1 2

2 2
1 2

Two voltages are applied to the resistor R
The power dissipated in the resistor is a random variable P

1 1( ) 2

1 1 1         2

1 1 1         2

        

V V

V V

E P P V V V VV V
R R

V C V
R R R

V V
R R R

σ

= = + = + +

= + +

= + +

1 2 1 2

2 2
1 2

2 2
1 1 2 2

1 1 1 2

1 1 1          2

The noise powers of the two random generators do not add-
-a correllation term must be included. 

The instantaneous time values of the random no

V V V VV V
R R R

V VV V
R R R

ρ σ σ= + +

= + +

ise voltages do add.

V1

V2

R
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Shot Noise as a Random Variable

[ ]
1

1

2 2 2 2 2
1 1 1 1 1

The fiber has transmission probability .
Send one  photon, and call the # of received photons .

    and         so  

If we now send many photons (  of them) ,  

N

p
N

E N N p E N p E N N p p

M

σ   = = = = − = −   

[ ] [ ]
1

2 2 2
1

2

transmission of each is
statistically independent, so --- calling the # of received  photons , 

  and    ( )

Now suppose 1,  1, and 1, 
 
The variance of the coun

N N

N

N

E N M E N Mp M M p p

M p Mp
N

σ σ

σ

= ⋅ = = ⋅ = −

>> << >>
→ =

t approaches  the mean value of the count. 
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Thermal Noise as a Random Variable
A capacitor C is connected to a resistor R . 
The resistor is in equilibrium with a "reservoir" (a warm room) at temperature T
 
R can exchange energy with the room in the form of  heat. 
C can dissipate 

2

no power: it establishes thermal equilibrium with 
the room via the resistor.

From thermodynamics, any independent degree of freedom of a system
at temperature T has mean energy kT/2, hence

/ 2

/ 2

E kT

CV kT

=

=
2

/ 2

/

The noise voltage has variance kT/C.

V kT C= R
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random processes
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Energy Signals, Power Signals, and Fourier Transforms
We will have a subtle math difficulty when we try to compute Fourier transforms and power spectra of random signals
The difficulty arises from the difference between *energy* signals and *power* signals.
**We will address this with the simplest possible mathematical approach**
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( )
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Time-truncating Power Signals
( ) ( )

( ) ( ) ( ) ( )

If    is a power signal, then its Fourier transform may or may not exist. 

1exp( )    where exp( )
2

v t v j

v j v t j t dt v t v j j t d

ω

ω ω ω ω ω
+∞ +∞

−∞ −∞

= − =
π 

( )

To fix this, pick some long period of time , 
much longer than the duration of the experiment you are analyzing

( ) / 2 0 / 2
and define  =

0 otherwise

We now have  (note carefully the limits to the

T

T

v t T T
v t

− < <



( ) ( ) ( ) ( )

( )

/2

/2

 integral).

1exp( )    where exp( )
2

As long as  is not infinite for some values of ,  the integrals are finite, 
and, further, given bounded variation, the tran

T

T

T T
T

T

T

v j v t j t dt v t v j j t d

v t t

ω ω ω ω ω
+∞

−∞

+

−

= − =
π 

sform exists.
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Our Notation vs. Standard Textbook notation

/2

/2

i

1) In a standard mathematical treatment, we would now take limits of the form

1lim .... 

*We
Instead, we simply state that  is much longer than the experiment's 

 will not do this.
durat

  *

T

T
T

dt

T

T→∞

+

−


( ) ( )

( )

( ) ( )
/2

/2

2) In a standard mathematical treatment, we write  and where

( ) / 2 0 / 2
=

0 otherwise

and exp( )    

But, it will be troublesome to keep carrying the "T" subscript. I

on

T T

T

T

T

T T

v t v j

v t T T
v t

v j v t j t dt

ω

ω ω
+

−

− < <



= −

( ) ( ) ( ) ( )
/2

/2

We will often take it as implicit that we are forcing ( ) to zero outside the time period   / 2 / 2.

nstead, we will often simply write. 

