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National Semi. App. Notes (1)
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Boltzmann Law

ButkIn(g)=S = g=exp{S/k}

P(e,)  0g(Eg—¢&) eXp{SR(Eo _‘91)/k}_ex {SR(EO - &) — Sp(E, _‘92)}
P()  0a(Ey,—2,)  explS,(E,—z,)/k} P K
&

05a(Bo) _qr2y_  _ &
= O(g)—... =Si(Ey) T

But Sg (E, — &) = Sg(Ep) — &
If the reservoir is big, the deriviatives are small, and 1¥ - order is enough :

P(&,) _ exp{gz — 51}
P(s,) KT

Important : this is the probabilty of a sub - system with 1degree
of freedom (g =1) being in a particular state, not the probability

distribution of Energy. These differ because states are not
uniformly distributed in energy.
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Partition Function

If the system S has allowed states s, then

exp(—¢; /KT)
Z
where Z = partition function = Zexp(—E(s)/kT)

P(s) =
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Background: Harmonic Oscillator

Photons in a mode at frequency f — harmonic oscillator at f

' W Quantum narmonic oO..

L o C | ¥¢ http://en. W|k|ped|a org/wiki/Quantum_harmonic_oscillator b O F~
rodwel_group {3 other bookmarks

= What links here 3 % 5 g _ A

+ Rekited chianges One-dimensional harmonic oscillator [edit]

= Upload file

= Special pages Hamiltonian and energy eigenstates [edi]

Printable version

= Permanent link In the one-dimensional harmonic oscillator problem, a particle of mass m is subject to a potential V{x) given by :

= Cite this page V(z) = —?n ?3;2 ; 2= |3
|anQvU3995 where w is the angular frequency of the oscillator. In classical mechanics, mu:? — |} is called the spring stiffness coefficient, ' "
" Cesky force constant or spring constant, and w the angular frequency. o
= Deutsch o
= Espafiol The Hamiltonian of the particle is: i
= Francais ﬁ? 1 =
= Galego H = — —?nu_;?;f:? Wavefunction representations for &
= T 2 m 2 ! the first eight bound eigenstates, n =
) - " - . 0 to 7. The horizontal axis sh

= |taliano where z = g is the position operator, and p is the momentum operator, given by theopositi;n Xor?ho.: :raap?: :reD:;t
) 1;11"1151 a normalised
= Magyar a

=th—.
= Polski 4 8117
= Portugués ) ) N N ) h . o =
« Pycckmil The first term in the Hamiltonian represents the kinetic energy of the particle, and the second term represents the potential energy in
= Suomi which it resides. In order to find the energy levels and the corresponding energy eigenstates, we must solve the time-independent
= VkpaHceka Schrddinger equation,
L Hp)=E) .

We can solve the differential equation in the coordinate basis, using a spectral method. It turns out that there is a family of solutions.
In the position basis they are

1 1y 174 2 — Probability densities |gy(x)2 &
muw Wz m g
(1} (.T,) = | — . 5_m'_5ﬁr - H _wx n=01.2 .. .. for the bound eigenstates,
n On nl Th " h " L beginning with the ground state
(= 0) at the bottorn and
The functions H,; are the Hermite polynomials: increasing in energy toward the
5 du 5 top. The horizontal axis shows
Hn(x) —_ (_1)"‘63' (6_3') the position. x, and brigh.tgr colors
represent higher probability
densities.

The corresponding energy levels are

E, = hw (n - %)

This energy spectrum is noteworthy for three reasons. Firstly, the energies are "quantized", and may only take the discrete half-integer multiples of fj . This is a
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Energy of Photons in Some Mode

Electromag netic mode with frequency w.

Allowed energies of the state :
E.=(1/2+s)w=(1/2+s)hf where sisan integer.

Partition function :
Z =) exp{-E, /KT

states
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Energy of Photons in Some Mode
B —(s+112)he | < —ho | —Shw
‘ _S%e:fxp{ T }—gexp{ sz} exp{ T }

—exp{_hw} 1
2KT | 1—exp{-ha/KT }

Probability of occupancy of astate s:

P(s) =

1_eX ﬂ
exp(—E(s)/KT) ( ha)j ( ha)j PV kT
:eXp _Sﬁ °eXp — .
z ex
hao
= eXp(— Sﬁj (1—exp{—ha)/kT })

This is the probabilty of having (s +1/2) photons in mode % .
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Energy of Photons in Some Mode

P(s) = exp(— Si_ij (1—exp{~haw/KT })

Expected value of s:

E[s]=)_s-P(s) = (skip steps) = 1
s=0 hao
exp| — |1
(ij
But E=7w(s+1/2),s0

(E) =ho|(s)+1/2]= hzw ., ho

exp(i?) -1

This is the averge mode energy at frequency 7z w.

— KT for kT << fiw
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Nyquist's Noise Derivation (from Van der Ziel)

length L, velocity v, characteristic impedance Z,,

Transmission - line with matched resistors. TemperatureT.

Each resistor has a thermal noise voltage. This causes a voltage
wave to flow left- > right (V) and right - left (V,).

Define P,, = power available from each resistor in frequency
interval Af.  From this, S, , (jf)=S, , (jf)=4R-P,/Af.

n2Vn2

Power on line
Pie=2-P, 1/v

Line
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Nyquist's Noise Derivation (from Van der Ziel)

length L, velocity v, characteristic impedance Z,

Trap this propagating radiation by closing 2 switches.

