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Probability lecture notes : Martin Hellman, Stanford, circa 1982

National Semiconductor Linear Applications Notes : Noise in circuits.
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Recall: Distribution Function of Random Variable

During an experiment,a random variable X takes on a particular value x.
The probability that x lies between x, and X, IS

P{x, < X< X} = [ fy (x)dx
f. (x) is the probability distribution function.

f(x)

A
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Mean values and expectations
|

Expectation of a function g(X) of the random variable X

E[g(x)]= j g () fy (X)X

Mean Value of X

(X)=X = E[X]szfx(x)dx

Expected value of X°

(x?)=E[x?]= szfx(x)dx
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Variance

The variance o of X is its root - mean - square deviation
from its average value

ot =((x = xP) = E[(x = %)]= [(x= %] f, (x)cx

The standard deviation o, of X issimply
the square root of the variance
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Returning to the Gaussian Distribution

The notation describing the Gaussian distribution :

1 —(x=XxY)
f(X) =

X
should now be clear.

| 1
>




The variance Is the expectation of the square
minus the square of the expectation.
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Example of Expectation: Mean Kinetic Energy

Our particle with a thermal velocity distribution :

2
f, (v,) = J;TT; exp{— z\gz}where o, = kT /m

E[v,]= [v,f,(v,)dv, =0

Ele)= [vit, (v,

(this computes the variance of a Gaussian - - - skip proof)
=o.=kT /m
So, E[Kinetic energy ] = E|[mv2/2|=KkT /2
E[E]=kT /2
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Example of Expectation: Shot Noise (Bernoulli Trial)

1 probability p
0 probability g =(1- p)

E[X]=) xp,(X)=0-q+1-p=p
E[X*]=) x*py(x)=0?-q+1°-p=p
oy =E[X?]-(E[X]f =p’-p=pq

X =<
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Example of Expectation: Quantization "Noise"

-, ; +
Vy=V,re - Vath2

Analog Digital B AL 1.(e)

V V.=V +¢
£ i A P A
A INDP LA P /A

A >
%

o G A
- l -A2 +A/2

If we stipulate that V, isitself an R.V. distributed uni formly

€

over some large range, say = 2" - A, then the quantization error

g I1s uniformly distributed over [-A/2,+A /2

The quantization error is then also an R.V., with

+A/[2 2
E[s]-0, E[s7]=0? = [ $£-2
J A T2

Note that ¢ iIsan R.V. only if V, i1salso an R.V., I.e.
we must be cautious In treating quantizati on error as noise.
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Pairs of Random Variables

To understand random processes,
we must first understand pairs of random variables.

In an experiment, a pair of random variables X and Y
takes on specific particular values x and y.

Their joint behavior is described by the joint distribution f,, (X, Yy)

DB
P{A<Xx<BandC<y< D}=H £ (X, y)dxdy
CA
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Pairs of Random Variables

Marginal distributions must also be defined

+o0B

P{A< x<B}= ” £, (X, y)dxdy

—0 A

=_Ef f, (x)dx

and similarly for Y :

D +ow

P{C<y<D}= j j £, (X, y)dxdy

f, (y)dy

O« 0
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Statistical Independence

In the case where

fxv (X’ Y) — fx (X) fv (y) ’
the variables are said to be statistically independent.

This is not generally expected.
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Conditional Densities

Arises in revising the distribution of an R.V. after making some
observation. Consider the conidtional probability that the R.V.
X 1s less than a specific value x given the occurence of event B.

PI(X < x)|B] = P[(Xj[;;“ ol (x]B)

This is the cumulative distribution of function of X given B.

Distribution function : f, . (x|B) = diFXB(x | B)
X
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Conditional Densities (ll)

Given a pair of random variables (X,Y ), what is the
distibution of X given thatY has some particular value y ?

fyy (X, Y)
fy (y)

fx v (XIY =y)= "1, (X]y)=

If X LY, then f, . (x|y)= f,(X)
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Expectations of a pair of random variables

The expectation of a function g(X, Y) of the random variables Y and Y is

400400

E[g(x y)]= [ [a(x y) fey (%, y)dxdy

—0o0—00

Expectation of X :

-+ 00+00

E[X]=x= _”foY (x, y)dxdy = jxf (x)dx

—00—00

Expectation of X°

+00+00

E[x2]=(x2)= [ [x*f, (x, y)dxdy = jx £, (x)dx

—00—00

...and similarly forY and Y .
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Correlation between random variables

The correlation of X and Y Is

+00+00

Ryy = E[XY]: _[ _[Xy * fyy (X, y)dxdy

—00—00

The covariance of X and Y IS
Cyxy = E[(X _Y)(Y - 7)]: E[XY - XY - Xy +Xy]

=Ry =X-Y

Note that correlation and covariance are the same if either
X orY have zero mean values.



ECE594| notes, M. Rodwell, copyrighted

Correlation versus Covariance

When we are working with voltages and currents, we usually separate
the mean value (DC bias) from the time - varying component.

The random variables then have zero mean.
Correlation is then equal to covariance.

