APPENDIX W1

FOURIER TRANSFORMS

In Chapter 13 we studied the Fourier series which resolves a periodic waveform into an
infinite series of sinusoids at discrete harmonic frequencies nf,, n =1, 2, ... The Fourier
series allows us to construct the line spectrum of a periodic waveform from the distribution
amplitudes and phase angles across the harmonic frequencies. In this appendix we introduce
Fourier transforms that extend the idea of a frequency spectrum to aperiodic waveforms that
occur only once. The Fourier transform of an aperiodic signal and the Fourier series of a
periodic waveform both involve infinitely many frequencies. A key difference is that the
frequencies in a Fourier series are integer multiples of f; while the frequencies in a Fourier
transform span a continuum of values.

Wi1-1 DEFINITION OF FOURIER TRANSFORMS

Like Laplace transforms, Fourier transforms involve two domains: (1) the time domain
in which the signal is represented by its waveform f{f), and (2) the frequency domain in which
the signal is characterized by it Fourier fransform F(w). In general F(w) is a complex-valued
function of the real frequency variable . The magnitude and phase angle of F(w) are called
the amplitude spectrum and phase spectrum, respectively.

The Fourier transform of a waveform f{7) is defined by the integral

F(w) = f f(t)e 7O dt (W1-1)

As you would expect from our study of Laplace transforms, there is an inverse procedure
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which converts a Fourier transform into a time-domain waveform. Inverse Fourier transforms

are defined by the integral

D) = —2-1;5- f Flw)e’® dw (W1-2)

which yields f(¥) when given F{w). The waveform fr) and transform F(w) comprise a Fourier
transform pair. We say that F(w) is the Fourier transform of /1), and conversely, f{f) is the
inverse transform of F{w). The short hand notation F(w) = .F{f()} and A1) = F {F(w)} is
used to denote these operations.

The limits on these integrals indicate important features of Fourier transforms. The
direct transform in Eq. (W1-1) is a time integration across the interval - < ¢ <, This points
out that Fourier transforms exist for either causal or noncausal waveforms.! The inverse
transform in Eq. (W1-2) is an integration on the real frequency variable w across the range ~o
< <. This points out that @ is a continuous variable that takes on positive and negative
values. Thus, Fourier transforms have spectral content across a continuous range of
frequencies, whereas the spectral content of a Fourier series exists only at discrete, harmonic
frequencies.

The infinite limits in Eq. (W1-1) should also alert the reader to the question of
convergence and existence of F(w). Existence is assured by the Dirichlet conditions, which

require that the waveform f{¢) have a finite number of discontinuities and be absolutely

' Recall from Chapter 9 that unique Laplace transforms only exist for causal waveforms
for which f{) =0 for  <0.



integrable, i.e,

[1f@ lde < o (W1-3)

A number of useful waveforms meet the Dirichlet conditions, for example, the rectangular
pulse [u(f) - u(t - 1] ( Tl < «) and the causal exponential u(f)e”* (o. > 0). While the Dirichlet
conditions are mathematically sufficient they are not necessary and sufficient, there being
many useful signals with Fourier transforms that fail to meet them.

Finally, whenever F{w) exists there is a unique, one-to-one correspondence between a
waveform f{¢) and its Fourier transform F(w). Uniqueness means that a transform pair can be
used to go from waveform to transform or transform to waveform. Once we have developed a
basic set of pairs we will summarize our results in a table of Fourier transform pairs similar to

our table of Laplace transform pairs.

Example W1-1
Find the Fourier transform of the rectangular pulse in Figure W1-1 and plot its amplitude
spectrum.

FIGURE W1-1
Solution:
The specified waveform meets the Dirichlet conditions since it is clearly absolutely integrable
and has only two isolated discontinuities. For this waveform integration limits in Eq. (W1-1)

are —T/2 and +7/2 since f{¢) is zero everywhere outside this range. As a result F(w) is found
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as

/2 . VR Z
Flw) = f Ae7oldt = - Z gt
-T/2 Jw -T/2

A {ej(oT/2 _ e—jmT/Z
®/2| 72

T sin(w7/2)
wl/2

Figure W1-2 shows a plot of the amplitude spectrum | F(w)| versus w.> The spectrum of a
rectangular pulse is a continuous function of a continuous frequency variable. There is some
spectral content in every nonzero frequency range no matter how small. The isolated nulls in
the spectral plot occur at the discrete frequencies w = 2kn/7 (k= +1, +2, ...) where sin(w7/2) =
0.

FIGURE W1-2

Example W1-2

Find the Fourier transform of the casual exponential f{f) = Ae ™ u(¢) and plot its amplitude and
phase spectra. Assume o > 0.

Solution:

This waveform also meets the Dirichlet conditions since it has only one isolated discontinuity

and is absolutely integrable in the sense of Eq. (W1-3). The waveform is causal so the

* The transform in this example involves a function usually denoted as sinc(x) = sin x/x.
At first glance sinc(x) may appear to blow up at x = 0. However, a single application of L'Hopital's
rule shows that sinc(0) = 1.
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integration in Eq. (W1-1) extends from = 0 to = +,

I

F(w) f Ae e Ty = 4 f e @+ joNgy
0 0

o (@ + jo)|

o+ jw |,

For ot > 0 the integral vanishes at the upper limit and F(w) becomes

Fo) = —2— (@>0
o+ Jjw
The amplitude and phase spectra of F(w) are
|Fw)| = 4] (Amplitude)
062 + 0)2

and

P(w) = LF(w) = -tan"Y(w/e) (Phase)

Figure W1-3 show plots of the amplitude and phase spectra. The amplitude spectrum of this
aperiodic waveform is a continuous function of a continuous frequency variable. There is
some spectral content at every frequency, including negative frequencies.

FIGURE W1-3

Exercise W1-1
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Find the Fourier transform of the waveform in Figure W1-4.
FIGURE W1-4
Answer:

I - cos(wT/2)

Fw) = -jAT
() = —j oT/2

Inverse Fourier Transforms

Unlike the inversion integral for Laplace transforms, the Fourier inversion integral in

Eq. (W1-2) is comparatively easy to use. As an example, consider the transform

Fw) = 218w - B) (W1-4)

This transform is a frequency-domain impulse located at w = 3 with an area of 21t. The
corresponding waveform is found by applying the inversion integral in Eq. (W1-2). Because
F(w) is zero everywhere except at @ = P the integration limits need only span the range from ®

=B~ to w = P+, just slightly above and below the frequency w = B.

§+
fn = L [2m8( - Berde
27 .

(W1-5)

1l

B+
/Pt f d(w - Pdw = e
B_

Straight forward use of the inversion integral yields & '{2n8(w - B)} = ¢’*. Because the
Fourier transformation is unique, we also know that 7 {e/*} = 2n8(w - B).

In particular, if p = 0, then Af) = ¢" =1 for all time  and Fi (@) =2nd(w). In other
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words, the Fourier transform of a dc waveform with amplitude 4 = 1 is an impulse of area 27
at w = 0. Figure W1-5 shows the waveform and Fourier transform of a dc¢ signal. Note that
the dc waveform is noncausal so it can not be represented by a Laplace transform. Likewise,
the dc waveform does not meet the Dirichlet conditions because it is not absolutely integrable.

