ECE594l Notes set 3: Stat. Thero.: Recap / key points.

Mark Rodwell
University of California, Santa Barbara

References and Citations:

Sources / Citations :

Kittel and Kroemer: Thermal Physics

Van der Ziel: Noise in Solid - State Devices

Papoulis: Probability and Random Variables (hard, comprehensive)

Peyton Z. Peebles: Probability, Random Variables, Random Signal Principles (introductory)

Wozencraft & Jacobs: Principles of Communications Engineering.

Motchenbak er: Low Noise Electronic Design

Information theory lecture notes: Thomas Cover, Stanford, circa 1982

Probability lecture notes: Martin Hellman, Stanford, circa 1982

National Semiconductor Linear Applications Notes: Noise in circuits.

Suggested references for study.

Van der Ziel, Wozencraft & Jacobs, Peebles, Kittel and Kroemer

Papers by Fukui (device noise), Smith & Personik (optical receiver design)

National Semi. App. Notes (!)

Cover and Williams: Elements of Information Theory

Statistical Thermodynamics

Why discuss?

Temperatur e

Boltzmann distribution

Material needed to derive thermal noise carrier velocity distributions similarly to information theory.

Thermal distributions

Consider a system of N particles.

Each particle at energy $E_0 = 0$ or energy $E_1 \neq 0$.

Suppose system has total energy $E_T = m_1 E_1$, where m_1 is the # of particles in state E_1 .

Total # of {ways, arrangements, configurations} to have energy E_T is:

$$g(N, E_T = m_1 E_1) = {N \choose m_1} = \frac{N!}{m_1!(N - m_1)!}$$

We need to approximate this...

Recall: Convergence of Binomial upon Gaussian

N Bernoulli trials:

$$P(k \text{ successes } | N \text{ trials}) = P(k | N) = {N \choose k} p^k q^{N-k}$$

If (Papoulis 1965, p. 66) npq >> 1 and if $|k - np| \sim O(\sqrt{npq})$ or less, then:

$$p_n(k) \cong \frac{1}{\sqrt{2\pi}\sqrt{npq}} \exp\left[-\frac{(k-np)^2}{2(npq)}\right]$$

This is a Gaussian of mean *np* and variance *npq*.

of System configurations.

How can we use this?

Binomial distribution:

$$P(m \text{ successes } | N \text{ trials}) = P(m | N) = {N \choose m} p^m q^{N-m}$$

If
$$p = q = 1/2$$
, then $P(m | N) = {N \choose m} p^m q^{N-m} = {N \choose m} * (1/2)^N$

Hence
$$g(N,m) = {N \choose m} = P(m \mid N) \cdot 2^N$$
.

...i.e. we have related the multiplicity function to the Binomial distribution function.

of System configurations.

$$g(N,m) = {N \choose m} = P(m \mid N) \cdot 2^{N}.$$

Now use Binomial \rightarrow Gaussian limit

$$p_N(m) \approx \frac{1}{\sqrt{2\pi}\sqrt{Npq}} \exp\left[-\frac{(m-Np)^2}{2(Npq)}\right]$$
$$= \frac{1}{\sqrt{2\pi}\sqrt{N/4}} \exp\left[-\frac{(m-N/2)^2}{2(N/4)}\right]$$

So:
$$g(N,m) = \frac{2^N}{\sqrt{2\pi}\sqrt{N/4}} \exp\left[-\frac{(m-N/2)^2}{2(N/4)}\right]$$

of System configurations.

$$g(N,m) \cong 2^N \frac{1}{\sqrt{2\pi} \cdot \sigma_M} \exp \left[-\frac{1}{2} \frac{(m - \overline{m})^2}{\sigma_M^2} \right]$$

where $\sigma_M = N^{1/2} / 2$ and $\overline{m} = N / 2$

g = Multiplicity function

= # ways system of N particles can have energy mE_1 .

g is * not * a probability distribution.

g is approximately Gaussian with mean N/2 and variance N/2.

of System configurations.distributions

$$g(N,m) \cong 2^N \frac{1}{\sqrt{2\pi} \cdot \sigma_M} \exp \left[-\frac{1}{2} \frac{(m - \overline{m})^2}{\sigma_M^2} \right]$$
 where $\sigma_M = N^{1/2}/2$ and $\overline{m} = N/2$

Given a system with $6.02 \cdot 10^{22}$ particles, $\sigma_N = \sqrt{N} / 2 = 3.9 \cdot 10^{11}$

Multiplicity function is * very * narrow

Coupled Systems

Now consider two such systems:

If the 2 systems remain separated, then the multiplicity functions (# of ways of having these Energies) are $g_1(N_1, m_1)$ and $g_2(N_2, m_2)$