With switches closed, allowed frequenciesare n(v/2l)

# allowed frequencie s within considered bandwidth Af :
#=Af -n(2l/v)
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Nyquist's Noise Derivation ( from Van der Ziel )

Energy in line = (Power from resistors) - (propagation time)
=P,y - (211v)
Energy in line = (# modes in Af) - (energy per mode)

_Af-(20/v) | P2 hao
2 exp(ho/KT)-1

SO
P = Af . ha)+ hw _AF hf+ hf
2 exp(ho/KkT)-1 2 exp(hf /kT)-1

Andsince S, , (jf)=S, , (if)=4R-P,/Af

_— hf nf
S f)=4R- +
Vv UT) { 2 exp(nf /kT)—J




ECE594| notes, M. Rodwell, copyrighted

Nyquist's Noise Derivation ( from Van der Ziel )

L hf
2 exp(hf /KT )-1

dP,, | hf hf
= +
df 2 exp(hf /kT)-1

_ hf hf
S f)=4R- +
Vv UT) { 2 exp(hf /kT)—J

k=1.38-10"J/K,h=6.6-10""J-s, #=1.06-10""J-s
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Comment about Noise Derivation

Another derivation uses an RLC resonator.
The physics is simpler, the math more complex.

In both cases we have the same underlying difficulty.

In coupling the resonator to resistors, the resonator linewidth
becomes non - zero, and allowed frequencie s extend over some
small bandwidth, rather than being restricted to the single
frequency of a quantum harmonic oscillator.
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Avallable Thermal Noise Power

Maximum power transfer : load R matched to generator R.
With matched load, voltage across load is E,, /2

R
With matched load, current through load is I, /2 R
En
Given that
S, (if)=4kTR or 5, (if)=2KL o B _y7
ntn n'n R df
I
R R

P..q 1S the maximum (the available) noise power, hence
dI:)available,noise _ kT
df

All resistors have equal available noise power.

Any compononent under ther mal equilibrium (no bias) follows this law.
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Thermal Noise

~ R
SEE(jf):4R* nt + ht R In
oy 2 exp(hf/kT)-1]

y_Au[hf hf
R | 2 exp(hf /KT)-1

S,.,. (if

For hf << kT these become
Se ¢ (jf)=4KTR
4KT

1, (i) === =

A Available Power

>
hF=kT Frequency



|||||||||||||||||||||||||||||||

Noise from any impedance under thermal equmbrlum

For any component or complex network under ther mal equilibrium
( no energy supply)

dI:)available,noise _ kT g
df
Se e (if)=4KT Re(Z) or S, , (jf)=4kT Re(Y) g

This follows from the 2™ law of thermodynamics.
This allows quick noise calculation of complex passive networks
This allows quick noise calculation of antennas.

Biased semiconductor devices are NOT in thermal equilibrium.



ECE594| notes, M. Rodwell, copyrighted

Noise from any impedance: Example

Z(jo)
C R, IkQ
I nF My 9
,J
J_ 1kQ)
e
First method to calculate noise
Z(jo)=Ri+—2 =R e JORC)
1+ JoR,C (1+ joR,C)(1- jwR,C)
:R1+R2(1_2Ja)2RZS):R1+ 52 2~2 wazg 2
1+ o°R,C 1+ w"R,C° 1+ w°R;C
R

Z(jo) = R(jo)+ jX (jw) where R(jw) = R, +

2
1+ w’R2C?
S, (if) = 4KTR(j)

=4KT -| R, + 522 >
1+ o°R,C




Noise from any impedance: Example
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E
( R "
) ]m’j_ @
Second method to calculate noise
1 T Fe
en,total(ja)) :enl(ja))+en2(ja)) .
1+ JoR,C
. e e
I - N T e, +—"2
n,total ~n,total ( nl l-l- ]C()R Cj [ nl 1+ ]C()RZC
— enle;:l enzenz + enlen2 + enZenl

1+ w’R;C* 1- joR,C 1+ jaoR,C
But e e, =e e, =0because the processes are independent
St e, (JF)
f 'f _|_ En,ZEn,Z
(J ) nlEn,l(J ) 1-|—(272f)2R22C2

4KTR,
+ (24 )’ RZC?

n total En total

= 4KTR, +
1

....5dME ansSwer.
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Noise from an Antenna

P <
d ava|(|ja1t:)|e,n0|se — kT = SEnEn(jf) = 4kT RE(Z)

The antenna has both Ohmic and radiation resistances.

Rrad
The Ohmic resistance has a noise voltage of spectral density T
AKT, viont Ronmic » Where T_ . 1S the physical antenna te mperature @ En,rad
Rloss

By the 2™ law, the radiation resistance has a noise voltage of spectral
. . @ En,loss
density 4kT. R, , Where T, is the average temperature

of the region from which the antenna receives signal power

Inter - galactic space is at 3.8 Kelvin....



Noise on a capacitor
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From

~ : ~ . 4kT R
SEnEn(Jf):4kTR or S|n|n(Jf):T C
We find that En

*

\|

— VC

~ 1 1 ~
Sy (jf)= S f
w. UF) (1+j272’fRCj(l+j2ﬂfRC] c.e, ()

1 ~ .
_ S f
(1+47z2f2R2C2j c.e, (F)

So the mean stored Capacitor energy is

. 1
(1/2)C ) E[\/CVC]_ IO (1+47Z'2f2R2C2

]§EHEH( jf )df =KkT /2

This also follows directly from the Boltzmann law.