FIGURE W1-5

Example W1-3

F(w) = %[u(w ¢ B) - uo - P)]

Use the inversion integral to find the waveform corresponding to the transform
Solution:
For this transform the integration limits on the inversion integral run from o = - to w =+

because F(w) is zero everywhere except in this range. Hence, the inverse transform yields

B jmtﬁ
_Lfnéej‘*’tdw = __.4__?___._
21r(:_l3 B 2B jt |

il

S

A e - e sinpn
Bt j2 Bt

Figure W1-6 shows the given amplitude spectrum |F(w)| and the resulting inverse transform
AB). The waveform f{f) = 4 sin(Br)/(Br) is another example of the function sinc(x) = sin(x)/x

which plays an important role in Fourier analysis. Note that Af) is a noncausal waveform for
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which there is no Laplace transform.

FIGURE W1-6

Exercise W1-2
Use the inversion integral to find the inverse transform of F(w) = jon[u(w +1) - u(w - 1)].

Answer:

cos t sin ¢
fy = 225 -
t 12
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Wi-2 LAPLACE TRANSFORMS AND FOURIER TRANSFORMS
For certain signals there is a simple relationship between the Laplace and Fourier

transforms. In Chapter 9 the integral definition of Laplace transforms is given as

LIADY = f fDe *dt = F(s) (W1-6)
0

where s = 0 + jw is the complex frequency variable. The lower limit of this integration
reminds us that f{f) must be causal for a unique transform pair to exist. If A7) is absolutely
integrable in the sense defined in Eq. (W1-3), then the Laplace transform integration converges

when o = 0, in which case Eq. (W1-6) becomes

(=]

LD} = ff(f)e“j“"df = Fs)l, - o (W1-7)

0

On the other hand, when f{f) is causal and absolutely integrable its Fourier transform exists and

is found from Eq. (W1-1) to be
FD} = ff(t)e Tl = F(w) (W1-8)
0
Comparing Egs. (W1-7) and (W1-8) we conclude that
F(w) = F(s)|, _, (W1-9)

provided that f{f) is causal and absolutely integrable.
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For a causal f{f) to be absolutely integrable it must have finite duration or decay to zero
as ¢ - . A sufficient condition for f{f) to decay to zero is that all of the poles of F(s) lie in the
left half plane. For example, the Laplace transform of the causal exponential is L {4e ' u(t)}=
AAs + o). The transform has a pole at s = - o, which lies in the left half of the s plane for o >
0. When « > 0 the Fourier transform of the causal exponential is found from its Laplace

transform to be

F@) = F)ly -y = — 2
jw + o

The F(w) obtained here using Laplace transforms agrees with Example W1-2, where the

integral definition of Fourier transforms gave the same result.

We can use Eq. (W1-9) to find F(w) provided the poles of F(s) avoid both the
right half plane and the j-axis boundary. For example, the Fourier transforms of a causal
sinusoid cannot be found from its Laplace transform. The reason is that the transform

Fs)= L{u() sin(Bn} =B/ (s* + p*)
has poles on the ; axis at s = 4.

The Laplace transform method can be used to find the Fourier transform of the unit

impulse because 8(7) is causal and absolutely integrable. Applying Eq. (W1-9) we obtain

FL3(H)} = LD, ., =1 (W1-10)

Figure W1-7 shows impulse waveform 8(f) and its constant amplitude spectrum | A(®)].
Note the duality between Figure W1-7 and Figure W1-5. Figure W1-5 shows that a constant

time-domain waveform leads to an impulse in the frequency domain. The dual result in Figure
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W1-7 shows that an impulse in the time-domain leads to a constant in the frequency domain.
FIGURE W1-7
Laplace transform concepts can be used to find inverse Fourier transforms as well.
Given a Fourier transform F{w), we form a Laplace transform F(s) by replacing jw by s, or
equivalently, replacing w by -js. Hf the poles of F{(s) all lie in the left half of the s plane, then

by the uniqueness property of Fourier and Laplace transforms we have

A = T HFw)} =LY} (¢>0) (WI-11)

Partial fraction expansion can be used to find the inverse transform of F(s) in this equation.
However, keep in mind that the Laplace transform method requires either: (1) ) to be causal

and absolutely integrable, or (2) all of the poles of F(s) to be in the left half of the s plane.

Exercise W1-3
Use Laplace transforms to find the Fourier transforms of the following causal waveforms.

Assume ¢ > 0.

(a) (1) = Ale “sin Brlu(?)
(b) A1) = Alate ™ u(®)

Answers:
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, Ap
Fi -
@ F©) =
Ao

(b) Flw) = —=%—
(o + @)

Example W1-4

Use Laplace transforms to find the inverse Fourier transform of

10

F) = (o + 2)jw + 4)

Solution:
Replacing jw by s yields F(s) yields

10

= e

F(s) is a rational function of s with poles at s = -2 and s = -4. Both poles are in the left-half
plane so the inverse transform of F{(s) is the inverse transform of F(w). Expanding F(s) by

partial fractions yields

k
Fs) = —— + —2

The poles are simple so the residues k, and k, are

ky = (s + 2Fs)l_ ,=5
k= (s + DFS),._, =5
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and the inverse transform of F(w) is

F HYF(w)} = 9 YF(s)) = S,P”l{ > } + s,e"{ = }
s + 2 s + 4

= [Se‘Z’ - 59‘4’]11(1‘)

Exercise W1-4
Use the Laplace transform method to find the causal waveform corresponding to the following

Fourier transform:

Flw) - 5w - 3)
(o + Do + 95)

Answer:

A0 = [-5e7 + 10e % |u(p)

Exercise W1-5

Explain why Laplace transforms cannot be used to find the Fourier transforms of the following
waveforms. Assume o > 0.

(a) A1) = Acttu(?)

(b) A1) = de

(c) f(t) = A sin at.

Answers:

W1-13



(a) f(?) is not absolutely integrable or equivalently, F(s) has a double pole at s = 0.

(b) & (c) A¢)is not causal.

Exercise W1-6
Explain why Laplace transforms cannot be used to find the inverse transforms of the following

functions. Assume ¢ > 0.

20
0 + ol

1l

(@) Flw)

-ojo]

(b) Flw)

]

e

Answers:
(a) F(s) has a right half plane pole at s = +a.

(b) F(s) is not a rational function.
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W1-3 BASIC FOURIER TRANSFORM PROPERTIES AND PAIRS

This section introduces eight properties of Fourier transforms and uses these properties
to derive additional transform pairs.
Linearity

Both Laplace and Fourier transforms are linear transformations which means that the

transform of a sum of waveforms is the sum of their transforms. Stated formally the linearity

property is

F{Af() + B} = AF|(w) + BF,(®) (W1-12)

where 4 and B are constants. Proof of this property follows directly from the integral

definition of Fourier transforms.

oo

FARD + BAOY = [[4/0) + BL® ] 7do

- 00

=4 f fi(He7dw + B f f(He 7 do

- AF(®) + BFw)

The following example is an application of linearity.

