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Topics

Sets, probability, conditional probability, Bayes theorem, independen ce.
Bernoulli trials, random variables, density and distribution functions
Binomial distributions. Gaussian and Poisson as limiting cases.

Transformations.
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Set Definitions
|
Set = a collection of objects...
e.g. R={setof all real #s}

C = {set of cards in a deck |

notation : elements lowercase, sets uppercase
A={a,b,c,d}

Finiteset : A={1,2,3,4}
Countably infinite set: B=1{0,2,4,6,8,...}
uncountably infinite set : C = {real #s between 1and 3}
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Subsets : Ac B
A Isasubset of B if all elements of A
are also elements of B.

Strict subsets : Ac B
A 1sa strict subset of B
If all elements of Aare also elements of B,
and If additional ly B has elements which are not in A.
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Sets Aand B, both subsets of universal set S. ‘.’

**UJnion of Sets ** S

C=AuB: setof all elements within either Aor B. ‘.’

Boolean logic terminology: "Aor B" C=A+B.

**|ntersection of Sets ** i
C =AnNnB: setof all elements within both Aor B. ‘.’

Boolean logic terminology : "Aand B" C = AB.
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Other set operations

We can also define other set operations (and hence logic operations)
difference of sets
complements of sets
etc.,

...but we will asssume that the student knows these,
or can figure out as necessary.
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Key point for statistical independen ce.
Two sets are *exclusive *if AN B =1{ }(the empty set), @

l.e. they have no common elements.

In probability, the events Aand B are said to be mutually exclusive.
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Prohahility

Key to the idea of probability isan *experiment™*,
for which there are a set of possible * outcomes *.

—>» oufcome

set of all possible
outcomes =S

experiment

Each possible outcome has a numerical probability.

The sum of the probabilities of all *distinct * outcomes is one
(something always happens).
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Examples of probhability

Toss a coin :
S = {heads, tails}={H,T}
PH)=P(T)=1/2
P(S)=P(H)+P(T)=1

Shoot a photon through a polarizer :
S = {photon received, no photon received }={R, N }
P(R)= P(N)=1/2
P(S) = P(R)+P(N) =1

linear polarizer
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S
An event Is a set of possible outcomes. A 2
C o )

X;, X5, X4, X, &re possible outcomes.

A=Xx,UX, and B=x,uUXx, areevents.
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Rules [ Axioms ) of Probability

Each outcome has probability between 0 and 1.

Given an event which is the union of muntually exclusive events,
Its probability is the sum of the individual probabilities.

P(AUBuUC)=P(A)+P(B)+P(C)
If A, B,and C are distinct events.
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Probability that both A and B occur.

(0-Q-O-dD

P(AnB)=P(A)+P(B)-P(AUB)
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Gonditional Probability

P(A|B): probability of an event A, given the event B.

P(AnB)
P(B)

P(A|B)=

Total probability is obtained by adding up conditional probabilities :

P(A)=P(A|B,)+P(A|B,)+..+ P(A|B,)

But only if the events B, B,,..., B,
...are mutually exclusive, and together make up the sample space S.
ie. B,nB,=1{ jfori=j and B,UB,U..UB, =S5
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Bayes Theorem

Handy for receiver problems.

P(A|B):P(B|A)-%

This follows directly from the definition of conditional probability :

P(AnB)
P(B)

P(A|B)=
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Bayes' Theorem: Binary Communications Channel (1)

P(t
P(t

o)_ T, =1/2 T

transmitter — channel —>» | receiver
1)=T,=1/2

But the channel is noisy :

P(r=1|t=0)=0

P(r=0|t=0)=1] The channel never make a mistake
when a zero Is sent.

1/2} ..but makes mistakes

=1/2 when a one Is sent.



Bayes’ Theorem: Binary Communications Channel (2

P(R,IT,)

P(T)=1/2 T,

Diagram
P(RoIT,) P(R4IT,)

P(Ty=12 T,

P(R,IT,)
P(RolTo):l’ P(RllTO):O
P(R,|T,)=1/2, P(R,|T,)=1/2

Probability that a zero is received :
P(Ry) =P(Ry [To) - P(To) + P(R, | Ty) - P(T,)
=(1)-(1/2) + (1/2) - (1/2) = 3/4



Bayes' Theorem: Binary Communications Channel (3

P(R,IT,)

P(Ro |To): 1, P(Rl |To) =0 P(T)=1/2 T,

P(RoIT,) P(R4IT,)

P(R,|T,)=1/2, P(R,|T,)=1/2

P(T)=1/2 T,

PRI T,
If a zero is received, what is the probability that a one was sent ?
P(T,) 1/2*1/2

P(Ro |T1): P(TllRO) =1/3

P(R,))  3/4
Before receiving the message, we know it has message has equal
probabilities of beingaloraO.

After receiving a zero, the odds are now 2/3:1/3 that a zero
(vs.al) was sent.