1exp( )  where exp( )
2

T

T

v j v t j t dt v t v j

v T T

t

t t

j dω ω ω ω ω
+

−

+∞

−∞

= − =
π

− < <

 
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Random Processes
Draw a set of graphs, on separate sheets of paper, 
of functions of voltage vs. time.

Put them into a g

This garbage can is called 
th

i

e probabil

arbage can.

Pick out 

t

one 

 

she

e

et

i

 

a

a

 

t

c

 

p

r

l

a

.

n

p

d

y

o

s

m

s e a

.
Th

m

s is our random function of time.

The random process is ( ).
The particular outcome is v(t)

V t
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Time Averages vs. Sample Space Averages

[ ]

Recall the definion of the expectation of a function g(X) of a random variable X

( ) ( ) ( )

 is the *average value* of ,  where the average is over the sample space.

With our random proce

XE g x g x f x dx g

g g

+∞

−∞

= =

[ ]

[ ]

1

1 1 1 1

ss definition, 
we can define an average over the
 sample space at some particular time :

( ( )) ( ( )) ( ( )) ( ( ))

We can also define an average of the 
function over time:

1( ( )) ( (

V

t

E g v t g v t f v t d v t

A g v t g v
T

+∞

−∞

=

=



/2

/2

))

...  is some time duration much longer that our time period of interest

T

T

t dt

T
−

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Ergodic Random Processes

[ ] [ ]1

An Ergodic random process has 
averages over time equal to
averages over the statistical sample space

( ( )) ( ( ))

In some sense, we have made
"random variation with time"
equivalent to 
"random variat

E g v t A g v t=

ion over the sample space"
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Time Samples of Random Processes

1 2

1 2

1 2

With time samples  at times  and  
the random process ( ) has values ( ) and ( ).

( ) and ( ) have some joint probability distribution.
They might (or might not) be jointly Gaussian.

t t
V t V t V t

V t V t

v(t)

t

v(t1 )
v(t2 )

t1 t2
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Random Waveforms are Random Vectors

1

Using Nyquist's sampling theorem, 
if a random signal is  bandlimited,
and if we pick regularly-spaced time samples ... ,
we convert our random process into a random vector.

We can thus analyze random 

nt t

signals using
vector analysis and geometry. 

This is mostly beyond the scope of this class.

v(t)

tt1 t2 tn
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Stationary Random Processes

( ) ( )

th

1 2 1 2

nd

1

The statistics of a stationary process do not vary with time.

 N order stationarity:
( ), ( ),..., ( ) ( ), ( ),..., ( )

    ..and  lower orders

 2 order stationarity:
( )

n nE f V t V t V t E f V t V t V t

E f V t

τ τ τ
−

= + + +      

−

( ) ( )
( ) ( )

2 1 2

1 1

, ( ) ( ), ( )

    lower orders ( ) ( )

V t E f V t V t

E f V t E f V t

τ τ

τ

= + +      
→ = +      

v(t)

t

v(t1 )
v(t2 )

t1 t2
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Restrictions on the random processes we consider

We will make following restrictions to make analysis tractable: 
 
The process will be Ergodic.   
 
The process will be stationary to any order: all statistical properties are independent of 
time. Many common processes are not stationary, including integrated white noise  and 1/f 
noise. 
 
The process will be Jointly Gaussian. This means that if the values of a random process 
X(t) are sampled at times t1, t2, etc, to form random variables X1=X(t1), etc, then X1,X2, 
etc. are a jointly Gaussian random variable.  
 
In nature, many random processes result from the sum of a vast number of small 
underlying random processses. From the central limit theorem, such processes can 
frequently be expected to be Jointly Gaussian. 
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Variation of a random process with time 

For the random process X(t), look at X1=X(t1) and X2=X(t2). 
 

[ ]  
+∞

∞−

+∞

∞−

== 21212121 ),(•
2121

dxdxxxfxxXXER XXXX  

To compute this we need to know the joint probability distribution. We have assumed a 
Gaussian process. The above is called the Autocorrellation function. IF the process is 
stationary, it is a function only of (t1-t2)=tau, and hence 
 
RXX τ( ) = E X t( )X t + τ( )[ ] 
 
this is the autocorrellation function. It describes how rapidly a random voltage varies 
with time…. 
 