Example W1-5
Find the Fourier transforms of the eternal sinusoids cos Bz and sin pr.
Solution:

Laplace transforms method doesn't work here because these waveforms are not causal. We
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previously found the Fourier transform of complex exponential e/P o be

g—{e/ﬁt} =27d(w - PB)

Using Euler's relationship for cos ¢ and the linearity property we can write

g eJBt + e_jﬁt
2

—;—9{31‘3’} + %y {e-%)

F {cos Pt}

I

T[d(w - B) + 8w + B)]

Similarly for sin Bz we have

Bt _ -jPt
Flsinpr) - 5 {_________.}
j2

I

1 A bt
Lolon)- L)

I

-jm{d(e - B) - 8w + B)|
Here we see that the Fourier transforms of cos ¢ and sin B¢ involve impulses located at w =
+P. In general, the spectral content of a Fourier transform is distributed across a continuous

range of frequencies. However, for eternal sinusoids the spectral content is concentrated at

discrete frequencies w = +f. where the frequency-domain impulses occur.

Time Differentiation and Integration

The time differentiation property of Fourier transforms states that differentiating f{f) in
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the time domain corresponds to multiplying F(w) by jw in the frequency domain. That is

F {91@} = JoF(w) (W1-13)
dt

Derivation of this property of Fourier transforms begins with the inversion integral:

A = [Fl@)erde
2w/
We first differentiate both sides of this equation with respect to time:

dgt) g = = f F(w)e’'dw

Assuming the order of integration and differentiation on the right side of this equation can be

interchanged, we obtain

df(t) - g0 - _2-1;; [ %F{w)ej“” do>

i

1 .
— | joF(w)e’*dw
- f JjwF(w)

The right side of the last line in this equation implies F{g(f)} = jwF(w). Since g(¢) = df/ dt we

conclude that
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as expected.

Given the form of the differentiation property, it is reasonable to expect that integrating
(¥ in the time domain corresponds to dividing F{w) by jw in the frequency domain. This
proves to be correct, except that integrating a waveform may produce a constant offset or dc
component. As we have seen, the Fourier transform of a dc waveform is an impulse at & =0 .

As aresult, the statement of the integration property is

t
7 [ - F©) | r0)s(w) (W1-14)
: jw
Integrating £(#) in the time domain leads to division of F{w) by jw plus an additive term

TF(0)6(w) to account for the possibility of a dc component that may appear in the integral of

AD.

Example W1-6

Use the integration property to find the Fourier transform of the step function u(r).

Solution:

The Fourier transform of an impulse was previously found to be Z{5()} = A(w) = 1. Since
the step function is the integral of an impulse the integration property yields the Fourier

transform of the unit step function.
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, \
Fu} = 7 [ 6(x)dx} - A@) |, 1A0)(w)

Jw
1
= - + n&((&))
Jw
Reversal
The reversal property states that
If F{f(1)} = F(w) then FA-1)} = F(-w) (W1-15)

Simply stated, reversing f{¥) in the time domain reverses F(w) in the frequency domain.

Deriving this property begins with the integral definition of Fourier transforms.

F() = [fiye7'ds (Wi-16)

- 00

Defining F{f{-1)} = G(w) we can write

G(w) = }f(——t)e ot gy

Changing the dummy variable of integration to T = - ¢ produces
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G(w)

i

- fﬂt)efw‘dr

1

]j(t)e JCOrgr = F(-w)

We conclude that #{f(-f)} = G(w) = F(-w) as stated in Eq. (W1-15).
The reversal property is used to derive the Fourier transforms of waveforms of the type

in Figure W1-8. The mathematical expressions for these two waveforms are

i

u(t)y - u(-1)

u(fe " + u(-t)e *CH

sgn(?)

(W1-17)
-0t

il

The first waveform is called the signum function, which is defined as plus one for ¢ > 0, minus
one for £ <0 and zero at 1 = 0. As aresult sgn(¢) can be expressed as the difference between a
step () to a reversed step u(-f) as indicated in Eq. (W1-17),

The second waveform in Figure W1-8 is called a double-sided exponential which is
defined as the sum of a causal exponential and a reversed causal exponential. This waveform
is one at t = 0 and decays exponentially to zero in both directions along the time axis.

FIGURE W1-8

The signum and double-sided exponential are examples of noncausal waveforms that

can be written as f{¥) = g(¢) = h(- 1), where g(¢) and /h(¢) are causal. If the Fourier transforms of

g(#) and h(?) are known, then the reversal property yields F{w) = G(w) + H(-w).
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Example W1-7

Use the reversal property to find the Fourier transform of fr) = sgn(r)

Solution:

The signum function is expressed as sgn(r) = u(f) - u(-f). In Example W1-6 we found that

F{u(h)} =1/jw + nd(w). Using the reversal property yields

S
3
w

gn(®)} = Flu@®} - Flu(-0}

Jw

= {i— + nﬁ((o)} - { I ) + né(—oo)}

2
W

o

In the last line of this equation we have used the fact that §(w) = 8(- ) since both impulses

occur at w = 0.

Exercise W1-7

Use the reversal property to find the Fourier transform of f{f)= e . Assume & > 0.

Answer:
Flo) = 20
w? + o
Duality

The duality property states that
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If F{A) = Fw) then F{F{X)) = 2nf-0) (W1-18)
Proof of this property begins with the inversion integral written in the form

2nAL) = }F (w)e’®'dw

Replacing ¢ by —¢ yields

2A-1) = } Flw)e 7! dw

Now interchanging ¢ and w produces

2TA-w) = }F(t)e'j“”dt = F{F@®)}

Thus, F{F(f)} = 2nf{- w) as stated in the duality property.

Figure W1-9 illustrates the waveforms/transforms duality for a rectangular functions.
The upper pair comes from Example W1-1 where we found that a rectangular waveform has a
wiggly Fourier transform. The lower pair comes from Example W1-3 where we found that a
rectangular transform produces a wiggly waveform. In sum, a rectangular function in one
domain leads to an oscillatory sinc(x) function in the other domain.

FIGURE W1-9
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Example W1-8

Given that F{e* "1} = 20/(0? + w?), use the duality property to find the Fourier transform of
g(t)=o?/ (o’ +1%).

Solution:

If we define f{¥) = e " then F (w)=20/(c* + ®?). According to duality

F{F6)} = 2nf-w) = 2me "¢ = 2qe ol
But since

it follows from linearity that

Fig®)} = %9{F(t)} - nae ol

Time and Frequency Shifting

The two shifting properties of the Fourier transforms are

(1) Time Shift: If F{f(¢) } = F(w) then F{ft - T)} = e 7 F(w)

(2)Freq. Shift: If 7~ F(w)} =) then 7 {Flo - B)} =Py )

Proof of these properties follow directly from the definitions in Eq. (W1-1) and (W1-2).

The first statement in Eq. (W1-19) says that time shifting a waveform by an amount 7'
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is equivalent to multiplying its transform by e/ “’. As a result we find that delaying a

waveform f{¥) does not distort its amplitude spectrum since

|7t - DY = [e™TFw)| = |e||Fw)| = |F(w)|

The second statement In Eq. (W1-19) says that shifting the frequency of a transform by
an amount 3 is equivalent to multiplying its waveform by ¢®. The frequency shifting property
is the basis for a signal processing operation called modulation in which the spectrum of a
signal is shifted from one frequency range to another.

Scaling

The scaling property of the Fourier transformation is

If F{AH} = Fo) then F{flab)} = —l-c—llTF(w/a) (W1-20)

where a is a real constant.

