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D t e ermination OF the Transfer Function OF 

Electronic Circuits 

BASIL L. COCHRUN AND ARVIN GRABEL 

Absfracf-A general method based on the Laplace expansion for 
determining the transfer function of a wide variety of linear elec- 
tronic circuits is discussed, The technique developed requires only 
the calculation of a number of driving-point resistances to specify the 
coefficients of the transfer function. Dominant-pole techniques are 
used and extended, making the procedure useful in both analysis and 
design. As computation only involves resistance networks, complex 
arithmetic is not required in determination of the response. 

INTRODUCTION 

D 

OMINANT-pole techniques [l]-[3] have been 
used to approximate both the frequency and 
time-domain responses of linear active systems. 

Most of these techniques require that the coefficients of 
the characteristic polynomial be known in order to be 
applied. This paper describes a method for determining 
the coefficients of the characteristic polynomial without 
the need for evaluating the system determinant. In 
addition, the method allows the circuit designer to re- 
late system performance to specific circuit elements and 
by means of dominant pole techniques to assess their 
effect on the circuit. 

For convenience, the low-pass case is developed. The 
results obtained are readily transformed to the high- 
pass case by duality and frequency translation. The 
basic approach to the problem is to generate the charac- 
teristic polynomial of the form 

G(s) = 
Ao 

1 + UlS + u& + . . . u,sn 
(1) 

The nth-degree polynomial is considered to arise from a 
system containing n storage elements. By use of the 
Laplace expansion of a determinant [4], the coefficients 
are generated. The calculations involved require only 
that driving-point functions of purely resistive net- 
works be determined. For a wide variety of electronic 
circuits, the method significantly reduces the algebra 
required compared with that required for the evaluation 
of a determinant. 

THE X-CAPACITANCE SYSTEM 

Consider an n-port system, shown in Fig. 1, with n 
capacitances C,, C2, . . . , C, across ports 1, 2, . . .-, n, 
respectively. The circle encloses a linear active network 
with no energy storage elements. The entire network 
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Fig. 1. n-port with n capacitances. 

can be represented by a set of node equations with the 
admittance determinant A given by (2), where the C’s 
appear only on the principal diagonal: 

g11 + SC1 02 g13 . . . g1* 

g21 g22 -I- SC2 g23 . ’ . 0% 1 
gn2 

The natural frequencies are determined by A(s) 
= c;; bisi = 0. I n order that A(s) be conveniently com- 
pared to the denominator of (l), A(s)/bo is formed as 

A 

bo= 
1 + 2 UiSi = 1 + als + a29 + . . . unP. (3) 

1 

To derive the general result it is convenient to define 
the following : 

A determinant, with none of the C’s = 0; 
A’ =A, when only C1=O; 
A’2 =A, when only C1 and C2 = 0; 
A12 (n-l) =A, when all C’s=O, except C,; 
AlZ.. .n =A0 =A, when all C’s = 0. 

The same notation will be followed for all cofactors. 
Single subscripts will be used for the cofactors, as they 
are all based on deletion of the same row and column 
number: 

All determinant, when row 1 and column 1 are 
eliminated with C1 = 0; 

A1312 determinant, when rows and columns 1 and 3 
are eliminated with Cl = Cz = 0. 
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Without loss of generality, the results are derived for 
n = 4 and are extended by induction. The procedure is 
based on the Laplace expansion of A(s) and is as follows: 

A = A.’ + sCIAll 

A.’ = Al2 + sC2A212 

AI’ = All2 + sC2Al2 . 12 

Combination of (12)-(14) yields 

A’ = Al2 + sCZA~‘~ + sC~A~‘~ + s2C1C2A12’2. 

