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Our Notation for Spectral Densities and Correlations 

When context makes it clear whether ( ) or ( ),  we can simply write .v v t v v j vω= =

* *

For stationary ergodic processes 
( ) ( ) ( ) ( ) /  and ( ) ( ) ( ) ( ) /VV vv XY xyS j S j v j v j T S j S j x j y j Tω ω ω ω ω ω ω ω= = = =

[ ] [ ]

[ ]

Random Process Outcome
function of time ( ) ( )

function of frequency ( ), ( ) ( ), ( )
autocorrelation function ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )
power spectral density

( 2 ) 2

VV vv

VV VV

VV VV

V t v t
V jf V j v jf v j

R E V t V t R A v t v t

S j R
S j f S

ω ω
τ τ τ τ

ω τ
π

= + = +

=
=
F

[ ]

[ ] [ ]

[ ]

*

( ) ( )
( ) ( ) ( )

( )
( 2 ) 2 ( )

crosscorrelation function ( ) ( ) ( ) ( ) ( ) ( )

( ) (
( ) ( )

cross spectral densit

/

y
( 2 ) 2 ( )

vv vv

vv

vv vv

XY xy

xy xy

XY XY

XY XY

S j R
S j v j v j

j
S j f S j

R E X t Y t R A v t y t

S j R
S j R
S j f S j

T
ω τ

ω ω ω
ω

π ω
τ τ τ τ

ω
ω τ
π ω

 =
  = 
  =

= + = +

=
 =
 =





F

F
F *

)

( ) ( ) ( )
( 2 ) 2 ( )

Note that  is the time truncation period we have used to handle power signals

/xy

xy xy

S j x j y j
S f

T
j S j

T

τ

ω ω ω
π ω

    =
 =





4

class notes, M. Rodwell, copyrighted 2012-2023

Two-Port Noise Description
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Signal / Noise Ratio of Generator
 , ,,  and  are in series and see the same load impedance.

The ratios of powers delivered by these will not depend upon the load.
Therefore consider the available noise powers.

The signa

signal n total n genV E E

2
, ,

,

l power available from the generator is / 4

If we consider a narrow bandwidth between( / 2) and ( / 2),  
then the available noise power from  is
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The signal/noise ratio of the generator is then
/ 4 / 4
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Signal / Noise Ratio of Generator + Amplifier
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Noise Figure:  Signal / Noise Ratio Degradation

amplifier adding before ratio sesignal/noi
amplifier adding before ratio sesignal/noi figure Noise =
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Calculating Noise Figure
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Minimum Noise Figure
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Noise Figure in Wave Notation

t.coefficienreflection  source with
figure noise of  variation theof ndescriptioa  i.e.

,circles" figure noise" :figure noiseconstant 
of plane  thein contous describe These s −Γ

222

2

min )1()1(

4

,parameters  waveof in terms insteadWritten  

opts

optsnrFF
Γ−⋅Γ−

Γ−Γ⋅
+=

The derivation of this is tedious but trivial; please see one of the textbooks.
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Noise match ≠ reflection match. Gain ≤ MAG/MSG
2

21An impedance-matched amplifier provides || || MAG/MSG & 0in outS = Γ = Γ =

0
2

21
2

21

An noise-tuned amplifier has Z  hence 0. This can be undesirable.
An noise-tuned amplifier has || || MAG/MSG.
If the output is impedance-matched, then || ||  where  is, as always, a fu

in in

A A

Z
S

S G G

≠ Γ ≠

<

= nction the source impedance
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Gain and Noise Circles

min

With the output matched,  and noise figure will vary with .
Tuning for  will reduce the gain, and probably will result in input mismatch.
      Reduced gain, in return for lowest noise, is inevi

A SG Z
F

table*
       =0 can be obtained even when designing for lowest noise.inΓ

-planeSΓ

* See following discussion of noise measure invariance.

MSG=8.8 dB @ 200 GHz
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Converging the Gain Circles and Noise Circles

min

min

By adding reactive feedback (in this case, emitter inductance),
the source impedance for  and the source impedance 
for peak gain can be made to converge.

Good: input tuning for  then gives low 

F

F S11.
Possibly bad (?): gain has been (?) greatly reduced. But, see following notes.
Definitely good (!): the reactive feedback can stabilize without adding noise.