Figure W1-10 shows the Fourier transforms of two rectangular pulses with different
pulse durations. The figure points out that shortening the pulse duration (a < 1) causes the
transform to spread out in the frequency domain, and vice versa. For this reason the scaling
property is sometimes called the reciprocal spreading property. That is, compressing a signal
in one domain causes it to spread out in the other domain. An important implication is that
reducing pulse duration in the time domain increases the bandwidth requirement since the
signal spectrum expands in the frequency domain.

FIGURE W1-10

Summary Tables
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Table W1-1 lists a basic set of Fourier transform pairs. Because of the uniqueness

property this table can be used in either direction. Additional pairs are easy to derive using the

pairs in Table W1-1 together with the transform properties summarized in Table W1-2.

sin (B1)/ (1)

SIGNAL WAVEFORM f{(1) TRANSFORM F(w)
Impulse &(t) 1
Constant (dc) 1 276(w)
Step function u(t) 1/jw +1d(w)
Signum sgn(t) 2/jw
Causal [e”*u(?) /(o +jw)
Exponential
Two-Sided e 20/ (0 + w?)
Exponential
Complex Exponential e® 2nd(w - B)
Cosine (ac) cos (B1) n[d(w - B) + d(w + P)]
Sine (ac) sin (f7) -Jn[d(w - B) - &(w + B)]

u(w - B) -~ uww+p)

TABLE W1-1 Basic Fourier Transform Pairs
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PROPERTY TIME DOMAIN FREQUENCY DOMAIN
Linearity AL () + Bf(D) AF (0) + BF,(®)
wF
Differentiation iU} JoF(®)
dr
. ! Fw)
Integration f ) o TF(0)0(w)
Reversal =0 F(-w)
Duality F() 2T~ w)
Time shift e -1 e *TH(w)
Frequency shift PR Flw - B)
Scaling |a|far) Flw/a)

TABLE W1-2 Basic Fourier Transform Properties
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Exercise W1-8

Use Tables W1-1 and W1-2 to find the Fourier transforms of
() /i(1) = sgn(r) + 2

(b) f(H)=2cos(2f) + 1

Answers:

(@) F(w) = —2(; + 4m8(e)
(b) Fy(w) = én[é(co - 2) + 0(w) + 0w + 2)]

Exercise W1-9

Use Tables W1-1 and W1-2 to find the inverse Fourier transforms of

(a) F\@) = — + 318(w)
jw
2

.

4 + jw

(b) Fyw) = -2 + 418(w + 2)

Answers:

(@) /,() =u(®) + 1
(b) L(O=2 e - 26(1) +2 o) 2!
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W1-4 CIRCUIT ANALYSIS USING FOURIER TRANSFORMS

Because of our previous study of Laplace transforms it should come as no surprise that
Fourier transforms can be used in linear circuit analysis. To see how the Fourier transforms
apply to circuit analysis, we must examine how they effect connection and device constraints.

In the time domain a typical KVL constraint might be

vi(H) + v) - v(H) = 0

Because of the linearity property the Fourier transform of this equation is

Vi) + Vy(w) - Vi(w) =0

This example obviously generalizes to any KVL or KCL constraint. The Fourier
transformation changes waveforms into transforms but leaves the form of the connection
constraints unchanged.

The frequency-domain element constraints are found by transforming the time domain
i-v characteristics of the passive elements. Using the differentiation and linearity properties of

Fourier transforms we write the time-domain and frequency-domain element constraints as

TimeDomain  FrequencyDomain
Resistor: w(f) = Ri(t) Nw) = RI(®)

Inductor: w(r) = g—;— Nw) = joLl(w)
Capacitor: i(f) = c% I®) = joCV(w)

As might be expected, in the frequency domain the element constraints are algebraic equations
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similar in form to Ohm's law. The proportionality factors relating the voltage and current
transforms are the ac impedance of the passive elements, namely
Z,=R  Z, =jolL  Z,-
joC

The form of the frequency domain connection and element constraints have a familiar
ring. The key points are: (1) The Fourier transformation does not change the form of the
connection constraints and, (2) The element constraints are similar to Ohm's law. We have
seen analogous conclusion before in our study of sinusoidal steady-state circuit analysis and
again in s-domain circuit analysis. As a result, we know that our repertoire of algebraic circuit
analysis techniques can be applied using Fourier transforms.

To use Fourier methods in circuit analysis we represent currents and voltages as
transforms and passive elements as ac impedances. We then use analysis techniques such as
voltage division, current division, equivalence, or even node/mesh analysis to solve for the
unknown current or voltage transforms. Inverse Fourier transforms are then used to obtain the
response waveform in the time domain.

The discussion above closely parallels the steps in s-domain circuit analysis, except for
one thing--there is no mention of initial conditions. The reason for this omission is that the
lower limit on the defining integral for Fourier transforms is r = —. In other words, Fourier
transforms account for the entire history of a circuit beginning at r = -«. With Laplace
transforms the lower limit on the defining integral is = 0, and the circuit's history for £ < 0 is
accounted for by the initial conditions at = 0.

In summary, the Fourier transform method of circuit analysis explicitly takes into

W1-29



account all inputs including those that happened prior to = 0. Fourier transforms exist for
noncausal waveforms and the method yields responses that are valid for -« <f <o, Asa
result, Fourier transform methods cannot handle circuit analysis problems in which initial

conditions are used to account for inputs prior to £ = 0.

Example W1-9
Use Fourier transforms to find v,(¢) in the circuit in Figure W1-11 for v,(¢) = u(?).
FIGURE W1-11

Solution:
This example asks us to find the step response of a first-order RC circuit. In Chapter 7 we
solved this problem using classical differential equation methods. The problem was revisited
in Chapters 9 and 11 using Laplace transforms. From this previous experience we already
know that the answer is v,(f) = [1 - ¢ “"“Ju(f). Our purpose here is simply to show how
Fourier transforms produce the same result.

The circuit in Figure W1-11 is shown in the frequency domain so we use voltage

division to relate the input and output transforms.

1
jwC 1/RC
Viw) = | —I2% |V (w) = V(6
o) = | qu/zec}l”
joC |

For a unit step function input V,(w) = F{u(f)} = 1/jw + 1d(w) and the output transform is
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The first term on the right side can be expanded by partial fractions as

1/RC 1 1

(o + 1/RC)jo  jo jo + 1/RC

The second term on the right side reduces to

1/RC

1/RC
jo + 1/RC

LRC nd(w) = 7o(w)

|

That is, in general F(w)d(w) = F(0)d(w) because the impulse &(w) is zero everywhere except at

w = 0. Combining these results the output transform can be arranged as

1 1
Viw) = — + 1d(w) ~ —————
A®) jo ©) jo + 1/RC
step causal
function exponential

Each term in this expansion is listed in Table W1-1 leading to

Ful nd(w)} - g1
W W + 1/RC

u(t) ~ e RCy(r)

11

V()

11

As expected the step response waveform is v,(t) = [1 — ¢ “® Ju(s). This example illustrates a
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rather subtle point. For causal inputs Fourier transforms inherently yield only the zero-state

response, whereas Laplace transforms yield both the zero-state and zero-input responses.

