ECE 145B / 218B, notes set 5: Two-port Noise Parameters

Mark Rodwell
University of California, Santa Barbara

References and Citations:

Sources / Citations :
Kittel and Kroemer :Thermal Physics
Van der Ziel : Noise in Solid - State Devices
Papoulis : Probability and Random Variables (hard, comprehensive)
Peyton Z. Peebles : Probability, Random Variables, Random Signal Principles (introductory)
Wozencraft \& Jacobs : Principle s of Communications Engineering.
Motchenbak er : Low Noise Electronic Design
Information theory lecture notes : Thomas Cover, Stanford, circa 1982
Probability lecture notes : Martin Hellman, Stanford, circa 1982
National Semiconduc tor Linear Applications Notes : Noise in circuits.
Suggested references for study.
Van der Ziel, Wozencraft \& Jacobs, Peebles, Kittel and Kroemer
Papers by Fukui (device noise), Smith \& Personik (optical receiver design)
National Semi. App. Notes (!)
Cover and Williams : Elements of Information Theory

Our Notation for Spectral Densities and Correlations

Note that T is the time truncation period we have used to handle power signals
When context makes it clear whether $v=v(t)$ or $v=v(j \omega)$, we can simply write v.
For stationary ergodic processes
$S_{V V}(j \omega)=S_{v v}(j \omega)=v(j \omega) v^{*}(j \omega) / T$ and $S_{X Y}(j \omega)=S_{x y}(j \omega)=x(j \omega) y^{*}(j \omega) / T$

Two-Port Noise Description

As we have seen in the prior lectures, through the methods of circuit analysis, the internal noise generators of a circuit can be summed and represented by two noise generators E_{n} and I_{n}.

The spectral densities of E_{n} and I_{n} must be calculated and specified. The cross spectral density must also be calculated and specified.

Signal / Noise Ratio of Generator

$V_{\text {signal }}, E_{n, \text { total }}$ and $E_{n, \text { gen }}$ are in series and see the same load impedance.
The ratios of powers delivered by these will not depend upon the load.
Therefore consider the available noise powers.

The signal power available from the generator is $P_{\text {signal, available }}=V_{\text {signal, RMS }}^{2} / 4 R_{\text {gen }}$

If we consider a narrow bandwidth between $\left(f_{\text {signal }}-\Delta f / 2\right)$ and $\left(f_{\text {signal }}+\Delta f / 2\right)$, then the available noise power from $E_{N, \text { gen }}$ is
$P_{\text {noise,available, generatar }}=E\left[E_{n, \text { gen }}^{2}\right]=\tilde{S}(j f) \cdot \Delta f / 4 R_{\text {gen }}$

The signal/noise ratio of the generator is then
$\mathrm{SNR}=\frac{P_{\text {signal, available }}}{P_{\text {noise,available, generator }}}=\frac{V_{\text {signal,RMS }}^{2} / 4 R_{\text {gen }}}{\tilde{S}_{E_{n, \text { gen }}}(j f) \cdot \Delta f / 4 R_{\text {gen }}}=\frac{V_{\text {signal,RMS }}^{2} / 4 R_{\text {gen }}}{k T \cdot \Delta f}$

Signal / Noise Ratio of Generator + Amplifier

Signal power available from the generator : $P_{\text {signal, available }}=V_{\text {signal }, R M S}^{2} / 4 R_{\text {gen }}$
Noise power available from generator : $P_{\text {noise, av, gen }}=\widetilde{S}_{V} \cdot \Delta f / 4 R_{\text {gen }}=k T \cdot \Delta f$
Noise power available from amplifier : $P_{\text {noise, av, Amp }}=\widetilde{S}_{E_{n, \text {,ooul, anplifer }}} \cdot \Delta f / 4 R_{\text {gen }}$

Signal/noise ratio including amplifier noise :

$$
\begin{aligned}
S N R & =\frac{P_{\text {signal, available }}}{P_{\text {noise } \text { avail, ,gen }}+P_{\text {noise,avail,amp }}}=\frac{V_{\text {signal, RMS }}^{2} / 4 R_{\text {gen }}}{\widetilde{S}_{E_{\text {ooal }}} \cdot \Delta f / 4 R_{\text {gen }}+\widetilde{S}_{E_{n, \text { gen }}} \cdot \Delta f / 4 R_{\text {gen }}} \\
& =\frac{V_{\text {signal, RMS }}^{2} / 4 R_{\text {gen }}}{\widetilde{S}_{E_{\text {toual }}} \cdot \Delta f / 4 R_{\text {gen }}+k T \cdot \Delta f}
\end{aligned}
$$

