ECE 2C, notes set 5: Fundamentals of Transistor Amplifiers (part II)

Mark Rodwell
University of California, Santa Barbara

Goals:

Practice DC bias analysis of transistor * circuits

Practice AC small - signal analysis of transistor * circuits

* or any nonlinear circuit element (diode, Vacuum tube, tunnel junction, ...)

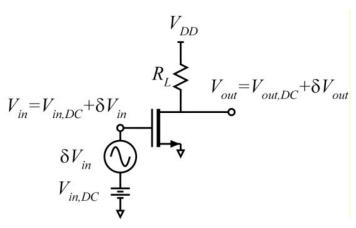
Comment (1): DC bias design in real circuits.

In developing our simple amplifier study, we have provided DC input bias with a battery.

Clearly not real. But OK for now.

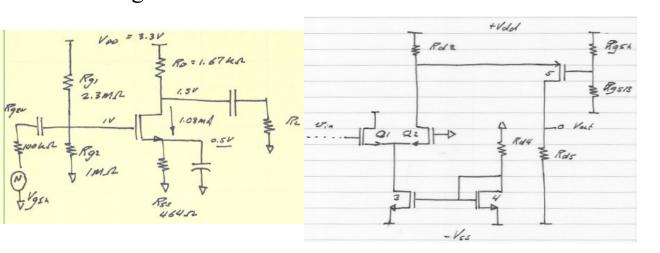
Bias structures in real ICs: as shown

Tutiorial amplifier

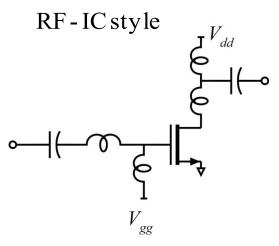


1950's style RC biasing

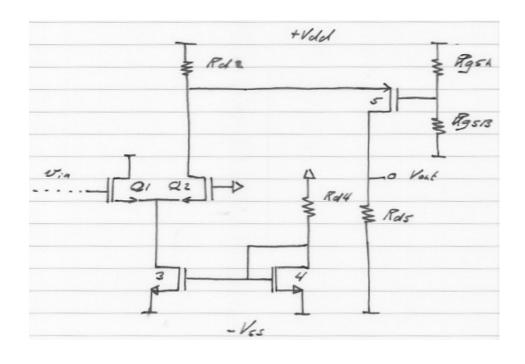
Direct coupled (IC style)



LC biased (and tuned)



Comment (2): bias design: DC-coupling.



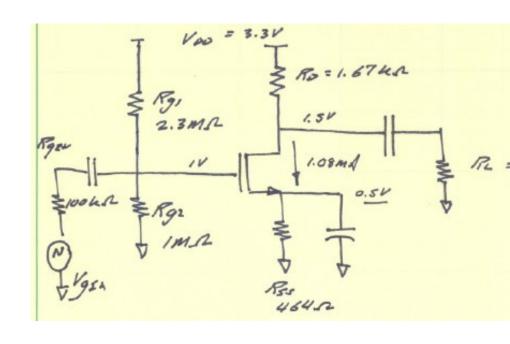
Direct - Coupled amplifier/IC designs:

DC output voltage on one stage = DC input voltage of the next.

Need skill & creativity to fit together DC bias requirements of all stages

 \rightarrow ECE137AB

Comment (3): bias design: AC/RC-coupling.



AC-Coupled amplifiers:

DC bias conditions set by resistors

Blocking capacitors isolate DC levels between stages.

Very low - frequency signals are not amplified..

We will * briefly * study such circuits

...mostly as an exercise in frequency reponse analysis.

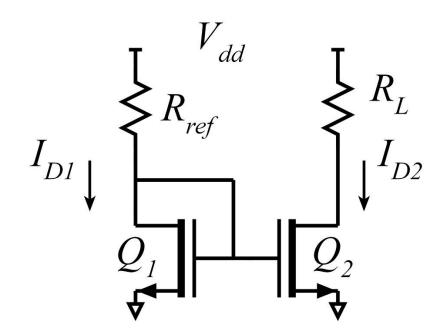
Again, more detailed study in ECE137AB

Current Mirrors: First Treatment

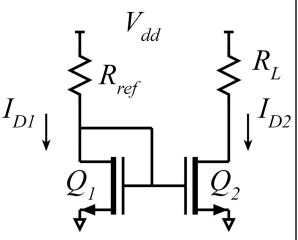
Used in DC coupled circuits:

to provide (to set) DC bias currents. as an active load (discuss later)

We now consider only basic operation



Current mirror DC bias analysis (1)



* we are again ignoring the $(1 + \lambda V_{DS})$ term in the bias analysis.

Doing this causes some significan t error.

In ECE137A we will learn some tricks to calculate this quickly yet fairly accurately.

Do not ignore the $(1 + \lambda V_{DS})$ term in the small signal analysis.

