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Random Processes

Draw a set of graphs, on separate sheets of paper,

of functions of voltage vs. time.
Put them into a garbage can.

This garbage can is called
the probability sample space.

Pick out one sheet at random.
This Is our random function of time.

The random process isV (t).
The particular outcome is v(t)
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Time Averages vs. Sample Space Averages

Recall the definion of the expectation of a function g(XX) of a random variable X

E[g(0)]= [g(x) fx(x)dx =g

g Is the *average value * of g, where the average is over the sample space.

]!.n' r/” ’\/\

With our random process definition, T
we can define an average over the (%
] ] VoY s
sample space at some particular time t, : o A
+o0 ]m% \
E[o(v(t)]= o) f (vt)A(vL) [ | —

We can also define an average of any
one outcome function over time : : /

- 1 +T /2 U I I
Al @)]=tim,_.. = [a(u@)ct
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What I1s Random in a Random Process ?

We somehow have the expectation
that the signal " varies randomly with time".

Yet, in our definition, it Is the selection
of the sample which is random. m"’

/‘\\_;_
Ergodicity addresses this discrepancy.  [wo{ x—] \
— "
Its implications are suprising. (o] ——] \
’\;/\ —\




Ergodic Random Processes

An Ergodic random process has
averages over time equal to
averages over the statistical sample space

E[g(v(t,)]= Alg(v,(t)]for alli, all t,

In some sense, we have made
"random variation with time"
equivalent to

"random variation over the sample space”
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Time Samples of Random Processes

With time samples at times t, and t,
the random process V (t) has valuesV (t,) and V (t,).

V (t,) and V (t,) have some joint probability distribution.
They might (or might not) be jointly Gaussian.

V(D)
V(t,) <
v(t,) «l\/

t

1



Random Waveforms are Random Vectors
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Using Nyquist's sampling theorem,

If a random signal is bandlimited,

and if we pick regularly -spaced time samples t,...t ,
we convert our random process into a random vector.

We can thus analyze random signals using
vector analysis and geometry.

~t+
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Stationary Random Processes

|
The statistics of a stationary process do not vary with time.

N™ — order stationarity :
E[f(V(t).V(),.. . VE)]=E[fVE+7)V({,+7),..V(t
.and lower orders

2" — order stationarity :

E[f(V(t).V(t,))]=E[fV(t,+7)V(t,+7))]

lower orders — E[f (V (t,))]= E[f (V (t, + 7)) v(t)

v(t,) <
v(t,) «l\/
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Restrictions on the random processes we consider

We will make following restrictions to make analysis tractable:

The process will be Ergodic.

The process will be stationary to any order: all statistical properties are independent of
time. Many common processes are not stationary, including integrated white noise and 1/f
noise.

The process will be Jointly Gaussian. This means that if the values of a random process
X(t) are sampled at times t1, to, etc, to form random variables X1=X(t1), etc, then X1,X>,

etc. are a jointly Gaussian random variable.

In nature, many random processes result from the sum of a vast number of small
underlying random processses. From the central limit theorem, such processes can
frequently be expected to be Jointly Gaussian.
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Variation of a random process with time
|
For the random process X(t), look at X1=X(t1) and Xo=X(t2).

Ry.x, = E[X,X,] Ijx X, * Ty, (X1, %, )dx,dX,

—00—00

To compute this we need to know the joint probability distribution. We have assumed a
Gaussian process. The above is called the Autocorrellation function. IF the process is
stationary, it is a function only of (t1-tp)=tau, and hence

Ry (7) = E[X(t)X(t + 7)]

this is the autocorrellation function. It describes how rapidly a random voltage varies
with time....

PLEASE recall we are assuming zero-mean random processes (DC bias subtracted). Thus
the autocorrellation and the auto-covariance are the same
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Variation of a random process with time

Note that R, (0)= E[X(t)X(t)]= o} gives the variance of the random process.