Overall multiplicity function : $g_T(N_1, N_2, m_1, m_2) = g_1(N_1, m_1) g_2(N_2, m_2)$

Coupled Systems

Now bring the 2 systems in contact and let then exchange energy:

If the energy exchange $1 \rightarrow 2$ is mE_1 , then

$$g_T(N_1, N_2, m_1, m_2, m) = g_1(N_1, m_1 - m) \cdot g_2(N_2, m_2 + m)$$

Coupled Systems

$$g_T(N_1, N_2, m_1, m_2, m) = g_1(N_1, m_1 - m) \cdot g_2(N_2, m_2 + m)$$

but $g_1(N_1, m_1 - m) = \text{Gaussian}$ with mean $N_1/2$ and variance $N_1/4$ and similarly for $g_2(N_2, m_2 + m)$, so:

$$g_T(N_1, N_2, m_1, m_2, m)$$

$$= \frac{2^{N_1+N_2}}{2\pi \cdot \sqrt{N_1N_2/16}} \exp \left[\frac{-2(m_1-m-N_1/2)^2}{N_1} - \frac{2(m_2+m-N_2/2)^2}{N_2} \right]$$

This is a Gaussian function of m with a variance of $\sigma_m^2 = \left(\frac{4}{N_1} + \frac{4}{N_2}\right)^{-1}$.

 \rightarrow peaked over a very narrow range, $\pm \sigma_m$, of m.

Becuase σ_M is so narrow, it is likely with probability $(1-\varepsilon)$ that the final configuration of the coupled system is that which gives the largest g_T .

Entropy and Temperature

Define Entropy : $S \equiv k \cdot \ln(g_T)$ where k = Boltzmann's constant choice of k is arbitrary.

Maximizing $g_T(N_1, N_2, m_1, m_2, m) = g_1(N_1, m_1 - m) \cdot g_2(N_2, m_2 + m)$ corresponds to setting $\frac{\partial}{\partial m} \ln(g_1) = \frac{\partial}{\partial m} \ln(g_2)$.

Hence
$$\frac{\partial}{\partial m} S_1(N_1, m_1) = \frac{\partial}{\partial m} S_2(N_2, m_2).$$

Since $E = mE_1$, we have : $\frac{\partial}{\partial E} S_1(E) = \frac{\partial}{\partial E} S_2(E_2)$.

Define (temperature)⁻¹ = $\frac{\partial}{\partial E} S(E)$, from which: $T_1 = T_2$

Entropy and Temperature: Summary

Bring two systems into contact, and they will exchange energy until

$$T_1 = T_2$$
 "temperatur es are equal"

where $\frac{1}{T} = \frac{\partial}{\partial E} S(E)$ derivative of Entropy with Energy.

and :
$$S = k \cdot \ln(g(N, E))$$
 Entropy

and g(N, E) Multiplicity

of arrangements of a system of N particles having total energy E.

N₁ particles m₁ in state E=E₁ (others in state E=0) E_{Tx}=m₄E₄ N_2 particles m_2 in state $E=E_1$ (others in state E=0) $E_{T,2}=m_2E_1$

Boltzmann Law

Now examine the probability distribution of energy of some particle which can be in one of several states:

We consider a large system R (reservoir) in thermal contact with a small subsystem S.

What are the probabilities of various states of the subsystem?

Boltzmann Law

We are specifying a particular state of the subsystem

 \rightarrow multiplicity (g) of this state is 1.

states of reservoir corresponding to S being in a state of energy E: $g_R(E_0 - \varepsilon)$

If we assume that all reservoir states are equally probable : $P(S \text{ in state of energy } \varepsilon) \propto g_R(E_0 - \varepsilon)$

So:
$$\frac{P(\varepsilon_1)}{P(\varepsilon_1)} = \frac{g_R(E_0 - \varepsilon_1)}{g_R(E_0 - \varepsilon_2)}$$

 $P(\varepsilon_i)$ is the probability of occupancy of a * state * of energy ε_i .