Example Parameters:

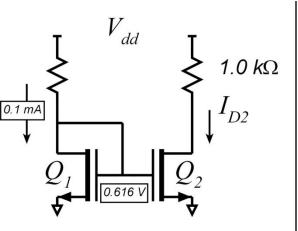
Let us set $I_{D1} = 0.1 \,\mathrm{mA}$.

Analysis:

 $R_{ref} = 18.8 \,\mathrm{k}\Omega.$

$$\begin{split} I_{D1} &= (\mu c_{ox} W_g / 2L_g) (V_{gs} - V_{th})^2 (1 + \lambda V_{DS}) \\ 0.1 \, \text{mA} &= (1 \, \text{mA/V}^2) (V_{gs} - 0.3 \, \text{V})^2 (\lambda V_{DS} \, \text{term neglected}) \\ (V_{gs} - 0.3 \, \text{V}) &= \sqrt{0.1 \, \text{mA/1 mA/V}^2} = 0.316 \, \text{V} \\ V_{gs} &= 0.616 \, \text{V}. \\ R_{ref} &= (V_{DD} - V_{gs}) / I_{D1} = (2.5 \, \text{V} - 0.616 \, \text{V}) / (0.1 \, \text{mA}) \end{split}$$

Current mirror DC bias analysis (2)



* we are again ignoring the $(1 + \lambda V_{DS})$ term in the bias analysis.

Doing this causes some significan t error.

In ECE137A we will learn some tricks to calculate this quickly yet fairly accurately.

Do not ignore the $(1 + \lambda V_{DS})$ term in the small signal analysis.

Example Parameters:

FET Q1: FET Q1: Circuit
$$(\mu c_{ox} W_g / 2L_g) = 1 \text{mA/V}^2 \quad (\mu c_{ox} W_g / 2L_g) = 2 \text{mA/V}^2 \quad V_{dd} = 2.5 \text{ V}$$

$$V_{th} = 0.3 \text{ V} \qquad V_{th} = 0.3 \text{ V} \qquad R_L = 1.0 \text{ k}\Omega$$

$$1/\lambda = 10 \text{ V} \qquad 1/\lambda = 10 \text{ V}$$

Now find the current in the oup ut branch.

Analysis:

$$I_{D2} = (\mu c_{ox} W_g / 2L_g)(V_{gs} - V_{th})^2 (1 + \lambda V_{DS})$$

$$I_{D2} = (2 \text{ mA/V}^2)(0.613 \text{V} - 0.3 \text{V})^2 (\lambda V_{DS} \text{term neglected})$$

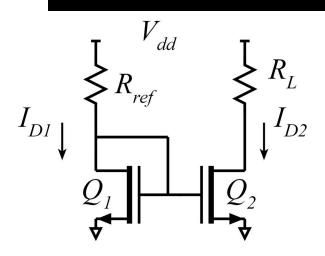
$$I_{D2} = 0.2 \text{ mA}$$

$$V_{D2} = V_{DD} - I_{D2} R_L = 2.5 \text{V} - (0.2 \text{ mA})(1 \text{k}\Omega.)$$

$$V_{D2} = 2.3 \text{ V}$$

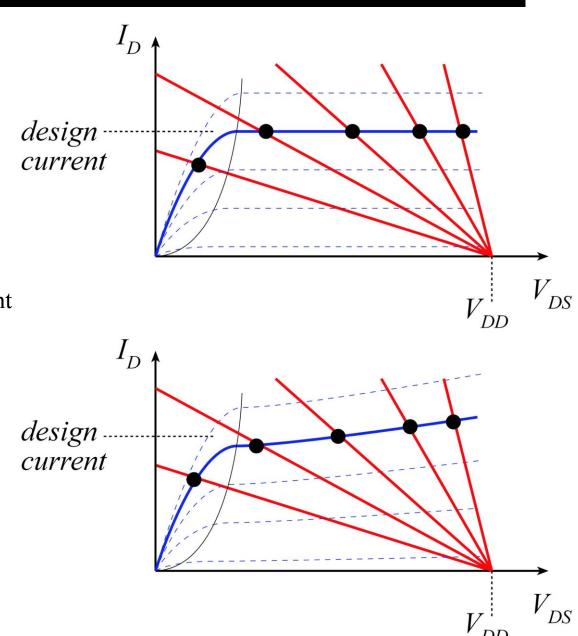
If R_L is not large, V_{DS} of Q2 will be more than the knee voltage and will provide 1mA to the load regardless of the value of R_L . \rightarrow constant - current source

Current Mirrors: Constant-Current Source



If the $(1 + \lambda V_{DS})$ term is small, mirror provides nearly constant current over a wide range of load resistances, i.e. over a wide range of voltages.

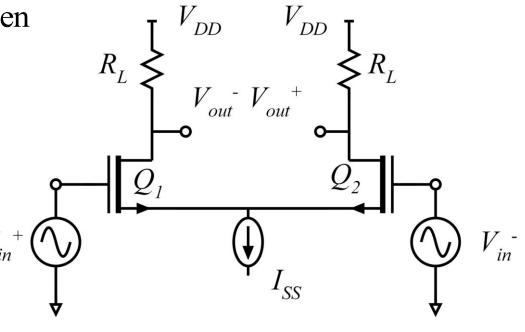
The $(1 + \lambda V_{DS})$ term causes a significant variation of load current as the output votage (or the load resistance) is varied.