It is therefore common in circuit noise analysis
to use the two terms interchangably.

But, nonzero mean values can return when we e.g. calculate
conditional distributions.

Be careful.
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Correlation Coefficient

The correlation coefficient of X and Y Is

Pxy =Cyy loy0oy

Note the (standard) confusion in terminology
between correlation and covariance.
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Sum of TWO Random Variables

Sum of two random variables : Z = X +Y

Elz?]=E[(X +Y)?|=E[x2+2xY +Y?]
= E[X2|+E[y2]+ 2R,

If X andY both have zero means
Elz?]=E[x?]+ E[r 2]+ 2c,,

This emphasizes the role of correlation.
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Uncorrelated Variables.

Uncorrelated :
C, =0

Statistically independent :
fxv (X1 y) = fx (X) fY (y)

Independen ce implies zero correlation.
Zero correlation does not imply independen ce.

For JGRV's, uncorrelated does imply independen ce



Summing of Noise (Random) Voltages
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Two voltages are applied to the resistor R
The power dissipated in the resistor isa random variable P

E[P] - <P> = %<(V1 +V2)2> = %<V12 +2V)V, +V22>

V12> + %ZC\,N2 + %<V22> (@w
2> + %20\,1\,2 + %<V22>

>

|
<

13+

V2

1 1

2> + E<V22> + B 2Py, 0y, Oy,

<

Ol— B~ T~ O

2\ 1 1,2
\ >+E2<V1V2>+E<Vz )
The noise powers of the two random generators do not add -
-a correllation term must be included.

The instantane ous time values of the random noise voltages do add.
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Shot Noise as a Random Variable
|
l¥44 44 l*
The fiber has transmission probability p.
Send one photon, and call the # of received photons N,.

E[N,]=N,=p and E[Nf]: p SO oy = E[Nf]— N?=p-p’

If we now send many photons (M of them) , transmission of each is
statistically independent, so - - - calling the # of received photons N,

E[N]=M-E[N,]=Mp and o} =M-of =M(p-p?)

Now suppose M >>1, p<<1,and Mp >>1,

— o =N
The variance of the count approaches the mean value of the count.
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Thermal Noise as a Random Variable

|
A capacitor Cisconnected to a resistor R .
The resistor is in equilibrium with a " reservoir" (a warm room) at temperature T

R can exchange energy with the room in the form of heat.
C can dissipate no power : it establishe s thermal equilibrium with
the room via the resistor.

From thermodynamics, any independent degree of freedom of a system
at temperature T has mean energy KT/2, hence

(E)=KT /2
<CV2/2>:kT/2
<V2>:kT/C

\|
/1
py

The noise voltage has variance kT/C.



Distribution of Sums
and
Jointly Gaussian RV's
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Distribution of a Sum of 2 Independent Random Variables

Sum of two * indendent * random variables : Z = X +Y

F,(z2) =P[X +Y <z]= +f£ZIYfXY (X, y)dx]-dy

—00 —0o0

= T, [ 000c-dy

But f,(z) = (;j—z F,(z),s0

f,(z)= j f, (y)f, (z—y)dy, the convolution of f, (y) & f, (2).
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Example: Digital Transmission

e —— (ensitter —— channel receiver ———
cos N (3 )— . out

1>d M

N = thermal noise, Gaussian distribution. G

R =received signal =T + N

f-(t)=01/2)o(t+1)+(1/2)o(t—1) (tistransmitted signal, not time)

f )=t expl 2™
" \2no! 20,

N, S S

—_— - — ’“"2 0-__\.-
A

-
-
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Example of Convolution of 2 Distributions: Communication

Sum of two * indendent * random variables : Z = X +Y

F,(z2) =P[X +Y <z]= +f£ZIYfXY (X, y)dx]-dy

—00 —0o0

= T, [ t000c-dy

But f,(z) = (;j—z F,(z),s0
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Distribution of a Sum of Many Independent RV's

(e J:(e) 1i(e)
o /‘\ /-\_
T e i Vi i e 1 1 1 v 1 e
A2 +A2 -A +A 2N -A +A  +2A

Given f,(z)= | f,(y)f, (2—-y)dy,the convolutionof f (y)& f, (2),
Z Y X Y X

we can see that convolving 1,2,4, ... identical uniform distributions
will slowly lead to a form similar to a Gaussian.

This gives some crude sense of the central limit theorem.
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Distribution of a Sum of a Few Random Variables

Sum of two * perhaps not indendent * random variables: Z = X +Y

F,(z2) =P[X +Y <z]= T(wa (X, y)dx)-dy and f,(z) :j—ZFZ(z)

—00 —00

This is a major difficulty for circuit & system design. Given a random
process (random function of time) V. (t), and a linear filter

V., (t)=aV, (t-0.-7r)+aV, (t-1.7)+aV, (t-2-7)+..

the outputV_, isa sum of random variables, and to find its distributi on
function requires computing convolution integrals.