Example W1-10

Use Fourier transforms to find v,(¥) in the circuit in Figure W1-11 for v,(f) = sgn(?).
Solution:

In this example we find the output of a first-order RC circuit for a noncausal input. From
Table W1-1 the input transform is V,(w) =2, jw. Using the voltage division result from

Example W1-9 we write

V(o) - | /RC |2

jo + 1/RC |jo

Expanding by partial fractions:

Vo) - 2/RC 2 2

jo(fo + 1/RC) jw jo + 1/RC
—— - ~—
signum  exponential

Each term in this expansion is listed in Table W1-1. The inverse transform produces

) = 7 {y } {/w +21/RC}

sgn(f) - 2e Ry

1
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Both a noncausal signum waveform and a causal exponential are required to describe v,(¢) on
the interval —o <7 <+, Figure W1-12 shows how these waveforms combine to produce v,(?).
A physical interpretation of this response is that signum waveform applies an input v,(f) = - 1
Vats= - (along time ago). After about five time constants (= - + 5RC, still a long time
ago) the circuit output reaches a steady-state condition of v,(f) = -1 V. Thus, for all practical
purposes v(f) = -1 V forall #<0. At¢= 0 the signum input jumps from v,(f) = -1 to +1 V.
This drives the output from v,(f) =—1 V at £ =0 to v,(f) = +1 V for t > 5RC.

FIGURE W1-12

Exercise W1-10
Use Fourier transforms to find v,(¢) in the circuit in Figure W1-11 for v,(£) = u(?) - 1.

Answer;

w(O) = —u(-1) - e u(r)
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W1-5 IMPULSE RESPONSE AND CONVOLUTION

The previous section shows that Fourier transforms can be used to analyze linear
circuits. The process is straight forward once we accept the idea of noncausal waveforms.
However, the important applications of Fourier transforms are found in system analysis and
signal processing rather than traditional circuit analysis.

Fourier transforms find applications in these areas because they can represent idealized
models of signal processors. These ideal models often involve noncausal responses that cannot
be represented by Laplace transforms. Of course real physical systems must have causal
responses so these models can only be approximated by engineering hardware. Nevertheless,
ideal models are useful in preliminary design studies and as "gold standards” for evaluating the
performance of real systems.

Signal processors are often described in the frequency domain by the Fourier transform
equivalent of the s-domain transfer function. To develop the Fourier equivalent we begin with

the convolution integral from Chapter 11:

W) = f h(t - T)x(t)dt
0

In this expression y(¢) is the output of a system whose impulse response is /(7) when the input
is x(¢). The limits of integration are T = 0 to T =t because Chapter 11 assumes that A(¢) and
x(¢) are causal waveforms. To remove this limitation the integration limits are extended
backward to T = - to accommodate a noncausal input x(t) and forward to 7 = + to

accommodate a noncausal A(r). The result is
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[

Wb = f Wt - t)x(t)dt (W1-21)

-0

This equation is a general form of the convolution integral that applies to causal and noncausal
waveforms alike.

We now take the Fourier transformation on both sides of Eq. (W1-21).

F ] h(t - T)x(t)dt

T= oo

F N} = Nw)

[ [ e — Dx(zydrie Tt

=~ |T=-00

i

Next we interchange the order of integration and factor out x(t), since it does not depend on 1.

Y(w) = f x(T) f h(t - T)e/dt|dr
]y&;)ejﬁn

Using the time-shifting property the quantity within the bracket is F{h(t - 1)} = H(w)e ’*~,

and this equation reduces to
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j x(T)H(w)e /*" dt

T=—-®

Y(w)

It

H(w) ] x(t)e /" dt

T=-—o00

il

“ v

X(@)

By definition the remaining integral inside the bracket is  {x(17)} = X(w). We conclude that

Hw) = Hw)X(w) (W1-22)

Thus, in the frequency domain convolution is accomplished by multiplying the Fourier
transform of the system impulse response by the Fourier transform of the input.

Equation (W1-22) looks suspiciously like the s-domain relationship ¥(s) = T(s)X(s),
where 7(s) is the s-domain transfer function. Since the two input-output relationships have the
same form we call H(w) the Fourier-domain transfer function. Key differences between 7(s)
= P{h(®)} and H(w)=F {h(t)}are:

(1) H(w) exists for noncausal impulse responses for which 7(s) does not exist.

(2) T(s) exists for unstable impulse responses for which H(w) does not exist.

Example W1-11
The impulse response of a system is 4(1) = ¢"!!. Use Fourier transform convolution to find the
output y(f) when x(¢) = sgn(?).

Solution:
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Using transform pairs in Table W1-1 we have

Hw) = TLE and  X(@) = =

Using Eq. (W1-22) the output transform is found as

4

w) = Hw)X(w) =
(1 + 0)jw

Expanding Y(w) by partial fractions

4 -2 2 4
= + 4+ —_—

Hw) =
(1 + jo)1 - jo)jw I + jw 1 -jo jo

Using Table W1-1 the inverse transform of the first term in the expansion is

?‘1{-——2——} = -2eu(?)

I +jw

According to the reversal property F ' {F(-w)} = f{-1), hence the inverse transform of the

second term is

g1 2 - t0
e R

The inverse transform of the third term is & '{4/jw} = 2 sgn(?). So finally the output
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waveform is

WD) = -2e7u(t) + 2e'u(-1) + 2sgn(d)

Notice that we can not use Laplace transforms here because the input, output, and impulse

response are all noncausal waveforms.

Exercise W1-11
The impulse response of a system is 4(f) =2 ¢™*'u(f). Find the output y(r) when x(¢f) = -2 +
4u(t).

Answer:

WO = sgn(?) - 2¢ u(?)

The Fourier domain transfer function H(w) represents the system frequency response,
including noncausal systems. For example, consider the H(w) shown in Figure W1-13. In the
filter terminology the gain lH(w) lis an ideal low-pass filter with a passband gain of one, a
stopband gain of zero, and a bandwidth of B. In Example W1-3 we found that the waveform
corresponding to a rectangular transform is the noncausal A(7) shown in Figure W1-13. The
noncausal 4(f) means that an ideal low-pass filter responds before the impulse is applied at =
0. Such anticipatory behavior is physically impossible, which means that we can't actually
building an ideal filter using physical hardware. Nevertheless, the ideal low-pass filter model

is used in conceptual design work because it is easily implemented in the system simulation
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software and provides a "gold standard" for evaluating the performance of the real systems.
FIGURE W1-13

Fourier transforms highlight the relationship between impulse response and frequency
response. Digital filter design involves defining an impulse response #(¢) whose Fourier
transform H(w) has a desired frequency response. The signal processing action is actually
carried out using software that convolves /(f) and x(?) in the time domain. Fast algorithms for
performing time-domain convolution are readily available in commercial software. Thus,
Fourier methods play a key role in digital signal processing because they provide a

computationally efficient way to implement signal filtering.

Example W1-12

Describe the frequency response of a system whose impulse response is

C( —aitl
ht = — e

Solution:

The given A(?) is a two-sided exponential whose transform from Table W1-1 is

2

o - o
H((l)) = —é—g{e alt[} = —-2————;—)—2—
o +

Figure W1-14 shows the plot of gain | H(w)| versus normalized frequency. The system acts

like a low-pass filter with a dc gain of H(0) =1 and the high-frequency gain rolls off «?/w?%
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or -40 dB/décade, so to speak. The passband cutoff frequency occurs when | H(w)| =

H(0)/v2, which requires
e 1
a2 + wCZ \/'2‘

yielding

W, = ia\/ 2 -1 = £0.644¢

FIGURE W1-14

Exercise W1-12

(a) Find the transfer function of a system whose impulse response is A(f) = 6(¢) - oe ® ‘1.
(b) Describe the frequency response of the system.