Our knowledge has improved, but remains imperfect.
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Two events, A and B, are statistically independent
If their probabilities of occurence are unrelated.

i o P(AF\ B)= P(A)P(B) recall : P(A|B)= P(PA(E)B)

equivalently P(A|B)=P(A)

Independence of Aand Biswrittenas A | B
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2 coin tosses : first toss h, or t;, second toss h, or t,

(h,, h,) (h,. t,)
There are four outcomes

(LY, (tysty)

Define two events : h, hy)  (h,1,)

H, = first coin heads, H, = 2™ coin heads | ,
Z(t,“ hg) ({j’ 'f_")

Note that H, and H, are not mutually exclusive

If we assert from physical arguments that the 2 tosses are L,
then all 4 outcomes have 25% probability.
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If we have 3events, A, B, and C,
then AL B and B C does notimply A1l C
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Bernoulli Trials— Optical Shot Noise: Discrete-Time

Repeatedly peform a trial with binany outcomes.

Do the trial N times.
Each trial : probability of event A isP.

The number of sequences in which A occurs k times is

N!
KI(N —k)!

N
#H= ( y ) ="N choose k" =

So the probability of k occurences in N trials is

N k N —k N k o N—-k
P(k)=(k)p (1-p) =(kjp g

q = (1- p) isastandard notational shortcut.
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Bernoulli Trials— Optical Shot Noise: Discrete-Time

Fiber : probability of photon transmission = P.

transmitter receiver

Event T, : —() ) —
Transmitter sends N, photons for a message "1", with probability =1/2.
Event T, :

Transmitter sends N, photons for a message "0", with probability =1/2.

Passage of each photon isa Bernoulli trial.
- Nl kK N;—k
P(k photons received | N, sent) = P(k |N,) = y P g

N
P(k photons received | N, sent) = P(k | N,) :( koj oMo
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Bernoulli Trials— Optical Shot Noise: Discrete-Time

Problem is closely related to shot - noise - limited optical links.

We are at the receiver. What rule might we use to best decide
what message was sent ?

If you receive k photons, is it more likely thata "1" or "0"
was sent ?
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Bernoulli Trials— Optical Shot Noise: Discrete-Time

P(k) = P(k[T,)P(T,) + P(k [T))P(T,)

C LN v T NG kg
T

So the probability that a 1" was sent given k photons received Is

P(T, k) = P(k[T)P(T,)/ P(k)
LN b
ol
1[N, K N,k 1No K oy No—k
2£kqu 2(kqu

1
L NI(N,=K)T
N,I(N, —k)!
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Bernoulli Trials— Optical Shot Noise: Discrete-Time

This at least tells us the relative odds of a"1" vs. a zero having
been sent, given the message we have received.

Ultimately, we must still guess, with improved odds, as to the
message sent.

One is tempted to choose the more probable outcome directly,
but the best choice depends upon the * relative costs * of the
types of possible errors in guessing.
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Mathematician's picture :

A random variable is a mapping
of the sample space onto the set of real numbers.

Random variables must be bounded : P{X — 00} — 0.

experiment
#

X(b)

e r@al NUMbers

outcomes b; in sample space S

We wish to define the probability that X falls within some range :

P{x, < X <Xx,}.
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Discrete R.V.'s
Only a discrete set of values : finite {1,2,3}, or infinite {1,2,3,4,...}

Continuous R.V.'s
Takes on a continuous range of values : example : X e {real #s}

We can have a continuous sample space and yet a discrete R.V.
Pointer : sample space © < {real #s between O and 27}

RV. Xe{l,234}
(1N
N,




ECE594| notes, M. Rodwell, copyrighted

Random variable X.
Particular value it might take on: x.
Events : {X < x} or {x, < X < x,}

The probability of the event {X < x} is the
cumulative distribution function

F, (X)=P(X £Xx)
S
Distribution function of the random variable X.

| at the particular outcome value x.
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Probability Distribution Function

During an experiment,a random variable X takes on
a particular value x.

The probability that x lies between x;, and x, IS
P{x, < X < X,}= j f. (x)dx

f. (x) Is the probability distribution function. f, (X)

A
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Example: The Gaussian Distribution

The Gaussian distribution : fy(X)

- (X - Y)2 ] — 4—"'2(5)(

1
f, (x)= exp
" 2no; [ :

20,

We will define shortly the mean (X)
and the standard deviation (c?).

| 1—
pa

Because of the *central limit theorem™, physical random processes
arising from the sum of many small effects have probability
distributions close to that of the Gaussian.

Gaussians also important because linear operations on Gaussians
produce Gaussians — simplified math.
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Gaussian Cumulative Distribution Function

( N o X—x) ), .
FX(X) :_J;Ofx (x")dx’' = W jeXp[ (20_3 ) jdX

There i1s no closed - form answer.

F(X) =1 Q( Y}

X

\/;_njexp(_zﬂ jdﬂ

where Q(«) =
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Q(«) can be related to the more well - known *error function *

o-tonl 5]

but Q(«) 1s more directly useful in communcations problems.
| will provide a good tabulation of Q(«), but there is a very good
bound for large « :

a” |1 exp| — a’ <Q(a)< . exp o’
1+a® ) a 2n «/% 2
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Tahulated values of the Q-function

ome values of the Q-functionare given below for reference.