-planeSΓ

MAG=3.9 dB @ 200 GHz



14

class notes, M. Rodwell, copyrighted 2012-2023

Converging the Gain Circles and Noise Circles

min

min 11

Adding appropriate shunt and/or series reactive feedback
the source impedance for  and the source impedance 
for peak gain can be made to converge.

Input tuning for  then gives low .
Series ind

F

F S
uctance helpful in common-(source/emitter)

Series capacitance helpful in common-base
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Cascaded Amplifier Noise figure: Friis Formula

Available gain:  power gain of the amplifier with the *output* matched to the load
power available from the amplifier output 

power available from the generator

Noise figure of a cascade of a

AVA
A

AVG

PG
P

= =

32
1

1 1 2

1 2 3

mplifiers
11

Total gain of a cascade of amplifiers

Here the noise figures  and available gains of each amplifier are calculated given using
a source impedance 

total
A A A

total A A A

FFF F
G G G

G G G G

−−= + + +

=





1 1 2 2

equal to the output impedance of the prior stage,
i.e.   , , , ,  etc. s out out outZ Z Z Z
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Cascaded Amplifier Noise figure: Observations

32
1

1 1 2

1 1 1 1 1

11

The noise contributions of stages 2 & 3 are reduced by the gains of prior stages.

Given that both  and  depend on , selecting  for smallest 
is not  intelligen

total
A A A

A s s

FFF F
G G G

F G Z Z F

−−= + + +

1 2

1 1 1

t, as, if this makes  small, there will be a large contribution to  from .

Instead,  should be selected to appropriately balance  and .

**How shall we do this?**

A total

s A

G F F

Z F G
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Cascaded Noise Figure and Noise Measure

( )

Now cascade an infinite number of identical amplifiers

Cascaded noise figure: 
1 /1 1     

1 1 /
Noise measure:

1 1 1     1 1
1 1/

We should select 

A
cascade

A A A A

cascade
A A A A

F GF FF F
G G G G

F F FM F F
G G G G

Z

−− −= + + + =
−

− − −= − = − + + + =
−





 for minimum  (or, equivalently, for minimum ), not for minimum .s cascadeM F F
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Noise Measure as a figure of merit of LNA quality

( )
( )

( )

1,2 1 2 1

2,1 2 1 2

2 1
1,2 2,1 1 2

1 2

1 2 1 2 2 1 2

Noise figure of stage1, stage 2, cascade: 1

Noise figure of stage2, stage 1, cascade: 1
1 1If   then   

1

total A

total A

total total
A A

A A A A A

F F F G

F F F G
F FF F F F
G G

G G F G F G G F

= + −

= + −
− −< + < +

+ − < ( )2 1 1

1 2 1 1 1 1 2 2 2 2

1 1 2 2 2 1

1 1 2 2

1 2

1 2

1

( 1) ( 1)

(1 1/ ) (1 1 / )

...the stage with the lowest  should be at the input.

A

A A A A A A

A A A A

A A

A A

G F
G G F G F G G F G F
FG G F G G
FG F G
G G

M M
M

+ −
− < −
− < −

<
− −

<
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Noise Measure Invariance (with respect to lossless embedding)

min

,

min,

"  is invariant with respect to lossless embedding"
What does this mean ?

A transistor, with some optimum source impedance 
will provide some minumum transistor noise measure 

We embed the 

opt T

T

M

Z
M

,

min,

transistor in a lossless passive circuit to make an amplifier.
This, with some optimum source impedance 
will provide some minumum amplifier noise measure .

The minimum noise measure **does n

opt A

A

Z
M

min, min, min

min, min, min

ot change**:

All (lossless, passive) circuits using the transistor provide the same . 

T A

A T

M M M

M M M

= =

= =

H. A. Haus and R. B. Adler, "Optimum Noise Performance of Linear Amplifiers," in Proceedings of the IRE, vol. 46, no. 8, pp. 1517-1533, Aug. 1958, doi: 10.1109/JRPROC.1958.286973.

N. Baniasadi and A. M. Niknejad, "Noise Measure Revisited for Design of Amplifiers Close to Activity Limits," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 69, no. 6, pp. 2276-2283, June 2022,
doi: 10.1109/TCSI.2022.3157622.
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Noise Measure Invariance: Implications

min

min

All lossless circuits using the same transistor have the same .

Common source/emitter has the same   as common gate/base.

Reactive feedback for simultaneous noise and gain tuning 
    does not ch

M

M

min

min

min

ange .