Answer:

(a) H(w) = (&’ - &’)/ (0" + &?).

(b) System has a bandstop characteristic with a notch at w = +a.
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Wi-6 PARSEVAL'S THEOREM
Parseval's theorem relates the energy carried by a waveform to the amplitude spectrum

of its Fourier transform. The total energy carried by any waveform is defined to be
W, = f p(D)dt

where p(1) is the power the waveform delivers to a specified load. For a resistive load p(¢) =

vA(t)/R = i*(1)R so the energy delivered to a 1-Q resistive load can be written in the form

W = f YEOY i (W1-23)

where f(f) can be either a voltage or a current waveform. Equation (W1-23) is often used as
the definition of the energy carried by a waveform, although an implied 1-Q resistance is
required for the result to have the dimensions of energy.

Parseval's theorem states that the total energy carried by a signal can be calculated in

either the time domain or the frequency domain.

+ o0 1 + 00
Wig = [ f0dt = — [ | Fw)|*do (W1-24)

That is, the total 1-€2 energy can be found from either the waveform f{¢) or its transform F(w).
Parseval's theorem assumes that the integrals in Eq. (W1-24) converge to a finite value.

Signals for which W\ is finite are called energy signals. Examples of energy signals are the
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causal exponential, the two-sided exponential, the rectangular pulse, and the damped sine.
Finite energy is a stronger requirement than the absolutely integrable. As a result not all
signals that have Fourier transforms are energy signals. For example, the impulse, step,
signum, and eternal sinusoid all have Fourier transforms but are not energy signals.

The derivation of Parseval's theorem begins with energy in the time domain. Assuming

the Fourier transform of f{¢) exists, this energy can be written in the form

Wi = [HOIAONE = [TR0) = [ Fl)e™ do s

) = F " H{F(w))

The integration within the bracket does not involve time, so f{¢) can be moved inside the

second integral and the 1/2m moved outside the first integral to produce

+o00  +eo

W = [Nl - -2% [ [foF@e dod

— o0 ~ oo

Reversing the order of integration and factoring out F(w) produces

W = [HOIADN - _211-5- F(o) [Aiedride

F(t ®)

By definition the function inside the bracket is F(-w). But F(-w) is formed by replacing jw by

J(-w) = —jw, which means that F(-w) = Fi (co)*, the conjugate of F{w). Thus, the product
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F(w)F(-w) is the square of the magnitude of F(w) and this equation reduces to
W = [fepd - L [ @)
1Q”"ff(t) f"g;;fl(w)[ ®

as stated in Parseval's theorem.
Since | F(w)|* is an even function the integral from —e to 0 is the same as the integral

from 0 to +e, Hence,
1y 2 1, 2
— | |[F(w)|“dw = — | |F(w)|*dw
2n_f|()t n[l()l

and Parseval's theorem can also be written as

+ oo 1 + o
Wia = [Atfde = — [ |Fw)|*do (W1-25)

- 00 0

Example W1-13

Derive an expression for the 1-Q energy in the causal exponential v(1) =V, e ' u(f)
(a) in the time domain and (b) in the frequency domain.

Solution:

(a) The given waveform is causal so the time integration extends from ¢ = 0 to ¢ = -+,
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|+oo

+oo 2 2

W = f(VAe""’)Zdt = %e‘z"“ O = %
0

This result applies if ot > 0 since for & <0 the waveform is unbounded and the integral does not
converge. In other words, an unbounded exponential is not an energy signal.
(b) The Fourier transform of the signal is V(w) =V, /(jw + o) provided o > 0. In the frequency

domain the 1-Q energy is found to be

+ oo

+ o0 V2 V2
Wi = — [ do = —Lan(o/a)
L1 0 a? + w? T 0
2 . 2
_ Vil ol = Vi
To| 2 20

which is the same as the result in (a).

Applications of Parseval's Theorem

The square amplitude spectrum | F{w)| * is called the energy spectral density because it
describes how the total energy carried by f{¥) is distributed among the frequencies in its

spectrum. In this sense we think of the integral

W,
1
W, =~ 24
12 TC-[]F((O)I w
Wy

as the amount of energy carried by frequencies in the band w, < w < w,. Notice that the energy
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distribution for a Fourier transform is the fundamentally different than for a Fourier series.
With a Fourier transform the energy carried by f{¥) is distributed across all of the frequencies
between w, and w,. With a Fourier series the energy is only located at the discrete harmonic

frequencies.

Example W1-14

(a) Find the percentage of the 1-Q energy in v(f) = ¥, e *" u(f) that is carried in the frequency
band |w| <a.

(b) What frequency band required to carry 90% of the 1-Q energy?

Solution:

(a) The energy in the band |w| < a is

o
o VZ VZ
W= L4 de = ian(0/a)
T 0 a? + @? o 0
2 2
_Va(m ol = Ya
no\ 4 4a

In Example W1-13 we found that the total energy is W, = (V,)*/2a, hence energy ratio is

w, Vj/ 4o

1
Wi Vj/ 20 2

That is, 50% of the total energy is carried in the frequency band |®| < a.

(b) Let the frequency band |w| <[ carry 90% of the total energy. The energy in this band is
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p

B2 P2
Wy = 1 f — 2 dw = —Ztan Yw/a)
T 0 a? + w? o 0

2 2

1% 14
A tan \(B/a) = 0.9-2
o 20

1l

The equality sign in the last line of this equation requires
-1 F
tan (B/a) = 0.9~—2— or B = atan(97/20) = 6.31c

Hence , the band |®| < 6.31¢ carries 90% of the total energy .

The energy approach offers a way to quantify the selectivity of filters. Since the output

of a filter is Y(w) = H(w)X(w), the energy spectral density of the output signal is

| (@) |* = |Hw)|*| X(w)|? (W1-26)

Combining Eqs. (W1-25) and (W1-26) yields the energy in the output signal as

Wia = — [1¥@)Pdo = L [|Hw)* | Xw) [do Wi
0 0

We can view filtering as a process that shapes the output energy spectral density by accepting
input energy at frequencies in the passband and rejecting input energy at frequencies in the
stopband. Note that we calculate the energy processing from the Fourier transforms rather

than the signal waveforms.
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Example W1-15

The signal x(r) = 10 e”*° u(¥) is input to an ideal low-pass filter with H(®) = u(w + 100) - u(w
- 100). Find the percentage of the input energy in the output signal.

Solution:

The 1-Q energy in the input signal is

+ oo

oo
= f1006—40tdt = - M
0

0

WlQ,IN

=251]
The Fourier transform of the input signal is 10/(20 + jw). The frequency response of the ideal

low-pass filter is lH(co) |=1 for lw| <100 and | H(w)|= 0 elsewhere. The 1-Q energy in the

b

output signal is
1 100
= — [ 1X| X(w)|*d
Wlﬁ,out 7 [ I (w)! ®
100 2 100
- if——w—————dm = _lf.)_g.tan-l(w/zo)
T A 207 + @? 207 0

= Dtan’'(5) = 2.19 ]
T

The fraction of the input energy in the output signal is 2.19,/2.5, or about 87.6%.