Noise Figure: Signal / Noise Ratio Degradation

Noise figure $=\frac{\text { signal } / \text { noise ratio before adding amplifier }}{\text { signal/noise ratio before adding amplifier }}$
Signal/noise ratio before adding amplifier : $S N R=\frac{V_{\text {sigal }, R M S}^{2} / 4 R_{\text {gen }}}{k T \cdot \Delta f}$
Signal/noise ratio after adding amplifier : $S N R=\frac{V_{\text {signal, RMS }}^{2} / 4 R_{\text {gen }}}{\widetilde{S}_{E_{\text {toat }}} \cdot \Delta f / 4 R_{\text {gen }}+k T \cdot \Delta f}$
Noise figure $=F=\frac{\widetilde{S}_{E_{\text {toal }}} \cdot \Delta f / 4 R_{\text {gen }}+k T \cdot \Delta f}{k T \cdot \Delta f}$

Noise figure $=1+\frac{\widetilde{S}_{E_{\text {tata }}} / 4 R_{\text {gen }}}{k T}=1+\frac{\text { amplifier available input noise power }}{k T}$

Calculating Noise Figure

Noise figure $=1+\frac{\widetilde{S}_{E_{\text {toal }}} / 4 R_{\text {gen }}}{k T}$

We also know that :

$$
\widetilde{S}_{E_{n, \text {,oall }}}=\widetilde{S}_{E_{n}}+\left\|Z_{g}\right\|^{2} \widetilde{S}_{I_{n}}+2 \operatorname{Re}\left\{\widetilde{S}_{E_{n} I_{n}} Z_{g}^{*}\right\}
$$

We can calculate from this an expression for noise figure :

$$
F=1+\frac{\widetilde{S}_{E_{n}}+\left|Z_{s}\right|^{2} \widetilde{S}_{I_{n}}+2 \cdot \operatorname{Re}\left(Z_{s}^{*} \widetilde{S}_{E_{n} I_{n}}\right)}{4 k T R_{g e n}}
$$

Minimum Noise Figure

Noise figure varies as a function of $Z_{\text {gen }}=R_{\text {gen }}+j X_{\text {gen }}$:

$$
F=1+\frac{\widetilde{S}_{E_{n}}+\left|Z_{s}\right|^{2} \widetilde{S}_{I_{n}}+2 \cdot \operatorname{Re}\left(Z_{s}^{*} \widetilde{S}_{E_{n} I_{n}}\right)}{4 k T R_{g e n}}
$$

After some calculus, we can find a mimimum noise figure and a generator impedance which gives us this minimum :

$$
\begin{aligned}
& F_{\min }=1+\frac{1}{4 k T}\left[2 \sqrt{\widetilde{S}_{E_{n} E_{n}} \widetilde{S}_{I_{n} I_{n}}-\left(\operatorname{Im}\left[\widetilde{S}_{E_{n} I_{n}}\right)^{2}\right.}+2 \operatorname{Re}\left[\widetilde{S}_{E_{n} I_{n}}\right]\right] \\
& Z_{\text {opt }}=R_{\text {opt }}+j X_{\text {opt }}=\sqrt{\frac{\widetilde{S}_{E_{n} E_{n}}}{\widetilde{S}_{I_{n} I_{n}}}-\left(\frac{\operatorname{Im}\left[\widetilde{S}_{E_{n} I_{n}}\right.}{\widetilde{S}_{I_{n} I_{n}}}\right)^{2}}-j \cdot \frac{\operatorname{Im}\left[\widetilde{S}_{E_{n} I_{n}}\right]}{\widetilde{S}_{I_{n} I_{n}}}
\end{aligned}
$$

Points to remember: (a) F varies with $Z_{\text {gen }}$, (b) hence there is an optimum $Z_{\text {gen }}$ which gives a minimum $F(\mathrm{c})$.

