ECE594I Notes set 1: Motivation

Mark Rodwell University of California, Santa Barbara

Why Study Noise?

Not a secondary "add - on" subject.

Noise determines:

range of communications links resolution of measurements precision of control systems.

Noise involves several disciplines

```
math (probability theory)
physics (statistic al thermodynamics)
semiconductor device physics
circuit analysis and design
communication systems & instruments (specific system analysis)
Information theory (generalized system design)
  (information theory is closely related to statistical thermodynamics
   & broadens our understanding of probability.)
```

Agenda

Enough math to serve our needs

Quick coverage of noise physics (stat ther mo).

Transistor & passive element noise models

Circuit noise analysis : component level, 2 - port level

Noise metrics

Instruments

Communications systems: Microwave digital radio, optical links Summary of information theory

We will then quickly cover * missing * circuits material

broadband analog circuits: used in fiber ICs

digital gate delay analysis: communications, instruments

nonlinearity analysis: interference in radio receivers

Problems to solve: (bipolar) transistor noise

How does noise vary with:

...device physical parameters ?

...bias conditions?

...the impedance - match with the generator ?

How would we design the BJT and the circuit

for lowest added noise?

(same questions for FETs)

Problems to solve: broadband preamplifiers

Microphone preamps:

Why use a transformer?

What ratio?

What signal levels could we

expect to detect?

Broadband radio receiver:

Electrically short antenna $l \ll \lambda$

How sensitive can the receiver be?

What are the design challenges?

What device, what circuit should we use?

Problems to solve: optical receiver

What is the minimum detectable power?

How does error rate change with received power?

What preamp design gives best sensitivity?

What are the filter, comparator, and latch for?

What response should the filter have?

Problems to solve: atomic force microscope

What is the minimum observable displacement? Why might the laser 1/f noise matter?

Why might we want to

- (a) modulate the experiment at e.g. 1 kHz and
- (b) detect the signal with a "lock in" amplifier.

References and Citations:

Sources / Citations :

Kittel and Kroemer: Thermal Physics

Van der Ziel: Noise in Solid - State Devices

Papoulis: Probability and Random Variables (hard, comprehensive)

Peyton Z. Peebles: Probability, Random Variables, Random Signal Principles (introductory)

Wozencraft & Jacobs: Principles of Communications Engineering.

Motchenbak er: Low Noise Electronic Design

Information theory lecture notes: Thomas Cover, Stanford, circa 1982

Probability lecture notes: Martin Hellman, Stanford, circa 1982

National Semiconductor Linear Applications Notes: Noise in circuits.

Suggested references for study.

Van der Ziel, Wozencraft & Jacobs, Peebles, Kittel and Kroemer

Papers by Fukui (device noise), Smith & Personik (optical receiver design)

National Semi. App. Notes (!)

Cover and Williams: Elements of Information Theory

Possible Textbooks:

Van der Ziel ...and...

Gabriel Vasilescu:

Electronic noise and interfering signals: principles and applications