Example W1-16
The transfer function of a first-order low-pass filter is H(w) = 100,/(100 + j®). The input

signal to the filter is x(¢) = 10 e 2 u(?).
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(a) Find the percentage of the input energy in the filter output signal.

(b) Find the percentage of the output energy that lies within the filter passband.

Solution:

(a) The input signal is the same as in Example W1-15 where we found Wg = 2.5 1. The

energy in the output signal is

dw

17 17 1002 102
Wraoor = ~[1H®)[* | X(@) *do = +
1ot n{ n[ 1002 + @? 202 + @

The integrand in this expression can be expanded by partial fractions as

10° kl kz

= +

(100 + 0?20 + ®?)  100% + »?  20% + &’

The constants in this expansion are

oL 10° 625
1o 2 . 2 T e
20° + @20
6
104 + (1)20)2:_202

The output energy is

+} do |_625|n _ =m

W, - __x
202 + 2| 6m|[40 200

625| 7 dw
=222 =2.08 J
O e | { 100? + o2

0

W1-48



The fraction of the input energy in the output signal is 2.08,/2.5, or about 83.2%.

(b) The cutoff frequency of the low-pass filter is 100 rad/s. The output energy in the passband
is

100 100

W, oo = 625| f dw N f dw
’ 67 100% + w2 207 + w?

0 0

i -1 -1
_ 625/ tan'100/100 | tan"'100/20| _ , 0 ;

67 | 100 20

The fraction of the output energy in the filter pass band is 2.02,/2.08, or about 97.1%.

Exercise W1-13

(a) Find the total 1-Q energy carried a double-sided exponential f{f) =4 e '/
(b) Find the fraction of the total energy is in the frequencies band |w| < a.
Answers:

(2) 4/«

(b) 0.5+ 1/m = 0.818

Exercise W1-14
Find the total 1-Q energy carried by f{r) = 10 e * sin(2f) u(?).

Answer: 2]

Exercise W1-15
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The current in a 5-kQ resistor is i(¢) = 12 ¢ ® u(f) mA. Find the total energy delivered to the
resistor.

Answer: 1.8 mJ

Exercise W1-16
What percentage of the total energy in f{r) =5 ¢ '°" u(¢) is in the frequency band |w| > 5 rad/s.

Answer: 88.1%

SUMMARY
@® The Fourier transformation applies to aperiodic waveforms that may be causal or

noncausal. The direct transformation is defined by the integral

F(w) = }f(t)e‘j‘”tdt

The inverse transformation is defined by the integral

A = T;}F(w)ej“’tdw

@ Sufficient conditions for the existence of F(w) are that £{¢) be absolutely integrable and have
a finite number of discontinuities. Signals not meeting these conditions may still have a
Fourier transform. When it exists, a Fourier transform is unique.

@ If /(1) is causal and absolutely integrable, then its Fourier transform can be obtained from its

W1-50



Laplace transform F{(s) by replacing s by jw. A causal waveform £f) is absolutely
integrable if all of the poles of F{(s) lie in the left half of the s plane.

@ The basic Fourier transform pairs and properties are listed in Tables W1-1 and W1-2.

@® Circuit analysis using Fourier transforms involves finding input transform, transforming the
circuit into the frequency domain, solving for the unknown response transform, and
performing the inverse transform to obtain the response waveform.

@ The frequency domain transfer function H(w) is the Fourier transform of the system
impulse response. The system output transform is Y(w) = H(w)X(w), where X(w) is the
Fourier transform of the input.

@ Parseval's theorem relates the total 1-Q energy carried by a waveform £{¢) to its Fourier

transform F{w) as

W = [ F0dr - -11; [ 1F(@) %o

-0 0
The 1-Q energy can be calculated in either the time domain or the frequency domain.
@® Parseval's theorem allows us to find the percentage of the total input energy in the output of
a filter and to find the percentage of the output energy carried in specified frequency bands.
PROBLEMS
ERO W1-1 Fourier Transforms (Sects. W1-1, W1-2, W1-3)
(a) Find the Fourier transform of a given waveform using transform properties and pairs, or

using the integral definition.

(b) Find the inverse Fourier transform of a given function using transform properties and pairs,
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or using the integral definition.
(c) Derive Fourier transform properties using the defining integrals or other properties.
See Examples W1-1, W1-2, W1-3, W1-4, W1-5, W1-6, W1-7, W1-8 and

Exercises W1-1, W1-2, W1-3, W1-4.

W1-1 Use the defining integral to find the Fourier transform of f{r) = Alu(f) — u(t - 1)].
W1-2 Use the defining integral to find the Fourier transform of ft) = At[u(r) — u(t - 1)].

W1-3 Use the defining integral to find the Fourier transform of the following waveform.

Aty = Acos(mt/2)[u(t + 1) - w(t - 1)]

W1-4 Use the inversion integral to find the inverse transform of the following function.

Flw) = 10n[u(w + 1) - u(w - 1)]

W1-5 Use the inversion integral to find the inverse transform of the following function.

Fw) = jnl10[~u(w + 1) + 2u(w) - w(w - 1)]

W1-6 Use the inversion integral to find the inverse transform of the following function.

Flw) = cos(mw/2)[u(w + 1) - u(w - 1)]

W1-7 Find the inverse transforms of the following functions.

400 Jjw

(a) Fi(w) = (o + 20)jw + 40) (b) Fy(w) = (o + 20)(jw + 40)
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W1-8 Find the inverse transforms of the following functions.

400 ~®?

(a) F(w) = (e + 20)jo + 40) (b) Fy(w) = (jo + 20)(jw + 40)

W1-9 Find the inverse transforms of the following functions.

(@) Fy() = 5000 (b) Fy() 500w

io(—jo + 50)j@ + 50) T (o + 50)(jo + 50)
W1-10 Find the Fourier transforms of the following waveforms.
@) /i) =2u(t) - 2 (b) /(1) = 2 sgn(t) - 2u(t) (¢) f(1) = sgn(t) - 1
W1-11 Find the Fourier transforms of the following waveforms.
@ /O =2 u@® +2sgnt) b)) =2e > ut) + 2u(t)

W1-12 Find the Fourier transforms of the following waveforms.
(a) f1(t) = 2 sin(¥) + cos(¥)  (b) (1) = (2/1) sin(?) + cos(?)

W1-13 Find the Fourier transforms of the following waveforms.
@A) =2e cos@@u(t) (b)f()= [2¢7" - e Ju()

W1-14 Find the Fourier transforms of the following waveforms.
@) () =3 cos2nt) (b)f,())=3 ™™

W1-15 Find the inverse transforms of the following functions.

(a) F(®) =41d(w) + 41d(w - 2) + 47d(w + 2)

(b) Fy(w) =4nd(w) - j2/w

(©) Fy(w) =2710(w) - j2/w

W1-16 Use the duality property to find the inverse transforms of the following functions.
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(@) Fi(w)=4 cosw) () F(w)=4u®) -2 (c)Fy(w)=4e %

W1-17 Use the time-shifting property to find the inverse transforms of the following
functions.