Differential Amplifiers

Amplifies the difference between two input voltages V_{in}^+ and V_{in}^- .

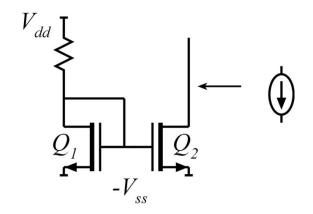
Also makes DC - coupled IC design easier. Widely used.



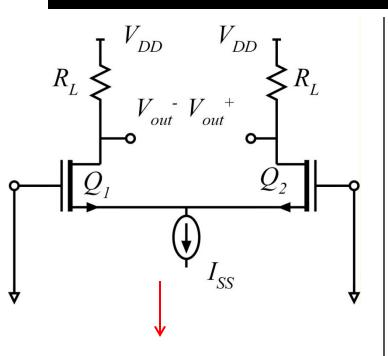
Current source:

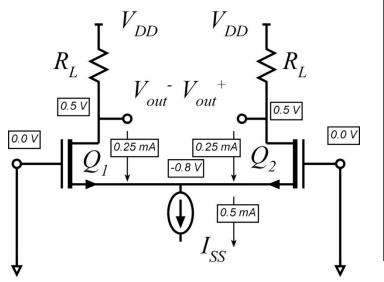
typicallya current mirror.

Here: treat it as and ideal DC current source.



Differential Amplifier: DC bias analysis



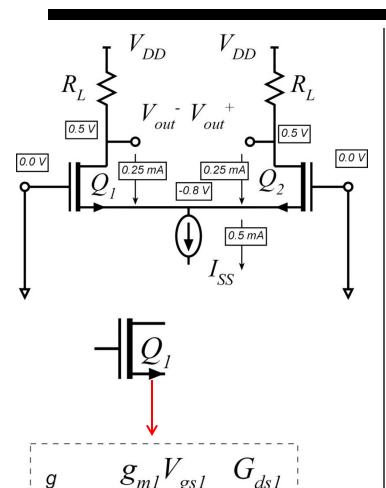


FETs
$$Q_1, Q_2$$
: Circuit
 $(\mu c_{ox} W_g / 2L_g) = 1 \text{mA/V}^2$ $V_{dd} = 2.5 \text{ V}$
 $V_{th} = 0.3 \text{ V}$ $R_L = 8 \text{ k}\Omega$
 $1/\lambda = 10 \text{ V}$ $I_{SS} = 1/2 \text{ mA}$

From symmetry:
$$I_{D1} = I_{D2} = I_{SS}/2 = 0.25 \text{ mA}$$

 $I_{D2} = (\mu c_{ox} W_g/2L_g)(V_{gs}-V_{th})^2(1+\lambda V_{DS})$
 $0.25\text{mA} = (1\text{ mA/V}^2)(V_{gs}-0.3\text{V})^2(\lambda V_{DS} \text{ term neglected})$
 $(V_{gs}-0.3\text{V}) = \sqrt{(0.25\text{mA})/(1\text{ mA/V}^2)} \rightarrow V_{gs} = 0.80\text{V}$
 $V_s = V_g - V_{gs} = 0\text{V} - 0.80\text{V} = -0.80\text{V}$
 $V_D = V_{DD} - I_D R_L = 2.5\text{V} - (0.25\text{ mA})(8\text{k}\Omega) = 0.5\text{V}$

Differential Amplifier: FET Small Signal Parameters



FETs
$$Q_1, Q_2$$
:

$$(\mu c_{ox}W_g/2L_g) = 1\text{mA/V}^2$$

$$V_{th} = 0.3 \text{ V}$$
 $I_D = 1/4 \text{ mA}$

$$1/\lambda = 10V \qquad V_{gs} = 0.8 V$$

Once again, we must use the DC bias conditions to calculate the FET small - signal parameters

$$I_{D} = (\mu c_{ox} W_{g} / 2L_{g})(V_{gs} - V_{th})^{2} (1 + \lambda V_{DS})$$

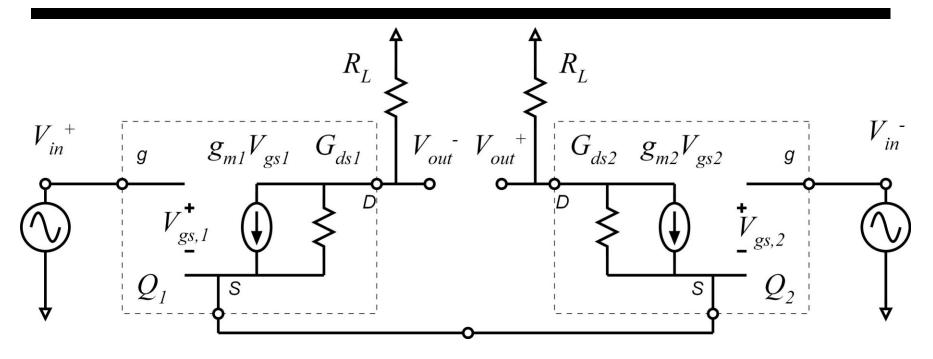
$$g_{m} = (\mu c_{ox} W_{g} / L_{g})(V_{gs} - V_{th})(1 + \lambda V_{DS})$$