The autocorrelation function gives us variance of the random process and the correlation
between its values for two moments in time. If the process is Gaussian, this is enough to
completely describe the process.

RXX (T)

Narrow autocorrelation;
Fast variation

Broad autocorrelation

Slow variation
R, (7)
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Autocorrelation iIs an Estimate of the Variation with Time

If random variables X and Y are Jointly Gaussian, and have zero mean,

then knowledge of the value y of the outome of Y results in a best estimate of X as
follows:

R
E[XY =y]= (XY = y) = =%y

Oy

"The expected value of the random variable X, given that the random variable Y has value
yis..."

Hence, the autocorrellation function tells us the degree to which the signal at time t is
related to the signal at time t+¢

A narrow autocorrelation is indicative of a quickly-varying random process
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Power spectral densities

The autocorrellation function describes how a random process evolves with time.

Find its Fourier transform:

Syx (a)) = I Ryx (T)exp(_ja)f)d T
This is called the power spectral density of the signal.

Remembering the usual Fourier transform relationships, if the power spectrum is broad,
the autocorrellation function is narrow, and the signal varies rapidly--it has content at high
frequencies, and the voltages of any two points are strongly related only if the two points
are close together in time.

If the power spectrum is narrow, the autocorrellation function is broad, and the signal
varies slowly--it has content only at low frequencies and the voltages of any two points are
strongly related unless if the two points are broadly separated in time.



Power spectral densities
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Sxx(omega)

Rxx(tau)

X(T

omega

Sxx(omega)

omega

~ -
time
tau
Rxx(tau)
X(T
tau

time
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Power Spectral Densities

Recall that the power spectral density is
the Fourier transform of the autocorrel ation function

S yx (a)) = j Ryx (Z‘)eXp(— jot)dr
The inverse transform holds, so that
1 ¢ .
Ryx (T) = 2— jsxx (a))exp( Jot)do
n —00
specifical ly,
1 +00
Ryx (0) = (7>2< = 2— _[Sxx (w)jw
n —00

So, if &% iscalled the power in the process, then integrating
the power spectral density will give us the power.

This is the justification for the term, " power spectral density"



Back To Ergodicity (1) R

Statistical autocorrel ation (average over sample space) :
Ry (7) = EIX ()X (t+7)]

Time autocorrel ation function (note subscripts) of a particular
outcome X (t) of the random process X(t).

R () = ALX (O (t+ )] = lim, _, = j (O (t+ 7)ot

-T/2

If X(t)is Ergodic, then R, , (7) = Ry (z) for *all * outcomes X; (t).



ECE594| notes, M. Rodwell, copyrighted

Back To Ergodicity (2) RS

If X (t) is Ergodic, then R, , (7) = Ry (7) for *all * outcomes
inxi (T) = A[Xi (t) Xi (t + Z')] = RXX (T)

ER

BUL R, , (1) = 55, (@)= 51X, (j0) X, (jo)]
where (notation problems) X. (jw) is the Fourier transform of x. (t).

So, every outcome x. (t) has the same Fourier Magnitude || X (j®) ||.
Each outcome x, (t) likely has a different Fourier phase.
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Correlated Random Processes

Two processes can be statistically related.
Consider two random processes X(t) and Y(t).

Define the cross - correllation function of the processes
Ry (T) =E [X (t)Y (t T T)]

They will have a cross - spectral density as follows :

Sy (@)= TRXY (z)exp(- jeor)dz

and therefore R,, (7 j S, (w)exp(jor)dw
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Single-Sided Hz-based Spectral Densities

Double - Sided Spectral Densities

Rxx( ) [X (t)X(t-I—z') _[Sxx ja))exp(Ja)r)da)
Sy (jo)= ijx Jexp(- jor)dz

Single - Sided Hz - based Spectral Densities

R (r) = EX OX (t+2)]= - [, (i Jexp( j2rt e

—~

S xx (Jf ): 2 _[ Ryx (T)exp(_ J27f7)d7
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Single-Sided Hz-based Spectral Densities- Why ?

