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Stat. Thero. : Recap / key points.

Mark Rodwell
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References and Citations:

Sources / Citations :

Kittel and Kroemer : Thermal Physics

Van der Ziel : Noise in Solid - State Devices

Papoulis : Probability and Random Variables (hard, comprehensive)

Peyton Z. Peebles : Probability, Random Variables, Random Signal Principles (introductory)
Wozencraft & Jacobs : Principles of Communications Engineering.

Motchenbaker : Low Noise Electronic Design

Information theory lecture notes : Thomas Cover, Stanford, circa 1982

Probability lecture notes : Martin Hellman, Stanford, circa 1982

National Semiconductor Linear Applications Notes : Noise in circuits.

Suggested references for study.
Van der Ziel, Wozencraft & Jacobs, Peebles, Kittel and Kroemer

Papers by Fukui (device noise), Smith & Personik (optical receiver design)
National Semi. App. Notes (1)

Cover and Williams : Elements of Information Theory
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Statistical Thermodynamics

Why discuss ?

Temperature

Boltzmann distribution

Material needed to derive thermal noise
carrier ve locity distributions

similarly to information theory.



ECE594| notes, M. Rodwell, copyrighted

Thermal distributions

|
Consider a system of N particles.

Each particle at energy E, =0or energy E, #0.

Suppose system has total energy E; = m,E, ,
where m, Is the # of particles in state E,.

Total # of {ways, arrangements, configurations} to have energy E. Is:

N
- m!(N-m,)!

N
y(N, E; :mlEl):(m]

We need to approximate this...
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Recall: Convergence of Binomial upon Gaussian

N Bernoulli trials :
: B _ N k Nk
P(k successes | N trials) = P(k [ N) = y P q

If (Papoulis 1965, p.66) npgq>>1
and if |k —np |~ O(q/npq )or less, then :

1 (k —np)?
K) = —
Pal) V27 \Inpg eXp{ 2(npq) }

This Isa Gaussian of mean np and variance npqg.
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# of System configurations.

How can we use this ?
Binomial distribution :

N
P(m successes | N trials) = P(m|N) = (m) s

N m . N—-m N N
If p=qg=1/2,then P(mM|N) = - pqg = - *(1/2)

Hence g(N,m) :(rl\rllj =P(m|N)-2",

...I1.e. we have related the multiplicity function
to the Binomial distribution function.
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# of System configurations.

N
g(N,m):[mj:P(m|N)-2N.

Now use Binomial — Gaussian limit

N 1 ~ (m-Np)*
P(m) = V27 \/Npg eXp{ 2(Npq) }

_ xp (M=N/2)
V27N 14 2(N /4)

| 2N - (M—-N/2)?
So'g(N’m)_szNmeXp{ 2(N /4) }
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# of System configurations.

g(N,m)=2" L exp{—i(m_m)z}
o,

N 271 2 o

where o,, = N*?/2 andmm =N /2

g = Multiplicity function
= # ways system of N particles can have energy mE,.
g iIs*not * a probability distribution.
g Isapproximately Gaussian with mean N/2 and variance N /2.
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g(N,m)=2"

il } where o,, = N"?/2 andm=N/2

1
27 o, ex'{‘ 2 o
Given a system with 6.02-10% particles, o, =~/N /2 =3.9.10"

p g(N,m)
_,H‘_ 20 =7.7-10"

Multiplicity function is* very * narrow
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Coupled Systems

Now consider two such systems :

N, particles N, particles

my in state E=E m, in state E=E
(others in state E=0) (others in state E=0)
Eri=m4E4 Eqp=moEy

If the 2 systems remain separated, then the multiplicity functions
(# of ways of having these Energies) are g,(N,,m,)and g,(N,,m,)

Overall multiplicity function : g, (N;,N,,m;,m,) =g,(N;,m;) g,(N,,m,)
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Coupled Systems

Now bring the 2 systems in contact and let then exchange energy :
# particles N, N,

#in state E; N,-M Ny+M

If the energy exchange 1— 21smE,, then
gT(Nl’ N2’m11m2’m) — 91(N11m1 - m) ' gz(Nz’mz + m)
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Coupled Systems

gT(Nll Nz’ml’mzim) = gl(N1’m1 o m) ) gz(Nzlmz + m)
but g,(N,,m, —m) = Gaussian with mean N,/2 and variance N, /4
and similarly for g,(N,,m, +m),so:
gT(NllNZ’ml’mZ’m)

QNN exp| = 2(m, —m—-N,/2)*  2(m,+m—N,/2)°
27 -A/N,N, /16 N, N,

-1
This is a Gaussian function of m with a variance of o2 = [Ni+ Nij .
1 2

— peaked over a very narrow range, = o, , of m.

A 8,(m)

Becuase o,, 1sso narrow, it is likely e
with probability (1- &) that the final
configuration of the coupled system
Is that which gives the largest g, .