$$= (2\text{mA/V}^{2})(0.8\text{V} - 0.3\text{V})(1 + 1.3\text{V}/10\text{V})$$

$$= 1.13 \text{ mS}$$

$$G_{ds} = \frac{1}{R_{ds}} \cong \lambda I_D = \frac{0.25 \text{ mA}}{10 \text{V}} = 25 \mu \text{S} = \frac{1}{40 \text{k}\Omega}$$

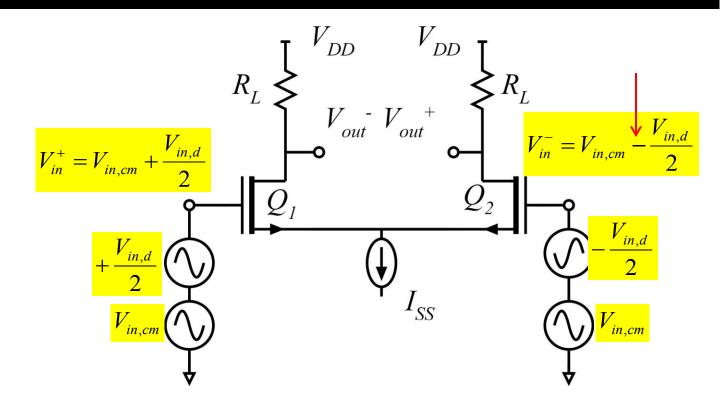
Differential Amplifier: Small Signal Equivalent Circuit



Before we analyze this problem, let us make it simpler.

→ differential and common - mode signals

Differential and Common-Mode Signals: Input

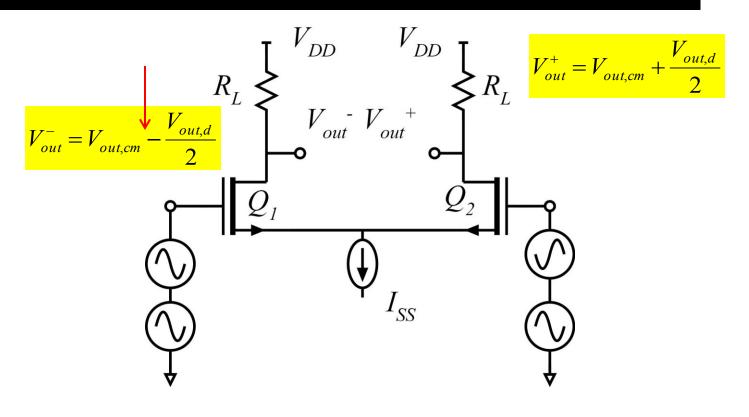


$$V_{in,D}$$
 = differential input voltage = $V_{in}^+ - V_{in}^-$

 $V_{in,CM}$ = common - mode (average) input voltage = $(V_{in}^+ - V_{in}^-)/2$

$$\begin{vmatrix}
V_{in,d} = V_{in}^{+} - V_{in}^{-} \\
V_{in,cm} = (V_{in}^{+} - V_{in}^{-})/2
\end{vmatrix} \rightarrow \begin{cases}
V_{in}^{+} = V_{in,cm} + V_{in,d}/2 \\
V_{in}^{-} = V_{in,cm} - V_{in,d}/2
\end{vmatrix}$$

Differential and Common-Mode Signals: Output

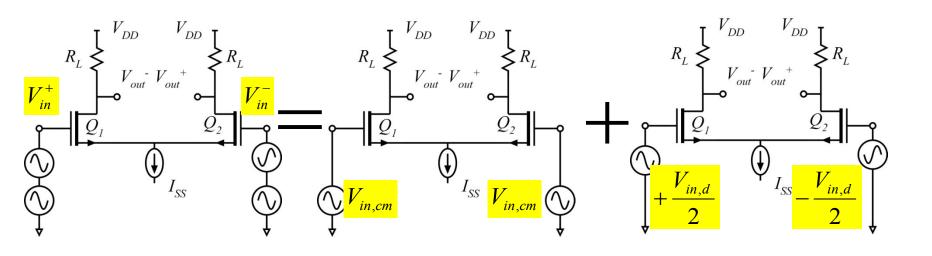


$$V_{out,d} =$$
differential output voltage $= V_{out}^+ - V_{out}^-$

 $V_{out,cm} = \text{common - mode (average) output voltage} = (V_{out}^+ - V_{out}^-)/2$

$$\begin{vmatrix}
V_{out,d} = V_{out}^{+} - V_{out}^{-} \\
V_{out,cm} = (V_{out}^{+} - V_{out}^{-})/2
\end{vmatrix} \rightarrow \begin{cases}
V_{out}^{+} = V_{out,cm} + V_{out,d}/2 \\
V_{out}^{-} = V_{out,cm} - V_{out,d}/2
\end{vmatrix}$$