(a) F,(w) = [4Td(w) - j2/w] e /2% (b) Fy(w)=2¢/2%/(jo+2) (c) Fi(w) =4 cos2w)/jw
WI1-18 Show that f() =2 u(~¢) and £,(t) = 1 ~ sgn(f) have the same Fourier transform. Does
this contradict the uniqueness property of Fourier Transforms? Explain.

W1-19 Given that the Fourier transform of f{¢) is

2

Fe) = (o + 2)jo + 4)

t
Use the integration property to find the waveform g(f) = f fx)dx

W1-20 Use the reversal property to show that

-24jw

(1)24‘“2

F{de Vsgn(t)} =

W1-21 Use the frequency shifting property to prove the modulation property.

Fiosiny} = 70 - Ho D

W1-22 Use the frequency shifting property to show that
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.
£

F{eos(Bu(t)} = ﬁ - S8 - B) + 8 + B

Explain why replacing s by jw in £ {cos (Br) u(t)} = s/As* + p?) does not yield this result.

W1-23 Use the integral definition of Fourier transforms to show that

dF(w)

P
T F{-jtfH) }

W1-24 Use the integral definition of Fourier transforms to show that

400

FO) = [ ff)dt

- 00

W1-25 Use the integral definition of Fourier transforms to derive the time-shifting property

If F A1) = F(w) then F {it - T)} = e 7*TF(w)

ERO W1-2 Circuit Analysis Using Fourier Transforms (Sect. W1-4)
Given a linear circuit and a Fourier transformable input waveform, use Fourier transforms to

find response waveforms.

See Examples W1-9, W1-10 and Exercise W1-10.

W1-26 The input in Fig. PW1-26 is v,(#) = 10 sgn(r) V. Use Fourier transforms to find v,().
FIGURE PW1-26

W1-27 The input in Fig. PW1-27 is v,(¢) =20 ¢’ u(-£) V. Use Fourier transforms to find v,(#).
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FIGURE PW1-27
W1-28 The input in Fig. PW1-27 is v\(f) = 20 sgn(¢) V. Use Fourier transforms to find v,(?).
WI1-29 The input in Fig. PW1-29 is v/(f) = 10 u(~f) V. Use Fourier transforms to find v,(7).
FIGURE PW1-29
W1-30 The input in Fig. PW1-29 is v(f) = 20e°!'! V. Use Fourier transforms to find v,(z).
ERO W1-3 Impulse Response and Convolution (Sect. W1-5)
(a) Given the impulse response of a linear system, find its transfer function and characterize the
system's frequency response.
(b) Given the frequency response of a linear system, find its impulse response.
(c) Given the impulse or frequency response of a linear system, find the response for a
specified input.

See Examples W1-11, W1-12 and Exercises W1-11, W1-12

W1-31 The impulse response of a linear system is A(f) = e ~2’u(f). Find the output for an
input x(f) = u(-1).

W1-32 The impulse response of a linear system is A(f) = e 2/, Find the output for an input
x() = u(?).

W1-33 The impulse response of a linear system is A(f) = 8(f) - 2u(f)e”* . Find the output for
an input x(¢) = sgn(?).

W1-34 The impulse response of a linear system is h(f) = A{ﬁ(t) - au()e ™ ], with o > 0.

Make a sketch of | H(w)| and describe the system frequency response.
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W1-35 The impulse response of a linear system is A(f) = 4[8(F) - sin(Br)/nt ]. Make a
sketch of | H(w)| and describe the system frequency response.
W1-36 The impulse response of a linear system is a(f) = ~Adu(f)e ™ + Au(-f)e 9,

with o > 0. Make a sketch of | H(w)| and describe the system frequency response.
W1-37 The frequency response of a linear system is shown in Fig. PW1-37. Find the system
impulse response A(7).

FIGURE PW1-37
W1-38 The frequency response of a linear system is shown in Fig. PW1-38. Find the system
impulse response /(7).

FIGURE PW1-38
W1-39 The impulse response of a linear system is A(f) = 2sin(2B¢)/nt. Find the output y(¢)
when the input is x(f) = A4 sin(Br)/ Bt
ERO W1-4 Parseval's Theorem (Sect. W1-6)
Given a signal waveform or transform: Find the total 1-Q energy carried by the signal and the

percentage of the total energy in specified frequency bands.

See Examples W1-13, W1-14, W1-15, W1-16 and Exercises W1-13, W1-14, W1-15, W1-16.

W1-40 Find the 1-Q energy carried by the signal F{w) =2/(w” + 1).
W1-41 Find the 1-Q energy carried by the signal 1) = A e ™ u(-1) with o> 0.
W1-42 Find the 1-Q energy carried by the signal f{r) = A[sin(B1)/(np1)].

Then find the percentage of the 1-Q energy carried in the frequency band |w| < B.
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W1-43 Find the 1-Q energy carried by the signal

) = ———

Then find the percentage of the 1-Q energy carried in the frequency band |w| < a.

W1-44 The transfer function of an ideal high-pass filter is H(w) =1 for |®w| > 2 krad/s. The
filter input signal is x(r) = 10 e "’ u(¢). Find the 1-Q energy carried by the input signal and .
the percentage of the input energy that appears in the output.

W1-45 The impulse response of a filter is A(r) = 10 ¢ **'u(f). Find the 1-Q energy in the
output signal when the input is x(r) = 20 e > u(f).

W1-46 The current in a 500-Q resistor is i(f) = -5 u(t+ 1) + 10 u(t) - 5 u(t - 1). Find the
total energy delivered to the resistor.

W1-47 The transfer function of an ideal bandpass filter is H(w) =1 for 1000 < || < 1100
rad/s. Find the 1-Q energy carried by the output signal when the input is x(r) = 10 ¢ % 1().
What percentage of the input signal energy appears in the output? Is the filter narrow band or
broad band?

INTEGRATING PROBLEMS

W1-48 Bode Plots and Parseval's Theorem (A)

The purpose of this problem is to explore using a straight-line approximations to estimate the
area under the energy density function. Consider the waveform v(¢) =V, e * u(f) V:
(a) Find the low- and high-frequency asymptotes of the energy density function | V(w)|?. Show

that these intercepts intersect at ko |= a.. Sketch the asymptotic approximation of | V{w)|>
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(b) Use the asymptotic approximation in part (a) to estimate the 1-Q energy carried by the
signal.

(c) Use Parseval's theorem to calculate the actual 1-Q energy carried by the signal. By how
much does the straight-line approximation overestimate the 1-Q energy?

W1-49 Impulse Generator (A)

Theoretically an impulse has an amplitude spectrum that is constant at all frequencies. In
practice a constant spectrum across an infinite bandwidth can not be achieved, nor is it really
necessary. What is required is an amplitude spectrum that is "essentially" constant over the
frequency range of interest. Under this concept an impulse generator is a signal source that
produces a pulse waveform whose amplitude spectrum does not vary more than a prescribed
amount over a specified frequency range.

Consider a rectangular pulse

SO = Alu(t + T72) - u(t - T/2)]

Find F{w) and sketch its amplitude spectrum | F{w)|. Select the pulse duration T such that the

amplitude spectrum does not change by more than 10% over a frequency range from 1 Mhz to

10 MHz.
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