Noise Figure in Wave Notation

Written instead in terms of wave parameters,

$$
F=F_{\min }+\frac{4 r_{n} \cdot\left\|\Gamma_{s}-\Gamma_{o p t}\right\|^{2}}{\left(1-\left\|\Gamma_{s}\right\|^{2}\right)^{2} \cdot\left(1-\Gamma_{o p t}\right)^{2}}
$$

These describe contous in the Γ_{s} - plane of constant noise figure: "noise figure circles", i.e. a description of the variation of noise figure with source reflection coefficient.

The derivation of this is tedious but trivial; please see one of the textbooks.

Noise match $=$ reflection match. Gain \leq MAG/MSG

An impedance-matched amplifier provides $\left\|S_{21}\right\|^{2}=\mathrm{MAG} / \mathrm{MSG} \& \Gamma_{\text {in }}=\Gamma_{\text {out }}=0$

An noise-tuned amplifier has $Z_{\text {in }} \neq \mathrm{Z}_{0}$ hence $\Gamma_{\text {in }} \neq 0$. This can be undesirable.
An noise-tuned amplifier has $\left\|S_{21}\right\|^{2}<$ MAG/MSG.
If the output is impedance-matched, then $\left\|S_{21}\right\|^{2}=G_{A}$ where G_{A} is, as always, a function the source impedance

Gain and Noise Circles

With the output matched, G_{A} and noise figure will vary with Z_{S}.
Tuning for $F_{\min }$ will reduce the gain, and probably will result in input mismatch. Reduced gain, in return for lowest noise, is inevitable* $\Gamma_{i n}=0$ can be obtained even when designing for lowest noise.

cir_pts (0.000 to 51.000) freq $(200.0 \mathrm{GHz}$ to 200.0 GHz$)$

Converging the Gain Circles and Noise Circles

By adding reactive feedback (in this case, emitter inductance), the source impedance for $F_{\min }$ and the source impedance for peak gain can be made to converge.

Good: input tuning for $F_{\min }$ then gives low S_{11}.

Possibly bad (?): gain has been (?) greatly reduced. But, see following notes.
Definitely good (!): the reactive feedback can stabilize without adding noise.

cir_pts (0.000 to 51.000) req $\overline{(200.0 G H z}$ to 200.0 GHz$)$

Converging the Gain Circles and Noise Circles

Adding appropriate shunt and/or series reactive feedback the source impedance for $F_{\min }$ and the source impedance for peak gain can be made to converge.

Input tuning for $F_{\min }$ then gives low S_{11}.
Series inductance helpful in common-(source/emitter)
Series capacitance helpful in common-base

Cascaded Amplifier Noise figure: Friis Formula

Available gain: power gain of the amplifier with the *output* matched to the load
$G_{A}=\frac{P_{A V A}}{P_{A V G}}=\frac{\text { power available from the amplifier output }}{\text { power available from the generator }}$

Noise figure of a cascade of amplifiers
$F_{\text {total }}=F_{1}+\frac{F_{2}-1}{G_{A 1}}+\frac{F_{3}-1}{G_{A 1} G_{A 2}}+\cdots$
Total gain of a cascade of amplifiers
$G_{\text {total }}=G_{A 1} G_{A 2} G_{A 3} \cdots$
Here the noise figures and available gains of each amplifier are calculated given using
a source impedance equal to the output impedance of the prior stage,
i.e. $Z_{\text {s } 1}, Z_{\text {out } 1}, Z_{\text {out } 2}, Z_{\text {out } 2}$, etc.

Cascaded Amplifier Noise figure: Observations

The noise contributions of stages $2 \& 3$ are reduced by the gains of prior stages.

Given that both F_{1} and $G_{A 1}$ depend on $Z_{s 1}$, selecting $Z_{s 1}$ for smallest F_{1} is not intelligent, as, if this makes $G_{A 1}$ small, there will be a large contribution to $F_{\text {total }}$ from F_{2}.

Instead, $Z_{s 1}$ should be selected to appropriately balance F_{1} and $G_{A 1}$.