PLEASE recall we are assuming zero-mean random  processes (DC bias subtracted). Thus 
the autocorrellation and the auto-covariance are the same 
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Variation of a random process with time
Note that  RXX 0( )= E X t( )X t( )[ ]= σX

2  gives the variance of the random process. 
 
 
The autocorrelation function gives us variance of the random process and the correlation 
between its values for two moments in time.  If the process is jointly Gaussian, this is 
enough to completely describe the process. 

Narrow autocorrelation:
Fast variation

Broad autocorrelation
Slow variation
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Autocorrelation is an Estimate of the Variation with Time

If random variables X and Y are Jointly Gaussian, and have zero mean,  
then knowledge of the value y of the outome of Y results in a best estimate of X as 
follows: 
 
E X Y = y[ ]= X Y = y =

RXY

σY
2 y  

 
"The expected value of the random variable X, given that the random variable Y has value 
y is ..." 
 
Hence, the autocorrellation function tells us the degree to which the signal at time t is 
related to the signal at time τ+t  
 
A narrow autocorrelation is indicative of a quickly-varying random process 
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Power spectral densities

The autocorrellation function describes how a random process evolves with time.  
 
Find its Fourier transform: 
 

( ) ( ) τωττω djRS XXXX )exp(−= 
+∞

∞−

 

This is called the power spectral density of the signal. 
 
Remembering the usual Fourier transform relationships, if the power spectrum is broad, 
the autocorrellation function is narrow, and the signal varies rapidly--it has content at high 
frequencies, and the voltages of any two points are strongly related only if the two points 
are close together in time. 
 
If the power spectrum is narrow, the autocorrellation function is broad, and the signal 
varies slowly--it has content only at low frequencies and the voltages of any two points are 
strongly related unless if the two points are broadly separated in time. 
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Power spectral densities 
Rxx(tau)

tau

Rxx(tau)

tau

time

time

x(t)

x(t)

Sxx(omega)

omega

Sxx(omega)

omega
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Power Spectral  Densities

( ) ( )

( ) ( )

Recall that the power spectral density is 
the Fourier transform of the autocorrelation function

exp( )

The inverse transform holds, so that

1 exp( )
2

specifically, 

XX XX

XX XX

XX

S R j d

R S j d

R

ω τ ωτ τ

τ ω ωτ ω

+∞

−∞

+∞

−∞

= −

=
π





( )2

2So, if   is called the power in the process, then integrating 
the power spectral density will give us the power. 

This is the justification for the term, "power spectral densit

1(0)
2X X

X

XS dσ

σ

ω ω
+∞

−∞

= =
π 

y"
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Statistical autocorrelation & power spectral density

( )

( ) ( )
/2

/2

Random process:  ( );  units are volts
( ) / 2 0 / 2

Time-truncated random process:  =
0 otherwise

Its Fourier transform exp( )     units: volts (seconds) units are volts seco

T

T

T T
T

V t
V t T T

V t

V j V t j t dt dω ω
+

−

− < <



= −  ⋅ → ⋅

[ ] ( ) ( )

2

nds = volts / Hz

Statistical autocorrelation function and 
( ) ( ) ( ) = ( ) ( ) ( ( ), ( )) ( ( )) ( ( ))

                     units check:  volts volts (volts) (volts)d(volts)
VV V t V tR E V t V t V t V t f V t V t d V t d V t

d
ττ τ τ τ τ+

−

= +   + + +

  ⋅ ⋅

( )

2

2 2 2

units are (volts)

Statistical power spectral density:

( ) exp( )  

                   units check: (volts) (seconds) (volts) (seconds) (volts) / Hz

VV VVS j R j d

d

ω τ ωτ τ
+∞

−∞

→

= −

 → =


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Outcome autocorrelation & power spectral density

( )

( ) ( )
/2

/2

Experimental outcome:  ( ) units are volts.
( ) / 2 0 / 2

Time-truncated experimental outcome:  =
0 otherwise

Its Fourier transform exp( )     units: volts (seconds) units ar

T

T

T T
T

v t
v t T T

v t

v j v t j t dt dω ω
+

−

− < <



= −  ⋅ →

[ ] ( )