Jointly Gaussian random variables (next) avoid this difficulty.
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Pairs of Jointly Gaussian Random Variables

If X and Y are Jointly Gaussian :
1

f Y) =
xv (X, Y) Y
Xexp{ 1 [(x—x)z +(x-x)(y—y)+(y—2y)zﬂ

2(1- p3y) o Ox Oy Oy

This definition can be extended to a larger # of variables.

In general, we can have a Jointly Gaussian random vector

(X1’ )(2,...’ Xn)
which is specified by a set of
means X, variances E[x x|, and covariances E[xix j]
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Linear Operations on JGRV's

If X and Y are Jointly Gaussian, and if we define
V=aX +bY andW =cX +dY
ThenV and W are also Jointly Gaussian.

This is stated without proof; the result arises because
convolution of 2 Gaussian functions

produces a Gaussian function.

The result holds for JGRVs of any number.
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Probability distribution after a Linear Operation on JGRV S

V =ENV]=ElaX +bY]|=aX +bY and W =cX +dY
o2 =EN2]-V? =a’E[X 2]+ b’E|Y 2]+ 2ab - E[XY |- (aX +bY)?
ol = EW2|-W? = ¢?E[X 2]+ d?E|Y 2]+ 2cd - E[XY ]- (cX +dY )
C, = EMW |-VW = E[(aX +bY)(cX +dY)]-VW
= ElacX 2 + (ad +bc) XY +bdY 2|-VW
= acE[X ?]+ (ad + bc)E[XY ]+ bd - E|Y 2]- (aX +bY)(cX +dY)

s|feap snoipaj

We can now calculate the joint distribution of V and W.
1

fw (V, W) =
2710, Oy A1 - P

Xexp{_ 1 .((v—v)z L= (w-w) (W_W)Zﬂ

2(1- pow) oy Oy Oy Oy
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Jointly Gaussian Random Variables in N Dimensions

|
Define a set of random variables (a random vector) X and

a covariance matrix C, :

_ Xl | _Cxlxl CX1X2 CxlxN 1
X _ _ C
X=|""| Cy= E[(x—x)(x_x)T]: KX T
‘XN— _CXle CXNXN i
C, isa matrix of correlation coefficients.
1 1 s _
fx (X) = exp| —=- (X =X) CcH(X =X
)~ e 2 X ) S

Key point : linear operations on jointly Gaussian RV's,
such as Y = LX, lead to jointly Gaussian R.V.'s, with C, = LC,L".
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Why are JGRV's Important ?

The math on the last slide was tedious but there is a clear conclusion :

With JGRV' s subjected to linear operations, it issufficient to keep track
of means, correlations, and variances.

With this information, distribution functions can always be simply found.

This vastly simplifies calculations of noise propagation in linear systems
(linear circuits).
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fffff

Linear Filtering Operations —— 7 —

)
F(o=2nf)

AN

%,
From Nyquist's sampling theorem, a bandllmlted waveform is

uniquely determined by its samples at time points (n - z)

- - |

P t

f:

We can therefore analyze a linear filter in discrete time
V,(t)=aV, (t-0-7r)+aV, (t-1-7)+aV, (t—-2-7)+..
We write the signals as vectors :

[Vout(o T) Vout (1 T) outN (n T)] [Voutl’voutZ""’VoutN ]T

Vin — e [Vinl’vinZ""’ in,N]
Hence in some finite time window, V,_, = MV,
Time waveforms are vectors. Filters are linear transformations.
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Linear Filtering Operations

Noise propagating through linear circuits & systems undergoes
linear transformations. Sums of R.V.'sare formed.

If the R.V."sare Jointly Gaussian, then the filtered R.V.'s are also
jointly Gaussian. Hence, we must only calculate means & variances
and covariance s to determine probability distributions.

If the R.VV'sare not jointly Gaussian, probability distributions of the
filtered R.V.'s must be determined by convolution integrals.

It is fortunate that the central limit theorem causes many random
processes to be jointly Gaussian.






Conditional Densities Again

f 1
o (XY = ¥) = £ (x] y) = = ((>;)y)

Conditional Expectation

EL90O0) 1 Y1= [900)- T (X] Y0
Expectation of_o;< given a particular value of Y :
EIX Y11= [ X- fy (X] V)X

Expected value of the RV X, given that we have observed
that the RV'Y has taken on value .

...Important for estimation.
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Estimation

Given an RV Y. we wish to estimate its value — Y .

Possible measure of quality of this estimate : mean - square error
M.S.E. = E[(Y -Y)?]=E[Y2]+Y2-2E[Y]-Y

Minimum mean squared error estimate MMSEE
Y = E[Y ] picked to minimize E[(Y =Y )?]

Minimum mean squared error MMSE
MMSE = E[Y?]+(E[Y])*-2E[Y]-E[Y] =0}
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Estimation

If we observe the R.V. X, and use this observation to estimate
the value of the (presumably correlated) RV Y, then

Y (x) = MMSE estimate of Y given that we observe X = x.

Y (x) = E[Y |x]
MMSE = o2, = E[(Y (X) =Y )?| X]
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Estimation with JGRV's

For a pair of JGRV's X and Y the analysis simplifies :

E[X |y]= X + 2 (y—¥)

2
Oy