[^0]
Cascaded Noise Figure and Noise Measure

Now cascade an infinite number of identical amplifiers

Cascaded noise figure:

$$
F_{\text {cascade }}=F+\frac{F-1}{G_{A}}+\frac{F-1}{G_{A} G_{A}}+\cdots=\frac{F-1 / G_{A}}{1-1 / G_{A}}
$$

Noise measure:

$$
M=F_{\text {cascade }}-1=(F-1)+\frac{F-1}{G_{A}}+\frac{F-1}{G_{A} G_{A}}+\cdots=\frac{F-1}{1-1 / G_{A}}
$$

We should select Z_{s} for minimum M (or, equivalently, for minimum $F_{\text {cascade }}$), not for minimum F.

Noise Measure as a figure of merit of LNA quality

Noise figure of stage 1, stage 2, cascade: $F_{\text {totall }, 2}=F_{1}+\left(F_{2}-1\right) / G_{A 1}$
Noise figure of stage2, stage 1, cascade: $F_{\text {total2,1 }}=F_{2}+\left(F_{1}-1\right) / G_{A 2}$
If $F_{\text {total } 1,2}<F_{\text {total } 2,1}$ then $F_{1}+\frac{F_{2}-1}{G_{A 1}}<F_{2}+\frac{F_{1}-1}{G_{A 2}}$
$G_{A 1} G_{A 2} F_{1}+G_{A 2}\left(F_{2}-1\right)<G_{A 1} G_{A 2} F_{2}+G_{A 1}\left(F_{1}-1\right)$
$G_{A 1} G_{A 2} F_{1}-G_{A 1} F_{1}<G_{A 1} G_{A 2} F_{2}-G_{A 2} F_{2}$
$F_{1} G_{A 1}\left(G_{A 2}-1\right)<F_{2} G_{A 2}\left(G_{A 1}-1\right)$
$\frac{F_{1} G_{A 1}}{\left(1-1 / G_{A 1}\right)}<\frac{F_{2} G_{A 2}}{\left(1-1 / G_{A 2}\right)}$
$M_{1}<M_{2}$
...the stage with the lowest M should be at the input.

Noise Measure Invariance (with respect to lossless embedding)

" $M_{\min }$ is invariant with respect to lossless embedding" What does this mean?

A transistor, with some optimum source impedance $Z_{\text {opt }, T}$ will provide some minumum transistor noise measure $M_{\min , T}$

P-

We embed the transistor in a lossless passive circuit to make an amplifier. This, with some optimum source impedance $Z_{o p t, A}$ will provide some minumum amplifier noise measure $M_{\min , A}$.

The minimum noise measure ${ }^{* *}$ does not change ${ }^{* *}$:

$M_{\min , T}=M_{\min , A}=M_{\text {min }}$

All (lossless, passive) circuits using the transistor provide the same $M_{\min , A}=M_{\min , T}=M_{\min }$.
H. A. Haus and R. B. Adler, "Optimum Noise Performance of Linear Amplifiers," in Proceedings of the IRE, vol. 46, no. 8, pp. 1517-1533, Aug. 1958, doi: 10.1109/JRPROC.1958.286973.

Noise Measure Invariance: Implications

All lossless circuits using the same transistor have the same $M_{\min }$.

Common source/emitter has the same $M_{\text {min }}$ as common gate/base.

Reactive feedback for simultaneous noise and gain tuning does not change $M_{\text {min }}$.

Capacitive neutralization for gain-peaking does not change $M_{\text {min }}$.

Singhakowinta's feedback does not change $M_{\min }$.
... in all cases *given that the appropriate $Z_{\text {source }}$ is used*.

LNA Design Procedure: Simplified

Real LNAs are designed for balanced peformance
low noise,
high dynamic range (high IIP3, high $\mathrm{IP}_{1 \mathrm{~dB}}$)

freq $=210.0 \mathrm{GHz}$ S[L_ind,Vcb_ind,le_ind,(freq_ind-1) impedance $=Z 0 *(1.180-\mathrm{j} 1.438)$	1)::(freq_ind +1$)](2,2)=0.555 /-49.44$
m 8	
ndep(m8)=18	
GAcircles $=0.518$ / 148.302	Noise circles=0.223 / n figure $=4.98 .455$
impedance $=$ Z0 * ($0.340+\mathrm{j} 0.253)$	impedance $=$ Z0 ${ }^{\text {n }}$ ($1.329-\mathrm{j} 0.413$)

appropriate bandwidth (wide, narrow, as needed)
low DC power, low die area resulting design process is complex and iterative Simplify for class: just design for lowest $F_{\text {cascade }}$.