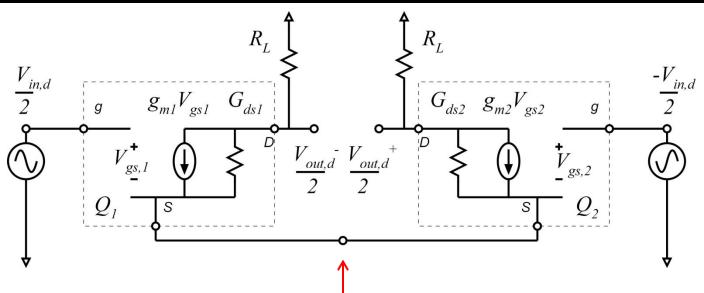
Analysis: Use the principle of superposition



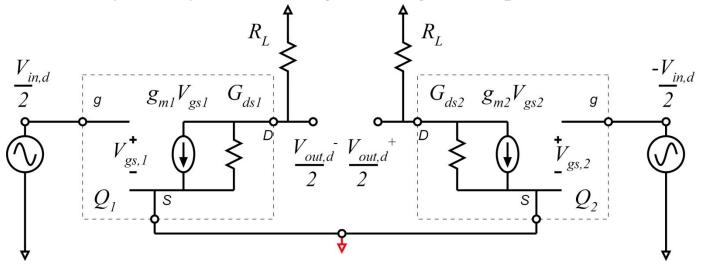
The (V_{in}^+, V_{in}^-) inputs can always be written as a superposition of V_d and V_{cm} . So , analyze the circuit for * differential * and * common - mode * gain.

To find V_{out}^+ and V_{out}^- , write the input as sum of $V_{in,d}$ and $V_{in,cm}$, multiply $V_{in,d}$ by the differential gain to get $V_{out,d}$, multiply $V_{in,cm}$ by the common - mode gain to get $V_{out,cm}$, (if you want) find V_{out}^+ and V_{out}^- using $V_{out}^+ = V_{out,cm} + V_{out,d}/2 \;, \quad V_{out}^- = V_{out,cm} - V_{out,d}/2$

Differential gain

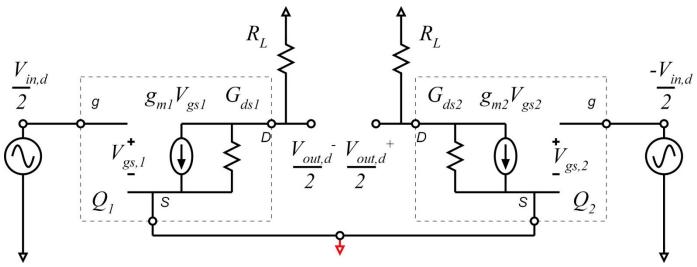


From symmetry, the small - signal voltage at this point must be zero.

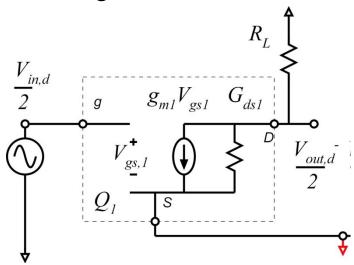


So, it makes no difference if we ground this point. This is called a virtual ground.

Differential gain

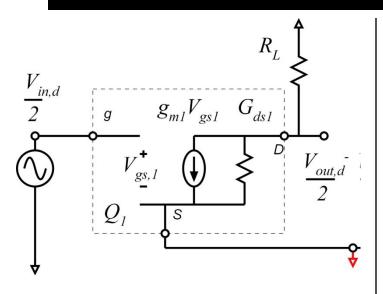


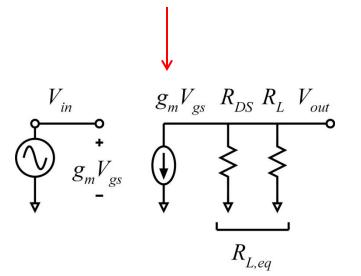
From symmetry, all the voltages on the right side are negatives of those on the left ... and, the virtual ground has broken the connection between the 2 sides of the circuit



So, we can throw the right side away!

Differential gain: analysis





The circuit is now the same as a common - source stage.