( )

1 2 2

e volts seconds = volts / Hz

Outcome autocorrelation function

1( ) ( ) ( ) = ( )     units check: (seconds) (volts) (seconds) units are (volts)

Outcome power spectral density:

vv T T

vv

R A V t V t v t v t dt d
T

S j

τ τ τ

ω

+∞
−

−∞

⋅

= + + ⋅  →

=



( ) ( ) ( ) ( ) ( )*

2 2 2( ) exp( )  units check: (volts) (seconds) (volts) (seconds) (volts) / Hz

But: ( )* ( ) ( )  so ( )* ( ) (  So:(  /) )   

vv

T T T vT vT T T v T TT v

R j d d

v v v t v t dt v v v t v t dt T jR v v j T S jω ω ω

τ ωτ τ

τ τ τ τ τ τ τ

+∞

−∞

+∞ +∞

−∞ −∞

−  → =

= − − = = =− −



 
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Ergodic random processes & power spectra

1 1 2 2

st nd
1 2Random process:  ( ).    Outcome of 1  experiment: ( ). Outcome of 2  experiment: ( ). Etc.

Ergodic random process:  
( ) ( ) ... ( ) all outcomes have the same autcorrelation.

Ergodi

v v v v VV

V t v t v t

R R Rτ τ τ= = =

1 1 2 2

1 1 2 2

* *
1 1 2 2

c random process:  
( ) ( ) ... ( ) .

Ergodic random process:  
( ) ( ) ( ) ( ) ( ) ( ) ... ( )

With ergodic pr

all outcomes have the same power spectral densityv v v v VV

v v v v VV

S j S j S j

S j v j v j S j v j v j S j

ω ω ω

ω ω ω ω ω ω ω

= = =

= = = = =

ocesses, the  Fourier transforms of all outcomes have the same magnitudes, just different phases.
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Correlated  Random Processes

( ) ( ) ( )

Two processes can be statistically related. 
Consider two random processes X(t) and Y(t). 

Define the cross-correllation function of the processes

They will have a cross-spectral density 

XYR E X t Y tτ τ= +  

( ) ( )

( ) ( )

as follows:

exp( )

1and therefore exp( )
2

XY XY

XY XY

S R j d

R S j d

ω τ ωτ τ

τ ω ωτ ω

+∞

−∞
+∞

−∞

= −

=
π




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Single-Sided Hz-based Spectral Densities

( ) [ ] ( )

( ) ( )

( ) [ ] ( )

( ) ( )

Double-Sided Spectral Densities

1( ) ( ) exp( )
2

exp( )

Single-Sided Hz-based Spectral Densities

1( ) ( ) exp( 2 )
2

2 exp(

XX XX

XX XX

XX XX

XX XX

R E X t X t S j j d

S j R j d

R E X t X t S jf j f df

S jf R

τ τ ω ωτ ω

ω τ ωτ τ

τ τ π τ

τ

+∞

−∞
+∞

−∞

+∞

−∞
+∞

−∞

= + =
π

= −

= + =

=











 2 )j f dπ τ τ−
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Single-Sided Hz-based Spectral Densities- Why ?

{ }

( ) ( ) ( )

( )

high highlow

high low low

low high

Why this notation ? 

The signal power in the bandwidth ,

1 1Power 
2 2

 is directly the Watts of signal power
 per Hz of  signal ban

f ff

XX XX XX
f f f

XX

f f

S jf df S jf df S jf df

S jf

−

−

= + =

→

    



dwidth 
at frequencies lying close to the frequency .f
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Single-Sided Hz-based Cross Spectral Densities

( ) [ ] ( )

( ) ( )

( ) [ ] ( )

( )

Double-Sided Cross Spectral Densities

1( ) ( ) exp( )
2

exp( )

Single-Sided Hz-based Cross Spectral Densities

1( ) ( ) exp( 2 )
2

2

XY XY

XY XY

XY XY

XY

R E X t Y t S j j d

S j R j d

R E X t Y t S jf j f df

S jf R

τ τ ω ωτ ω

ω τ ωτ τ

τ τ π τ

+∞

−∞
+∞

−∞

+∞

−∞

= + =
π

= −

= + =

=





 