Goal: design for lowest M and associated G_{A}.
Need CAD plots: M and G_{A} circles on Smith chart
These *can* be computed (see Fukui paper ${ }^{1}$),
But commercial CAD programs don't plot these
They only provide F and G_{A} circles on Smith chart.

Work-around: UCSB-written CAD post-processing program ${ }^{2}$:

approximate values of $F_{\text {cascade, min }}$ and $Z_{\text {opt }, m}$

[^1]
ADS/Python Scripts for Noise Measure Estimation

LNA Design Procedure 1: DC bias and transistor size

Determine the bias $\left(V_{C E}, I_{C} / L_{E}\right)$ or $\left(V_{D S}, I_{D} / W_{g}\right)$ giving lowest $F_{\text {cascade }}$.
Low-noise bias usually at much lower current than high- $f_{\text {max }}$ bias.

Select the transistor size $\left(L_{E}\right.$ or $\left.W_{G}\right)$:
Set bias current at $I_{C}=\left(I_{C} / L_{E}\right)_{\text {opt }} \cdot L_{E}$ or $I_{D}=\left(I_{D} / W_{G}\right)_{\text {opt }} \cdot W_{G}$
Larger I_{C} or $I_{D} \rightarrow$ larger maximum power (IIP3, $\mathrm{IP}_{1 \mathrm{~dB}}$) (see later notes)
Smaller I_{C} or $I_{D} \rightarrow$ smaller DC power consumption
Larger I_{C} or $I_{D} \rightarrow$ smaller $\left\|Z_{\text {opt }}\right\|$
Smaller I_{C} or $I_{D} \rightarrow$ larger $\left\|Z_{\text {opt }}\right\|$

If $\left\|Z_{\text {opt }}\right\| \gg Z_{0}$ or $\left\|Z_{\text {opt }}\right\| \ll Z_{0}$, input tuning will be difficult:
Possibly narrow tuning bandwidth.
Possibly high tuning loss \rightarrow increased M, reduced G_{A}.

LNA Design Procedure 2: tuning, stabilization, matching

If (and only if) you care about S_{11} :
add reactive feedback to converge the G_{A} circles and M circles. somewhat tricky, as the CAD program plots F circles, not M circles.

If the reactive feedback has not also stabilized the transistor, then add additional output resistive stabilization.
...This should be avoided, if possible, as M will increase. If all possible, stabilize with reactive feedback.

Design input tuning network to obtain $Z_{s, \text { transistor }}=Z_{\text {opt }}$.
Design output tuning network to obtain $Z_{L, \text { transistor }}=Z_{L, o p t}$, i.e. output is *impedance matched*

Add out-of-band stabilization

LNA Design Procedure 3: multistage design

Although we can cut/paste similar stages, this is not optimum:
Pairs of interstage networks can be merged into single network.
Cascaded stages carry larger singal power:
need more (IIP3, $\mathrm{IP}_{1 \mathrm{~dB}}$)
$\operatorname{larger}\left(I_{C}, L_{E}\right)$ or $\left(I_{D}, W_{G}\right)$
possibly large-signal output tuning for increased (IIP3, $\mathrm{IP}_{1 \mathrm{~dB}}$)

LNA Design Procedure 4: multistage design; revisiting reflections

Side comment:

If stage-stage interconnects have length $\ll \lambda / 4$, then we may not need to avoid inter-stage line reflections.

Reactive feedback for (noise, impedance) convergence can be dropped.

This can be helpful if low-Q reactive elements are degrading M.

But, reactive feedback also provides noiseless stabilization.
So, we may want to keep the reactive feedback.

Minimizing input tuning losses (hence input tuning noise)

In higher-frequency designs, the input tuning loss can be significant. Loss \rightarrow resistance \rightarrow added noise.
Appropriate transistor sizing can reduce input tuning loss.

Differential LNAs are popular
Easy neutralization for gain-peaking
Less supply coupling \rightarrow easier to avoid supply-induced oscillation.