Capacitive neutralization for gain-peaking does not change .

Singhakowinta's feedback does not change .

... in all cases *given that the appropriate  is used*.source

M

M

M

Z
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LNA Design Procedure: Simplified

1dB

Real LNAs are designed for balanced peformance
     low noise, 
     high dynamic range (high IIP3, high IP )
     appropriate bandwidth (wide, narrow, as needed)
     low DC power, low die area
     resulting design process is complex and iterative
Simplify for class: just design for lowest .cascadeF

1

Goal: design for lowest  and associated .
     Need CAD plots:  and  circles on Smith chart
     These *can* be computed (see Fukui paper ), 
     But commercial CAD programs don't plot these
     T

A

A

M G
M G

2

,min ,

hey only provide  and  circles on Smith chart.
     Work-around: UCSB-written CAD post-processing program :
            approximate values of  and 

A

cascade opt m

F G

F Z

1) H. Fukui, "Available Power Gain, Noise Figure, and Noise Measure of Two-Ports and Their Graphical 
Representations," in IEEE Transactions on Circuit Theory, vol. 13, no. 2, pp. 137-142, June 1966, doi: 
10.1109/TCT.1966.1082556.

2) U. Soylu, A. S. H. Ahmed, M. Seo, A. Farid and M. Rodwell, "200 GHz Low Noise Amplifiers in 250 nm InP HBT 
Technology," 2021 16th European Microwave Integrated Circuits Conference (EuMIC), 2022, pp. 129-132, doi: 
10.23919/EuMIC50153.2022.9784010.

Keysight ADS plots Ga circles (red) and F circles (blue).  The UCSB-written post-processing routine draws 
a line between the center of these circles, computes Fcascade for points along this line, and then finds the 
point (source impedance) giving lowest Fcascade .  The procedure is approximate because the point for 
lowest Fcascade will lie on this line only if the centers of all Ga and F circles also lie on the  lnie. 
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ADS/Python Scripts for Noise Measure Estimation
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LNA Design Procedure 1: DC bias and transistor size

Determine the bias  ( ,  / ) or ( ,  / ) giving lowest .CE C E DS D g cascadeV I L V I W F

200 GHz; Teledyne 250nm InP HBT
maxLow-noise bias usually at much lower current than high-  bias.f

1dB

Select the transistor size  (  or ) :
    Set bias current at ( / )  or ( / )
    Larger  or  larger maximum power (IIP3, IP ) (see later notes)
    Smaller  or  smalle

E G

C C E opt E D D G opt G

C D

C D

L W
I I L L I I W W

I I
I I

= ⋅ = ⋅

→
→

0 0

r DC power consumption
    Larger  or  smaller || ||
    Smaller  or  larger || ||

If || ||   or || ||  ,  input tuning will be difficult:
     Possibly narrow tuning bandwidth.

C D opt

C D opt

opt opt

I I Z
I I Z

Z Z Z Z

→

→

>> <<

     Possibly high tuning loss  increased ,  reduced .AM G→
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LNA Design Procedure 2: tuning, stabilization, matching

If the reactive feedback has not also stabilized the transistor,
    then add additional output resistive stabilization.
   ...This should be avoided, if possible, as  will increase.
  If all possible, 

M
stabilize with reactive feedback. 

,Design input tuning network to obtain .s transistor optZ Z=

11If (and only if) you care about :
 add reactive feedback to converge the  circles and  circles.
 somewhat tricky, as the CAD program plots  circles, not  circles.

A

S
G M

F M

, ,Design output tuning network to obtain ,
i.e. output is *impedance matched*

L transistor L optZ Z=

Add out-of-band stabilization
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LNA Design Procedure 3: multistage design

Although we can cut/paste similar stages, this is not optimum:
    Pairs of interstage networks can be merged into single network.
    Cascaded stages carry larger singal power:
          need more (IIP3 1dB

1dB

, IP )
          larger ( , ) or ( , ) 
          possibly large-signal output tuning for increased  (IIP3, IP )

C E D GI L I W
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LNA Design Procedure 4: multistage design; revisiting reflections

Side comment:

If stage-stage interconnects have length<< /4, 
then we may not need to avoid inter-stage line reflections.

Reactive feedback for (noise, impedance) convergence 
    can be dropped.

This can 

λ

be helpful if low-Q reactive elements are degrading .