Why this notation ?
The signal power in the bandwidth {f,ow, fhigh}

flow fhlgh fhlgh

Power = = jsxx Jf)df+ | S (i B =[S (if Mf

fhlgh fIow fIow

— S, (jf )isdirectly the Watts of signal power
per Hz of signal bandwidth
at frequencie s lying close to the frequency f.
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Single-Sided Hz-based Cross Spectral Densities

Double - Sided Cross Spectral Densities

R (£)= EX Y (t+ )] = == - [Su(i@)erp(jonde
SXY ja) J-va eXp( Jotr)dr

Single - Sided Hz - based Cross Spectral Densities

R (0)= EIX Y (t+ )] = - 5, (if Jexp( j2ata

~

Sy (if)=2 [ Ry (r)exp(— j2afr)d7

~

S, (jf )is also often written as dif<XY )



Example: Cross Spectral Densities

V() = X (1) +Y (1)

y (&) X P=V2/R
R (D)= EXO+Y XX+ +Y )] . By TR
= Ryx (T)+ Ryy (T)+ Ryy (T)+ Ryx (T)

Sw (Ja))

XX (Ja))+ Syy (Ja))+ Sy (Ja))"' Sk (Ja))

S
Syx (Ja))"' Svy (Ja))'l' 2 Re{sxv (Ja))}

Or, in single - sided spectral densities

‘vav(j]c ): §xx (Jf )"' §YY (Jf )+ 2 Re{§XY (Jf )}
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Example: Cross Spectral Densities

The Power P =V *(t) /R has expected value " @ X P=V?R
V
ENV(t)V(t)/R]=R,, (0)/R y SR

And In the bandwidth between f,,, and f

low

Fhigh

P =[Sy (if )df..

flow

Integrating with respect to frequency (over whatever bandwidth is relevant)
gives the total (expected) power dissipated in R.

Note that the cross - spectral density is relevant.
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Our Notation for Spectral Densities and Correlations

Random Process Outcome
function of time V(1) Vv(t)
function of frequency V(jf),V(jo) v(Jf),v(jw)

autocorrelation function R, (z)=EN (t)V (t+7)] R, () = Ajv(t)v(t +7)]
o [ S, (jo) = %R, ()]
Sw (Jw) = J[va (7)]

A S (i0) =V(jo)V' (jo)
Sw (Jf)=2S,, (Jol2r) \§W(jf)=23W(ja)/27Z')
crosscorre lation function R, (7) = E[X ()Y (t + r)] R, (7)= A[v(t)y(t + r)]

S,., (jo) = F[R,, ()] S, (j0) = F[R, ()]

~ . : ¢S, (jo)=x(jo)y (jo)
Sw(jf)=2S,, (jol!2r) Y _
XY XY S, (1) =25, (Jol 27)

N

power spectral density {

cross spectral density {

When context makes it clear whether v =v(t) or v =v( jw), we can simply write v.

For stationary ergodic processes
Sw(i®) =S, (jo)=v(jo)v (jo)and Sy, (jo) =S, (jo) = x(jo)y (jo)
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Example: Noise passing through filters & linear electrical networks

|
If the filter has impulse response h(t) and transfer function h( jw),

then for any vy, () = Vo (1), Vou (j@) = h(j@)v,,(j)

So
Vou (J0)Vou (j@) = h(jo)V,, (jo)h" (jo)vi (jo)
mvmuw) = h(j®)[’S, . (o)
v, (J0) = [n(j@)|° S,y (jo)

Vou (J0)V;, (jo) = h(jo)v,, (jo)v, (j)
Sy, (@) =N(J@)S, , (jo)
VoutVin (Jo)=h(jw) Svmvin (Jo) Vin(t)

h(t) Vout(t)
—P- —p—

It is trivial to change to single - sided Hz - based spectral densities.