But, differential LNAs require input transformer (balun).
$0.5-2 \mathrm{~dB}$ transformer losses.

Degraded noise performance.

LNA Design Example (1): Transistor bias

First step:
transistor bias swept to find optimimum bias for lowest $F_{\text {cascade }}=1+M$.

For a $3 \mu \mathrm{~m}$ length emitter finger,
$F_{\text {cascade }}=6.57 \mathrm{~dB}$
@ $I_{\mathrm{E}} / \mathrm{L}_{\mathrm{E}}=0.5 \mathrm{~mA} / \mu \mathrm{m} \& \mathrm{Vcb}=0.35 \mathrm{~V}$
Note that the designer had previously determined that a $3 \mu \mathrm{~m}$ length emitter finger would require an input noisetuning network with only a shunt element, no series element.

Note the G_{A} circles lie entirely within the Smith chart. Even without examining the stability circles or the stability parameters, we know that the transistor is unconditionally stable inband. No in-band stabilization is needed.

F_cascade-dB_min vs Je(mA/um) vs Vcb

2) U. Soylu, A. S. H. Ahmed, M. Seo, A. Farid and M. Rodwell, " 200 GHz Low Noise Amplifiers in 250 nm InP HBT Technology," 2021 16th European Microwave Integrated Circuits Conference (EuMIC), 2022, pp. 129-132, doi: 10.23919/EuMIC50153.2022.9784010.

LNA Design Example (2):Converging noise \& reflection tuning

Second step:
emitter inductance swept to converge input reflection match and noise (F) match.

Ultimately, the designer chose to use *zero* emitter inductance, as, in simulations (not shown) the finite loss of this inductance, when implemented as a transmission line, significantly degraded $\mathrm{F}_{\text {cascade }}$.

 $\left\lvert\, \begin{aligned} & \text { m } \\ & \text { indep }(m 7)=51 \\ & \text { Nosise circtes. } \\ & \text { ns figure }=0.156 / 729\end{aligned} / 75.834\right.$

|lin Noise circles $=0.212778 .090$
nif fifecurance $=859$
$=20 \cdot(0.997+j 0.434)$

LNA Design Example (3): Input noise tuning

Third step:
The input is noise-tuned with a shunt microstrip line.

Because there is no emitter inductance, simultaneous noise-tuning and S_{11}-tuning is not possible.

Input tuning is a compromise, favoring M . Line losses are modelled $\rightarrow \mathrm{M}$ degrades

Between the inexact noise tuning and the input tuning losses, M degrades
$\mathrm{F}_{\text {cascade, } \min }=6.82 \mathrm{~dB}$
The shunt input line will also provide base bias; ; MIMCap4 is an AC short

LNA Design Example (4): Output gain/S22 tuning

Fourth step:
The output is impedance-matched to 50 Ohms with series and shunt microstrip lines.

Line losses are modelled $\rightarrow \mathrm{M}$ degrades
$\mathrm{F}_{\text {cascade, } \min }=7.11 \mathrm{~dB}$
The shunt output line will also provide collector bias; MIMCap5 is an AC short

LNA Design Example (5): Three cascaded stages

Fifth step:
3 stages are cascaded.
$\mathrm{F}_{\text {cascade }, \min }=7.147 \mathrm{~dB}$

LNA Design Example (6): Mask layout and simulations

This is in fact a 4 -stage design:
$\mathrm{F}_{\text {cascade, } \min }=7.56 \mathrm{~dB}$

Much design work remains: Out of band stabilization Routing power supply lines Modeling supply line effects on ($\mathrm{S}_{\mathrm{ij}}, \mathrm{M}$) Checking for supply-associated instability Modeling effect of pads, I/O connections. Robustness against process variations Robustness against supply variations etc.
F.cascade_min_dB

m4 4150 GHz m5 freq=150.0GHz freq=210.0GHz $\quad \begin{aligned} & \mathrm{mb} \\ & \mathrm{freq}=242.0 \mathrm{GHz}\end{aligned}$ $\mathrm{dB}(\mathrm{S}(2,1))=13.798 \mathrm{~dB}(\mathrm{~S}(2,1))=16.779 \mathrm{~dB}(\mathrm{~S}(2,1))=13.800$