Boltzmann Law

But $k \ln(g) = S \Rightarrow g = \exp\{S/k\}$

$$\frac{P(\varepsilon_1)}{P(\varepsilon_1)} = \frac{g_R(E_0 - \varepsilon_1)}{g_R(E_0 - \varepsilon_2)} = \frac{\exp\{S_R(E_0 - \varepsilon_1)/k\}}{\exp\{S_R(E_0 - \varepsilon_2)/k\}} = \exp\{\frac{S_R(E_0 - \varepsilon_1) - S_R(E_0 - \varepsilon_2)}{k}\}$$

But
$$S_R(E_0 - \varepsilon_1) = S_R(E_0) - \varepsilon_1 \frac{\partial S_R(E_0)}{\partial E} - O(\varepsilon_1^2) - \dots = S_R(E_0) - \frac{\varepsilon_1}{T_R} - \dots$$

If the reservoir is big, the deriviatives are small, and 1st - order is enough:

$$\frac{P(\varepsilon_1)}{P(\varepsilon_2)} = \exp\left\{\frac{\varepsilon_2 - \varepsilon_1}{kT}\right\}$$

Important: this is the probability of a sub-system with 1 degree of freedom (g = 1) being in a particular state, not the probability distribution of Energy. These differ because states are not uniformly distributed in energy.

Partition Function

(I don't recollect whether we need this for the present course)

If the system S has allowed states s, then

$$P(\varepsilon_i) = \frac{\exp(-\varepsilon_i/kT)}{Z}$$

where $Z = \text{partition function} = \sum_{s} \exp(-E(s)/kT)$

Consider velocity distribution of a gas.

Single particle in a box:

Allowed kinetic energies :

$$E(n_x, n_y, n_z) = \frac{\hbar^2}{2m} \cdot \left(\frac{\pi}{L}\right)^2 \cdot \left(n_x^2 + n_y^2 + n_z^2\right).$$

$$(m/2)(v_x^2 + v_y^2 + v_z^2) = E$$

If the (particle + box) is in equilibrium with a reservoir of temperature T, then

$$\frac{P(\text{atom in state of energy } \varepsilon_2)}{P(\text{atom in state of energy } \varepsilon_1)} = \exp\left\{\frac{\varepsilon_1 - \varepsilon_2}{kT}\right\}$$

Note available states are spaced in equal increments of (n_x, n_y, n_z) , hence in equal increments of velocity $(v_x, v_y, z_z)^*$, and not in equal increments in energy.

^{*} Because $v = \hbar k / m = \hbar \pi n / Lm$

$$P(n_x < N_x \le n_x + \delta n_x) = \delta n_x \cdot C \cdot \exp\left\{\frac{-\hbar^2 \pi^2 n_x^2}{2mL^2} \frac{1}{kT}\right\}$$

Change variables from N_x to v_x :

$$P(v_x < V_x \le v_x + \delta v_x) = \delta v_x \cdot D \cdot \exp\left\{\frac{-mv_x^2}{2kT}\right\}$$

$$= \delta v_x \cdot \frac{1}{\sqrt{2\pi}} \sqrt{\frac{m}{kT}} \cdot \exp\left\{\frac{-mv_x^2}{2kT}\right\}$$

i.e., $f_{V_x}(v_x)$ is exponential in $E(v_x)/kT$

but $f_{E(V_x)}(E(v_x))$ is not exponential in E/kT

The distribution function of v_r is:

$$f_{V_x}(v_x) = \delta v_x \cdot \frac{1}{\sqrt{2\pi}} \sqrt{\frac{m}{kT}} \cdot \exp\left\{\frac{-mv_x^2}{2kT}\right\}$$

This is a Gaussian with zero mean and variance $\sigma_{V_x}^2 = kT/m$.

$$E[V_x^2] = \sigma_{V_x}^2 = kT/m.$$

$$E\left\lceil \frac{mV_x^2}{2}\right\rceil = \frac{kT}{m} \cdot \frac{m}{2} = \frac{kT}{2}$$

E[x - component of kinetic energy] = kT/2

Now consider instead the distribution function of the kinetic energy $E_x = (1/2)mv_x^2$

$$f_{E}(e) = \frac{f_{V_{x}}\left(v_{x} = \sqrt{2E/m}\right) + f_{V_{x}}\left(v_{x} = -\sqrt{2E/m}\right)}{2\sqrt{Em/2}}$$

$$= \frac{1}{\sqrt{2\pi}}\sqrt{\frac{m}{kT}}\sqrt{\frac{2}{Em}}\exp\left\{\frac{-m}{2kT}\frac{2E}{m}\right\}$$

$$= \frac{1}{\sqrt{\pi}}\frac{1}{\sqrt{kT}}\frac{1}{\sqrt{E}}\exp\left\{\frac{-E}{kT}\right\}$$

This is troubling, as it appears to be in conflict with the Boltzmann law, but - no - wait:

Where is the conflict?

This physical example forces us to think hard about the definition of a distribution function :

$$f_X(x_1) \cdot \varepsilon$$
 = probability that the R.V. X is found within ε of x_1 .

 ε in what units? In units of x of course.

Stat thermo give us the probabilities of a * state * being occupied, and the states are * not * distributed uniformly in energy.

asdfdfasddf