Be careful, however:

 V_{in} has become $V_d/2$, V_{out} has become $-\frac{\checkmark}{V_d}/2$

Parameters:

Circuit

 $g_m = 1.13 \,\text{mS}$

FET:

$$R_L = 8k\Omega$$

$$R_{DS} = 40 \text{k}\Omega$$

Equivalent load resistance

$$R_{L,eq} = R_L \parallel R_{DS} = 40 \text{k}\Omega \parallel 8 \text{k}\Omega$$
$$= 6.666 \text{k}\Omega$$

Voltage gain

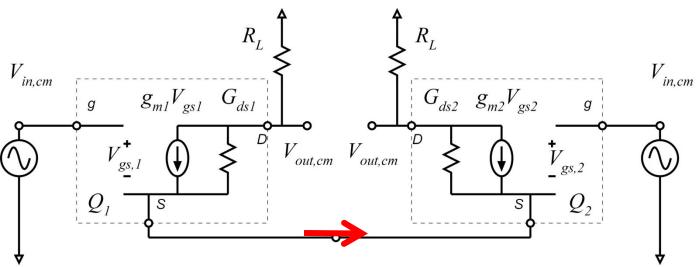
$$\frac{V_{out}}{V_{in}} = -g_m R_{Leq} = -(1.13 \text{mS})(6.66 \text{ k}\Omega) = -7.53$$

But $V_{in} = V_{in,d} / 2$ and $V_{out} = -V_{out,D} / 2$, so:

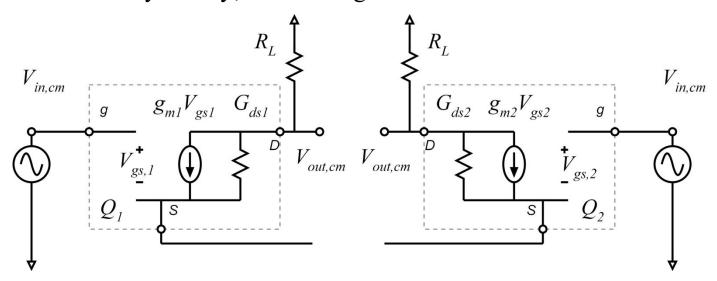
$$A_D = \frac{V_{out,D}}{V_{in D}} = -\frac{V_{out}}{V_{in}} = +g_m R_{Leq} = +7.53$$

The circuit has a differential gain of 7.53

Common-mode gain

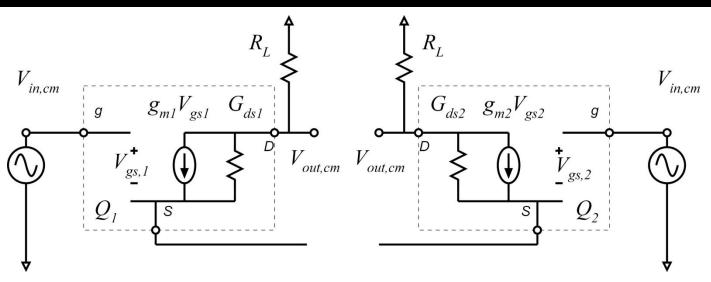


From symmetry, the small - signal current in this wire must be zero.

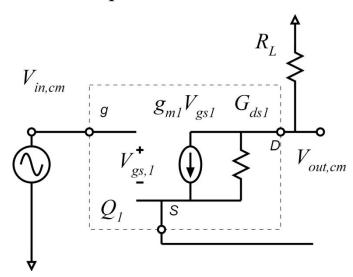


So, it makes no difference if we cut this wire. This (should be) called a virtual open.

Common-mode gain

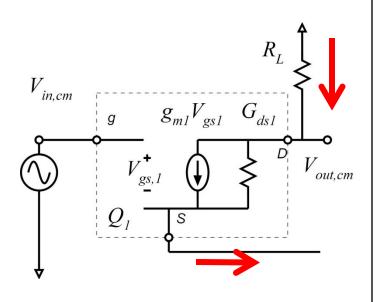


From symmetry, all the voltages on the right side are * the same as * those on the left ... and, the virtual open has broken the connection between the 2 sides of the circuit



So, again, we can throw the right side away!

Common-mode: analysis



The FET source has no connection

- \rightarrow the source current is zero.
- \rightarrow the drain current is zero.
- \rightarrow the common mode output votage is zero.

$$A_{cm} = \frac{V_{out,cm}}{V_{in,cm}} = 0$$

Note:

This is an extremely idealized analysis.

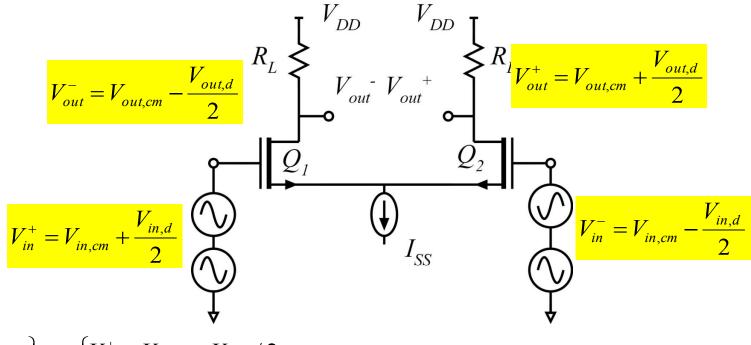
We have assumed that the small - signal impedance of the current souce is infinite.

This results in zero common - mode gain.

With a finite output resistance to the current source the common - mode gain will be small, but not zero.