Pout1dB \square

LNA Design Example (7): Final Design

Simulations	200 GHz CE design
Gain	13 dB
BW	60 GHz
NF (F)	7.2 dB
$\mathrm{P}_{1 \mathrm{~dB}, \text { in }}$	-18.2 dBm
P_{DC}	19.22 mW
Die Area	$290 \mathrm{um} \times 465 \mathrm{um}$
$\mathrm{J}_{\text {emitter }}$	$1.0 \mathrm{~mA} / \mathrm{um}$
V_{cb}	0.56 V

LNA Design Example (8): Measurements

Measured noise, surprisingly, is slightly better than simulation

Supplemental Material

Derivations

Appendix: Derivation of $F_{\text {min }}$ and $Z_{\text {opt }}(1)$

$$
\begin{aligned}
& 4 k T(F-1)=\frac{\widetilde{S}_{E_{n}}}{R_{g}}+\frac{\left(R_{g}^{2}+X_{g}^{2}\right) \widetilde{S}_{I_{n}}}{R_{g}}+\frac{2 \cdot \operatorname{Re}\left(\left(R_{g}-j X_{g}\right) \widetilde{S}_{E_{n} I_{n}}\right)}{R_{g}} \\
& 4 k T(F-1) R_{g}=\widetilde{S}_{E_{n}}+\left(R_{g}^{2}+X_{g}^{2}\right) \widetilde{S}_{I_{n}}+2 \cdot \operatorname{Re}\left(\left(R_{g}-j X_{g}\right)\left(\operatorname{Re}\left(\widetilde{S}_{E_{n} I_{n}}\right)+j \operatorname{Im}\left(\widetilde{S}_{E_{I_{I}} I_{n}}\right)\right)\right. \\
& 4 k T(F-1) R_{g}=\widetilde{S}_{E_{E_{n}}}+\left(R_{g}^{2}+X_{g}^{2}\right) \widetilde{S}_{I_{n}}+2 \cdot\left(R_{g} \cdot \operatorname{Re}\left(\widetilde{S}_{E_{I_{n}} I_{n}}\right)+X_{g} \cdot \operatorname{Im}\left(\widetilde{S}_{E_{I_{n}} I_{n}}\right)\right) \\
& G=4 k T(F-1)=\widetilde{S}_{E_{n}} / R_{g}+R_{g} \widetilde{S}_{I_{n}}+X_{g}^{2} \widetilde{S}_{I_{n}} / R_{g}+2 \cdot \operatorname{Re}\left(\widetilde{S}_{E_{n} I_{n}}\right)+2 X_{g} \cdot \operatorname{Im}\left(\widetilde{S}_{E_{I_{n}} I_{n}}\right) / R_{g} \\
& G=\frac{\widetilde{S}_{E_{n}}+X_{g}^{2} \widetilde{S}_{I_{n}}+2 X_{g} \cdot \operatorname{Im}\left(\widetilde{S}_{E_{n} I_{n}}\right)}{R_{g}}+R_{g} \widetilde{S}_{I_{n}}+2 \cdot \operatorname{Re}\left(\widetilde{S}_{E_{n} I_{n}}\right) \\
& \frac{d G}{d X}=\frac{2 X_{g} \widetilde{S}_{I_{n}}+2 \cdot \operatorname{Im}\left(\widetilde{S}_{E_{I_{n}}}\right)}{R_{g}}=0 \\
& X_{g, o p t}=-\operatorname{Im}\left(\widetilde{S}_{E_{n_{n}} I_{n}}\right) / \widetilde{S}_{I_{n}} \text { optimum generator reactance }
\end{aligned}
$$

Appendix: Derivation of $\mathrm{F}_{\text {min }}$ and $\mathrm{Z}_{\text {opt }}$ (2)

$$
G=4 k T(F-1)=\frac{\widetilde{S}_{E_{n}}+X_{g}^{2} \widetilde{S}_{I_{n}}+2 X_{g} \cdot \operatorname{Im}\left(\widetilde{S}_{E_{n} I_{n}}\right)}{R_{g}}+R_{g} \widetilde{S}_{I_{n}}+2 \cdot \operatorname{Re}\left(\widetilde{S}_{E_{n} I_{n}}\right)
$$