0.500000000 0.158655254 0.022750132 0.001349898
0.460172163 0.135666061 0.017864421 0.000967603
0.420740291 0.115069670 0.013903448 0.000687138
0.382088578 0.096800485 0.010724110 0.000483424
0.344578258 0.080756659 0.008197536 0.000336929
0.308537539 0.066807201 0.006209665 0.000232629
0.274253118 0.054799292 0.004661188 0.000159109
0.241963652 0.044565463 0.003466974 0.000107800
0.211855399 0.035930319 0.002555130 0.000072348
0.184060125 0.028716560 0.001865813 0.000048096

0.000031671
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L el XX e o XX
F.(X) = waz _[oexp( = de_l Q( ij

WhereQ(a):\/;_nJ'exp(_z'B jdﬂ fol%)

=l
=

Oy

Q(ﬂj gives the probability of the Gaussian

exceeding its mean (X) by ((x — X)/o, )standard deviations.
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Example: Digital Transmission

— transmitter channel receiver

o0 uD . + out
transmitted { 0 received P
signal: T i signal: R { + )

thermaf Vith
noise: N

= thermal noise, Gaussian distribution, adds to signal.
Receiver decides between "0" & "1" depending on whether
R =T + N is bigger than or smaller than 1/2.

f.(t)=(1/2)o(t)+(1/2)o(t—1) (tistransmitted signal, not time)

2
20,

—\2
f (n)= L 2 expL_ (n-m) jwith m=0and o, = 0.25 (say)
21O,
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Example: Digital Transmission

What is the probability of error, given that a zero was sent ?

P(error |[T=0)=P(R>1/2|T =0)=P(N >1/2}
=1-P(N <1/2}=1-F,(n=1/2)

:Q(1/2—ﬁ):Q(2)

O\
=0.023
In this context, the signal /noise ratio is2and Q(2) is the
probability of error. Jr(T)
A

\

N
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Bernoulli Trials — Binomial Distribution

N Bernoulli trials :
N
P(k successes | N trials) = P(k | N) = ( ) ] phgqh
note that k 1s a discrete random variable.
Call x the # of sucesses, a continuous random variable :
N (N
f ()= [p“g" 5 (x—K)
k=0 k
...which is just a change in notation.
Important because :

- arises in problems involving counting | events — shot noise
- leads to other distributions as limiting cases.
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Binomial— Gaussian

N Bernoulli trials :
i B _ N k Nk
P(k successes | N trials) = P(k | N) = y P q

If (Papoulis 1965, p.66) npgq>>1
and if |k —np |~ O(q/npq )or less, then :

1 (k —np)?
K) = —
Pal) V27 \Inpg eXp{ 2(npq) }

This is a Gaussian of mean np and variance npqg.
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Binomial— Poisson

N
N Bernoulli trials : P(k successes | N trials) = P(k|N) = ( ) j pkg

If (Papoulis 1965, p.71) n>>1 p<<1, butnpisnot>>1, then:

(N)pquk ~ o NP (Np)*

k k!
ak
I.e. the distribution approaches the Possion distribution : P(k) = e™ o
transmitter fiber receiver
send 108 photons = () ) —>

transmission probability = 1077
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( Xx—b
L (X) = - (1/a) exp[— T} forx>b

0 otherwise

.

This will show up in thermally - driven distributions
(Boltzmann)
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Transformations of a Random Variable

Suppose Y =Y (X), where Y (X)isal-1function, and given some f, (X).
P(y, <Y <¥,) =P(X, < X <X;) where y, = y(X,), Y, = y(X,)

If X, =X, + &, then y2:y1+gd—y

dx|,,
SO,

oL )] = 2 [ ()

X

or, more clearly

f, (X
fY(yl): X(l)
dy
dx|,,
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Transformations of a Random Variable

This assumed a1-1function, i.e. each range in Y corresponds to
asingle range in X.  This may not always be true...

Consider y = cx”:
Then the regions x ~1and x ~-1both maptoy ~ c.

The density function for y is then

APSURO €3] N L] N 1 773 M RIS
y\)1 2CX |,_ e 2CX e JyTc 2\/&
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Sources / Citations :

Kittel and Kroemer : Thermal Physics

Van der Ziel : Noise in Solid - State Devices

Papoulis : Probability and Random Variables (hard, comprehensive)

Peyton Z. Peebles : Probability, Random Variables, Random Signal Principles (introductory)
Wozencraft & Jacobs : Principles of Communications Engineering.

Motchenbaker : Low Noise Electronic Design

Information theory lecture notes : Thomas Cover, Stanford, circa 1982

Probability lecture notes : Martin Hellman, Stanford, circa 1982

National Semiconductor Linear Applications Notes : Noise in circuits.

Suggested references for study.
Van der Ziel, Wozencraft & Jacobs, Peebles, Kittel and Kroemer

Papers by Fukui (device noise), Smith & Personik (optical receiver design)
National Semi. App. Notes (1)

Cover and Williams : Elements of Information Theory