But, reactive feedback also provides noiseless stabilization.
   So, we may want to keep the reactive feedback.

M
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Minimizing input tuning losses (hence input tuning noise)

In higher-frequency designs, the input tuning loss can be significant.
Loss resistance added noise.
Appropriate transistor sizing can reduce input tuning loss.

→ →

Differential LNAs are popular
    Easy neutralization for gain-peaking
    Less supply coupling  easier to avoid supply-induced oscillation.

But, differential LNAs require input transformer (balun).
    0

→

.5-2 dB transformer losses.
    Degraded noise performance.
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LNA Design Example (1): Transistor bias

2) U. Soylu, A. S. H. Ahmed, M. Seo, A. Farid and M. Rodwell, "200 GHz Low Noise Amplifiers in 250 nm InP HBT 
Technology," 2021 16th European Microwave Integrated Circuits Conference (EuMIC), 2022, pp. 129-132, doi: 
10.23919/EuMIC50153.2022.9784010.Teledyne 250nm InP HBT

First step:
transistor bias swept to find 
optimimum bias for lowest 
Fcascade=1+M.

For a 3 μm length emitter finger,
Fcascade=6.57 dB
@ IE/LE=0.5 mA/μm & Vcb=0.35 V

Note that the designer had previously 
determined that a 3 μm length emitter 
finger would require an input noise-
tuning network with only a shunt 
element, no series element.

Design frequency: 210 GHz

Note the GA circles lie entirely within 
the Smith chart. Even without 
examining the stability circles or the 
stability parameters, we know that the 
transistor is unconditionally stable in-
band. No in-band stabilization is 
needed. 
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LNA Design Example (2):Converging noise & reflection tuning
Second step:
emitter inductance swept to 
converge input reflection match 
and noise (F) match.

Ultimately, the designer chose to use 
*zero* emitter inductance, as, in 
simulations (not shown) the finite loss 
of this inductance, when implemented 
as a transmission line, significantly 
degraded Fcascade.
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LNA Design Example (3): Input noise tuning
Third step:

The input is noise-tuned with a shunt 
microstrip line. 

Because there is no emitter inductance, 
simultaneous noise-tuning and S11-tuning 
is not possible. 

Input tuning is a compromise, favoring M.

Line losses are modelled→ M degrades

Between the inexact noise tuning and the 
input tuning losses, M degrades

Fcascade,min=6.82 dB

The shunt input line will also provide base 
bias; ; MIMCap4 is an AC short
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LNA Design Example (4): Output gain/S22 tuning
Fourth step:

The output is impedance-matched to 50 
Ohms with series and shunt microstrip 
lines. 

Line losses are modelled→ M degrades

Fcascade,min=7.11 dB

The shunt output line will also provide 
collector bias; MIMCap5 is an AC short
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LNA Design Example (5): Three cascaded stages
Fifth step:

3 stages are cascaded.

Fcascade,min=7.147 dB
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LNA Design Example (6): Mask layout and simulations
This is in fact a 4-stage design:

Fcascade,min=7.56 dB

Much design work remains:
Out of band stabilization
Routing power supply lines
Modeling supply line effects on (Sij,M)
Checking for supply-associated instability
Modeling effect of pads, I/O connections.
Robustness against process variations
Robustness against supply variations
etc.
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LNA Design Example (7): Final Design
200 GHz CE designSimulations

13 dBGain

60 GHzBW

7.2 dBNF (F)

-18.2 dBmP1dB,in

19.22 mWPDC

290umx465umDie Area

1.0mA/um
0.56V

Jemitter
Vcb
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LNA Design Example (8): Measurements

-30
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|S22| - - - - Simulation
Measurement(b)

0
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N
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Measurement(b)

7.2±0.4 dB noise figure 
over 196-216 GHz

0
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G
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P
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 (dBm)
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P
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___ MeasuredCE

-18.2 dBm Pin1dB @ 200 GHz

Measured noise, surprisingly, is slightly 
better than simulation
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Supplemental 
Material
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Derivations
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Appendix: Derivation of Fmin and Zopt (1) 
( )

( )
( )

reactancegenerator  optimum ~/)~Im(

0
)~Im(2~2

)~Re(2~)~Im(2~~
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Appendix: Derivation of Fmin and Zopt (2) 
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Appendix: Derivation of Fmin and Zopt (3) 
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