—
\{
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Entropy and Temperature

|
Define Entropy : S =k -In(g; ) where k = Boltzmann's constant
choice of k isarbitrary.
Maximizing g, (N,, N,,m,,m,,m) = g,(N,,m, —m)- g,(N,,m, +m)

corresponds to setting 8% In(g,) = 6% In(g,).

0 0
Hence 8_mSl(N1’m1):8_mSZ(N2’m2)'

. 0 0
Since E = mE,, we have :6_ESl(E) = 8_ESZ(E2)'

Define (temperature)™ = G%S(E) ,from which : T, =T,
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Entropy and Temperature: Summary

Bring two systems into contact, and they will exchange energy until

=T, "temperatur es are equal

where le aiES(E) derivative of Entropy with Energy.

and:S =k-In(g(N,E)) Entropy

and g(N,E) Multiplicity
# of arrangements of a system of N particles having total energy E.

N, particles N, particles

my in state E=E, m, in state E=E
(others in state E=0) (others in state E=0)
Er=miE; EpmmEy
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Boltzmann Law

. ey ... . small subsystem S
Now examine the probability distribution Reservoir R with energy ¢.

of energy of some particle which can /
be in one of several states : 2

energy E=E,-¢

We consider a large system R (reservoir)
in thermal contact with a small subsystem S.

What are the probabilities of various states of the subsystem ?
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Boltzmann Law

We are specifying a particular state of the subsystem
— multiplicity (g) of this state is 1.

# states of reservoir corresponding to S being in a state of energy E :
gr(Ey, —¢)

If we assume that all reservoir states are equally probable :
P(S in state of energy ¢) « g, (E, — ¢)

So P(gl) _ gR(EO _51)
Ple) 9r(Eo—&,)
P(&,) is the probability of occupancy of a *state * of energy ..
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Boltzmann Law

ButkIn(g)=S = g=exp{S/k}

P(e,)  0g(Eg—¢&) eXp{SR(Eo _‘91)/k}_ex {SR(EO - &) — Sp(E, _‘92)}
P()  0a(Ey,—2,)  explS,(E,—z,)/k} P K
&

05a(Bo) _qr2y_  _ &
= O(g)—... =Si(Ey) T

But Sg (E, — &) = Sg(Ep) — &
If the reservoir is big, the deriviatives are small, and 1¥ - order is enough :

P(&,) _ exp{gz — 51}
P(s,) KT

Important : this is the probabilty of a sub - system with 1degree
of freedom (g =1) being in a particular state, not the probability

distribution of Energy. These differ because states are not
uniformly distributed in energy.



Partition Function

(I don't recollect whether we need this for the present course)
If the system S has allowed states s, then

exp(—&; /KT)
Z
where Z = partition function = Zexp(—E(S)/kT)

P(s) =



Boltzmann Velocity Distribution
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Consider velocity distribution of a gas. i
Single particle in a box :

Allowed kinetic energies : 7

n 772(2 2 2)
E(n,n,n)=———-—1| -\n +n,+n;)
Ounn) =g T o 4

(M/2)(v2 +Vv2+Vv2) =E L

If the (particle + box) is in equilibrium with a reservoir of temperature T, then

P(atom in state of energy ¢,) exp{gl ~ &, }
P(atom in state of energy &) KT

Note :available states are spaced in equal increments of (n,,n,,n,),
hence in equal increments of velocity (v,,v,,z,)*,and not in

equal increments in energy.

*Because V=hk/m=hmn/Lm
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Boltzmann Velocity Distribution

-n’r’ni 1
2mL® kT

P(n, <N, <n +o6n)=on -C -exp{

Change variables from N, tov, :

—mv?
P(v, <V, <V, +6v,)=0v,-D-exp :
2KT

_ s 1 |m -exp{_mvf}
* J2z VKT 2KT
Le., T, (v,)isexponentialin E(v,)/KT
but f¢, ,(E(v,)) 1s not exponential in E /KT
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Boltzmann Velocity Distribution

The distribution function of v, Is:

f, (v,) =6V, .expd — v,

\/ kT 2KT

This is a Gaussian with zero mean and variance a\fx =KT /m.
EVZ]=o2 =KkT /m.

mv | KT m KT
2 | T m 2 2
E [x - component of Kinetic energy |= kT /2

E
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Boltzmann Velocity Distribution

Now consider instead the distribution function of
the kinetic energy E, = (1/2)mv?

f_(e) = fy, (VX — m)"" fy, (Vx = —M)
o 2JEm/2

1 m | 2 —m 2E
N ﬂ\/kT \/Em eXp{sz m }
1 1 1 —E
~ Jz kT JE eXp{7}
This is troubling, as it appears to be in conflict with the
Boltzmann law, but -no - walit :
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Boltzmann Velocity Distribution

Where Is the conflict ?

This physical example forces us to think hard about the definition
of a distribution function :

f. (%) - & = probability that the R.V. X isfound
within ¢ of x,.

g inwhat units ? In units of x of course.

Stat thermo give us the probabilities of a *state * being occupied,
and the states are * not * distributed uniformly in energy.
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