Now substitute in the expression we have found for optimum generator reactance.
$G=\frac{\widetilde{S}_{E_{n}}+\left(\operatorname{Im}\left(\widetilde{S}_{E_{n} I_{n}}\right) / \widetilde{S}_{I_{n}}\right)^{2} \widetilde{S}_{I_{n}}-2 \cdot\left(\operatorname{Im}\left(\widetilde{S}_{E_{n} I_{n}}\right)\right)^{2} / \widetilde{S}_{I_{n}}}{R_{g}}+R_{g} \widetilde{S}_{I_{n}}+2 \cdot \operatorname{Re}\left(\widetilde{S}_{E_{n} I_{n}}\right)$
$G=\frac{\widetilde{S}_{E_{n}}-\left(\operatorname{Im}\left(\widetilde{S}_{E_{n} I_{n}}\right)\right)^{2} / \widetilde{S}_{I_{n}}}{R_{g}}+R_{g} \widetilde{S}_{I_{n}}+2 \cdot \operatorname{Re}\left(\widetilde{S}_{E_{n} I_{n}}\right)$
$\frac{d G}{d R}=\frac{-\left(\widetilde{S}_{E_{n}}-\left(\operatorname{Im}\left(\widetilde{S}_{E_{n} I_{n}}\right)\right)^{2} / \widetilde{S}_{I_{n}}\right)}{R_{g}^{2}}+\widetilde{S}_{I_{n}}=0$
$R_{g, \text { opt }}=\sqrt{\frac{\widetilde{S}_{E_{n}}-\left(\operatorname{Im}\left(\widetilde{S}_{E_{I_{n}} I_{n}}\right)^{2} / \widetilde{S}_{I_{n}}\right.}{\widetilde{S}_{I_{n}}}}$ optimum generator resistance

Appendix: Derivation of $F_{\text {min }}$ and $Z_{\text {opt }}(3)$

Now substitute in the expression for optimum generator resistance.

$$
\begin{aligned}
& G_{\text {min }}=\left(\widetilde{S}_{E_{n}}-\left(\operatorname{Im}\left(\widetilde{S}_{E_{n} I_{n}}\right)\right)^{2} / \widetilde{S}_{I_{n}}\right) \sqrt{\frac{\widetilde{S}_{I_{n}}}{\widetilde{S}_{E_{n}}-\left(\operatorname{Im}\left(\widetilde{S}_{E_{n} I_{n}}\right)\right)^{2} / \widetilde{S}_{I_{n}}}} \\
& +\widetilde{S}_{I_{n}} \sqrt{\frac{\widetilde{S}_{E_{n}}-\left(\operatorname{Im}\left(\widetilde{S}_{E_{E_{n}} I_{n}}\right)\right)^{2} / \widetilde{S}_{I_{n}}}{\widetilde{S}_{I_{n}}}}+2 \cdot \operatorname{Re}\left(\widetilde{S}_{E_{n} I_{n}}\right) \\
& G_{\text {min }}=4 k T\left(F_{\text {min }}-1\right)=2\left(\widetilde{S}_{E_{n}} \widetilde{S}_{I_{n}}-\left(\operatorname{Im}\left(\widetilde{S}_{E_{n} I_{n}}\right)\right)^{2}\right)^{1 / 2}+2 \cdot \operatorname{Re}\left(\widetilde{S}_{E_{n} I_{n}}\right) \\
& F_{\text {min }}=1+\frac{\left(\widetilde{S}_{E_{n}} \widetilde{S}_{I_{n}}-\left(\operatorname{Im}\left(\widetilde{S}_{E_{n} I_{n}}\right)\right)^{2}\right)^{1 / 2}+\operatorname{Re}\left(\widetilde{S}_{E_{n} I_{n}}\right)}{2 k T} \text { minimum noise figure ! }
\end{aligned}
$$

[^0]: **How shall we do this?**

[^1]: 1) H. Fukui, "Available Power Gain, Noise Figure, and Noise Measure of Two-Ports and Their Graphica Representations," in IEEE Transactions on Circuit Theory, vol. 13, no. 2, pp. 137-142, June 1966, doi: 10.1109/ТСТ.1966.1082556.