 ( )

( )

exp( 2 )

 is also often written as 

XY

XY

j f d

dS jf XY
df

τ π τ τ
+∞

−∞

−


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Example: Cross Spectral Densities

( ) ( )( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ){ }

( ) ( )

*

( ) ( ) ( )

( ) ( ) ( ) ( )

           

              2 Re

Or, in single-sided spectral densities

VV

XX YY XY YX

VV XX YY XY XY

XX YY XY

VV XX YY

V t X t Y t

R E X t Y t X t Y t

R R R R

S j S j S j S j S j

S j S j S j

S jf S jf S j

τ τ τ

τ τ τ τ

ω ω ω ω ω

ω ω ω

= +

= + + + +  
= + + +

= + + +

= + + ⋅

= +   ( ) ( ){ }2 Re XYf S jf+ ⋅ 

X

RY
V

P=V2/R
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Example: Cross Spectral Densities

[ ] ( )

( )

2The  Power ( ) /  has expected value
( ) ( ) / 0 /

And in the bandwidth between  and ,

...

Integrating with respect to frequency (over whatever bandwidth is relevant)
g

high

low

VV

low high

f

VV
f

P V t R
E V t V t R R R

f f

P S jf df

=
=

=  

ives the total (expected) power   dissipated in R. 

Note that the cross-spectral density is relevant.

X

RY
V

P=V2/R
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Our Notation for Spectral Densities and Correlations 

[ ] [ ]

[ ]

Random Process Outcome
function of time ( ) ( )

function of frequency ( ), ( ) ( ), ( )
autocorrelation function ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )
power spectral density

( 2 ) 2

VV vv

VV VV

VV VV

V t v t
V jf V j v jf v j

R E V t V t R A v t v t

S j R
S j f S

ω ω
τ τ τ τ

ω τ
π

= + = +

=
=
F

[ ]

[ ] [ ]

[ ]

*

( ) ( )
( ) ( ) ( )

( )
( 2 ) 2 ( )

crosscorrelation function ( ) ( ) ( ) ( ) ( ) ( )

( ) (
( ) ( )

cross spectral densit

/

y
( 2 ) 2 ( )

vv vv

vv

vv vv

XY xy

xy xy

XY XY

XY XY

S j R
S j v j v j

j
S j f S j

R E X t Y t R A v t y t

S j R
S j R

S j f S j

T
ω τ

ω ω ω
ω

π ω
τ τ τ τ

ω
ω τ
π ω

 =
  = 
  =

= + = +

=
 =
 =





F

F
F *

)

( ) ( ) ( )
( 2 ) 2 ( )

Note that  is the time truncation period we have used to handle power signals

/xy

xy xy

S j x j y j
S f

T
j S j

T

τ

ω ω ω
π ω

    =
 =



When context makes it clear whether ( ) or ( ),  we can simply write .v v t v v j vω= =

* *

For stationary ergodic processes 
( ) ( ) ( ) ( ) /  and ( ) ( ) ( ) ( ) /VV vv XY xyS j S j v j v j T S j S j x j y j Tω ω ω ω ω ω ω ω= = = =
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Example: Noise passing through filters & linear electrical networks

* * *

2

If the filter has impulse response ( )  and transfer function ( ),
then for any ( ) ( ),   ( ) ( ) ( )

So
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
out out in in

o

in out out in

out out in in

v v v v

V

h t h j
v t v t v j h j v j

v j v j h j v j h j v j

S j h j S j

S

ω
ω ω ω

ω ω ω ω ω ω

ω ω ω

→ =

=

=
2

* *

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

ut out in in

out in in in

out in in in

V V V

out in in in

v v v v

V V V V

j h j S j

v j v j h j v j v j
S j h j S j

S j h j S j

ω ω ω

ω ω ω ω ω
ω ω ω
ω ω ω

=

=
=

=

Vin(t) h(t) Vout(t)

It is trivial to change to single-sided Hz-based spectral densities.
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