We will analayze this in ECE137AB

Differential Amplifiers: Recap



$$\begin{aligned} V_{in,d} &= V_{in}^{+} - V_{in}^{-} \\ V_{in,cm} &= (V_{in}^{+} - V_{in}^{-})/2 \end{aligned} \longleftrightarrow \begin{cases} V_{in}^{+} &= V_{in,cm} + V_{in,d}/2 \\ V_{in}^{-} &= V_{in,cm} - V_{in,d}/2 \end{aligned}$$

 $V_{out,d} = A_d V_{in,d}$ where $A_d = g_m R_{Leq}$

 $V_{out,cm} = A_{cm}V_{in,cm}$ where $A_{cm} \rightarrow 0$ if the current - source impedance is high

$$\begin{vmatrix} V_{out,d} = V_{out}^{+} - V_{out}^{-} \\ V_{out,cm} = (V_{out}^{+} - V_{out}^{-})/2 \end{vmatrix} \longleftrightarrow \begin{cases} V_{out}^{+} = V_{out,cm} + V_{out,d}/2 \\ V_{out}^{-} = V_{out,cm} - V_{out,d}/2 \end{cases}$$

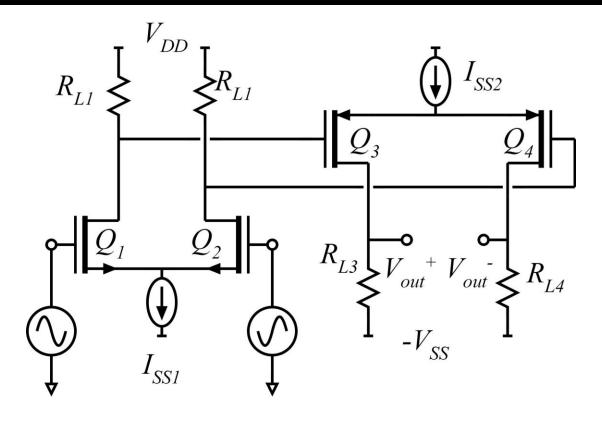
Differential Amlifiers: Applications

One application: amplifying the difference between two voltages seen in precision instrumentation, in op-amp input stages.

Another application: ease of design of DC-coupled stages.

 \rightarrow Look at one simple example.

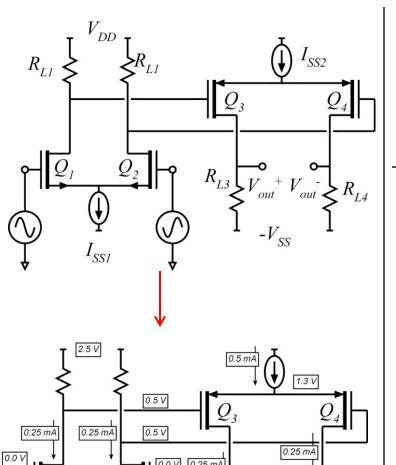
Example: Two-Stage Differential Amplifier



A pair of cascaded differential stages.

The differential design, and the NFET/PFET alternation, make it easy to design an amplifier with DC coupling and with zero volts DC at input and output.

Two-stage differential amplifier: DC bias analysis



All FETs Circuit
$$(\mu c_{ox} W_g / 2L_g) = 1 \text{mA/V}^2 \quad V_{dd} = 2.5 \text{ V} \qquad V_{ss} = -2.5 \text{ V}$$

$$|V_{th}| = 0.3 \text{ V} \qquad R_{L1,2} = 8 \text{ k}\Omega \qquad R_{L3,4} = 10 \text{ k}\Omega$$

$$1/\lambda = 10 \text{ V} \qquad I_{SS1} = 1/2 \text{ mA} \qquad I_{SS2} = 1/2 \text{ mA}$$

The 1st stage is taken from the prior example.

 \rightarrow same DC bias conditions

Second stage bias conditions

From symmetry: $I_{D3} = I_{D4} = I_{SS2} / 2 = 0.25 \text{ mA}$

$$I_{D2} = (\mu c_{ox} W_g / 2L_g)(V_{gs} - V_{th})^2 (1 + \lambda V_{DS})$$

 $0.25 \text{mA} = (1 \text{ mA/V}^2)(V_{gs} - 0.3 \text{V})^2 (\lambda V_{DS} \text{term neglected})$

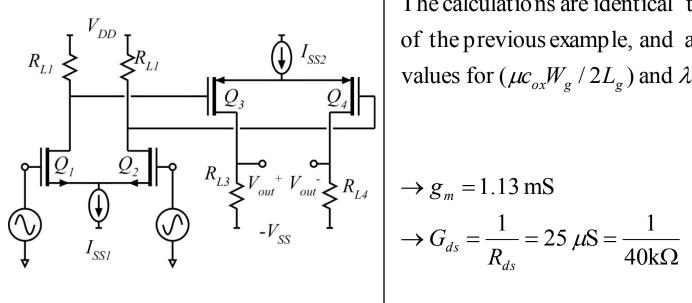
$$(V_{gs} - 0.3V) = \sqrt{(0.25mA)/(1 \text{ mA/V}^2)} \rightarrow V_{gs} = 0.80V$$

The gate is * more negative * than the source, so

$$V_s = V_g + V_{gs} = 0.5V + 0.80V = 1.30V$$

$$V_D = -V_{SS} + I_D R_L = -2.5 \text{V} - (0.25 \text{ mA})(10 \text{k}\Omega) = 0.0 \text{V}$$

Two-stage differential amplifier: s.s. parameters

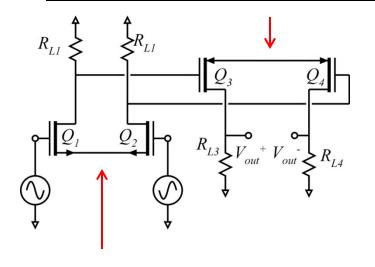


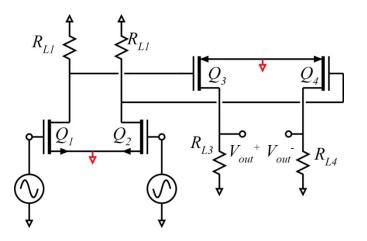
The calculations are identical to those of the previous example, and all FETs have the same values for $(\mu c_{ox}W_g/2L_g)$ and λ .

$$\rightarrow g_m = 1.13 \text{ mS}$$

$$\rightarrow G_{ds} = \frac{1}{R} = 25 \mu \text{S} = \frac{1}{40 \text{kC}}$$

Two-stage differential amplifier: s.s. analysis



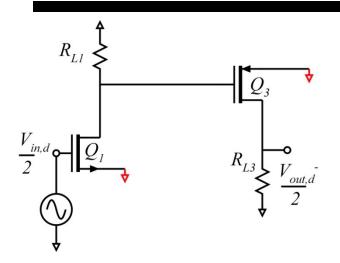


In the small signal diagram at left, the supply votages have been replaced by short-circuits, the supplycurrents have been replaced by open-circuits, but the transistors have not yet been replaced by their small-signal models.

This is a convention.

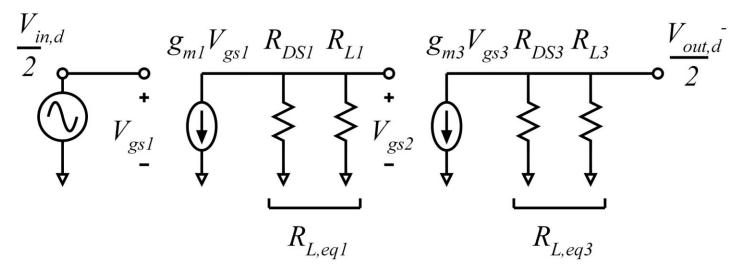
For a differential input, the indicated points have zero AC voltages and so can connected to virtual grounds.

Two-stage differential amplifier: s.s. analysis



Again, the virtual grounds allow us to delete half the circuit.

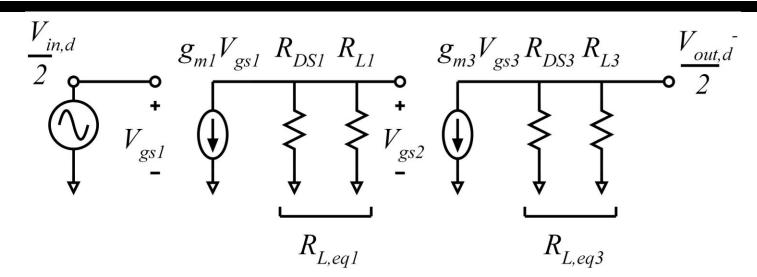
This leaves us with two cascade common - source stages.



Replace transistor symbols with small - signal models

→ AC small signal equivalent circit

Two-stage differential amplifier: s.s. analysis



First stage (as before)

Equivalent load resistance

$$R_{L,eq1} = R_{L1} \parallel R_{DS1} = 40 \text{k}\Omega \parallel 8 \text{k}\Omega$$
$$= 6.666 \text{k}\Omega$$

Voltage gain

$$\frac{V_{out}}{V_{in}}\Big|_{stage4} = g_{m1}R_{Leq1}$$
$$= (1.13\text{mS})(6.66 \text{ k}\Omega)$$
$$= 7.53$$

Second stage

Equivalent load resistance

$$R_{L,eq2} = R_{L2} \parallel R_{DS2} = 40 \text{k}\Omega \parallel 10 \text{k}\Omega$$
$$= 8.0 \text{k}\Omega$$

Voltage gain

$$\frac{V_{out}}{V_{in}}\bigg|_{stage2} = g_{m2}R_{Leq2}$$
$$= (1.13\text{mS})(8.0 \text{ k}\Omega)$$
$$= 9.04$$

2-stage amplfier

Overall Voltage gain

$$\frac{V_{out}}{V_{in}}\bigg|_{2stages} = A_{v1}A_{v2}$$

$$= (7.53)(9.04)$$

$$= 68.1$$