Continuation in this manner results in 

A = s4C1C2C3C4&2240 + S3{ C1C2C3A12a” 

+ ClCZC4&24’ + CZC3C4A234’ I 

+ s2{ C1C2A12O + CIC~AH~ + C1C4A14O 

+ C2CaA2s” + CZC4d24’ + C3C4A34°] 

+ s{ CA0 + C2Az” + C2Aa” + C4A4O) + A0 

= b4s4 + bed + bzs2 + bls + A”. 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

Division of (9) by A0 gives the characteristic poly- 
nomial in the form a4s4+u~~3+u~~2+a~s + 1, from which 
the al coefficient is 

h CrAlo + C2Az” + C2Aa” + C4A4O 
(Q=-= 

A0 A0 
(10) 

(11) 
Ai”/Ao is merely the resistance seen at the ith port with 
all the C’s = 0. Define this resistance as 

(12) 

which allows al to be written as 

UI = RuOCI + R22OC2 + Rs°Ca + R44OC4. 

It can be seen that for any value of n, 

al = 2 RiioCi. 
i=l 

(13) 

(14) 

The u2 coefficient is given as 

bz C1C2A12O + CIC~AMO + . . . + C2C4A2a” 
a2=--= 

A0 A0 
(15) 

= 2 2 CiCj y . 
i-l j-i+1 

(16) 

Evaluation of u2 in’ a more useful form is possible by 
noting that 

Aij” 

7 - A0 
_ i” X AS = RiiO x z . 

,O so 
(17) 

Aj”/Ao can be expanded as 

AjO Ajo Igi-o + giAii” 
-= (1% 

which gives u4 as 

A0 A0 lo<=0 + giAi” 

17 

As gi approaches infinity, the right-hand side of (18) 
approaches Aji”/Aio, but AjiO=Aiio and Aj’/A’=Rij’ SO 
that (17) becomes 

Aij” 
- = Rii” X Rjj” Igi=m. 
A0 

(19) 

The second factor of (19) is merely the resistance seen 
at the jth port when the ith port is shorted, or Ci= Q) 
with all other c’s =O. For convenience we shall define 
Aij”/Aio as 

Aif 
- = Rjj’ Ioi--oo = Rjji 
A0 

a2 = RI~~R~CG + RlloR3X1C3 + RIIoR441C1C4 

+ Rzz”R~~2CzC~ -I- Rzz”R442CzC4 

-I- Ra0Ru3CaC4. (21) 

It can be seen that for any value of n, 

n-l n 

a2 = C C CiCjRiiORjj’. (22) 
i-1 j-i+1 

The coefficient u3 is obtained as 

2 CiCjCk !$ . 
i=l j=i+l k=j+l 

(23) 

Since 

&j/co &j/co - = $ X z X z = lpiiORjji X __ 

A0 so v” Aij” 
(24) 

it follows that the procedure used for evaluating Aij”/Aio 
in (18)-(20) can be used to evaluate AijkO/AijO. That is, 

(25) 

which gives u3 as 

a3 = CICP.C~R~~~R~~~R~~ + CICZ.C~RII~R~R~~~~ 

-I- C~C&~RI,OR~R.~.I~~ + C&d14Rzz”R3~2R4423. (26) 

Thus for any value of n, 

n-2 n-l 

a3 = C C 2 CiCjCkRii’Rjj’Rkk”‘. (27) 
i-l j-i+1 k=j+l 

The coefficient u4 is obtained as 

b4 A O 
a4 = a0 = ClC2C&4 5 = 

Aijkl’ 
cicjckcl - 

Aijk' 
(28) 

but 

Aijkt’ - = 
A0 

RiiORjjiRkki3’Rlijk (29) 

a4 = C1CzC3C4Rll”R2z1R3312R44’2~. (30) 
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Fig. 2. Equivalent krcuit Q for two-stage transistor amplifier. RI =Rt= RG= 1 kfd; Ra=20 k’d; R4=200; Rs=800; 
Cl=C8=200 pF; Ct=C,=S pF; gl=gz=O.O21. 

lbl 

(dl 

Fig’ guo. 
Circuits for finding the four r&stances for a,. (a) Finding 

(b) Finding &I. (c) Finding Ra312. (d) Finding RJ23. 

(cl 

Fig. 4. Circuits for finding three resistances for US in Fig. 2. 
(a) Finding &,I*. (b) Finding Rd. (c) Finding RB". 

Thus for any value of n, 

n-3 n-2 n-1 

a4 = C C C 2 CiCjCkCIRii”RjjiRkki’R~~~jk. (31) 
i=l j=i+l k=j+l l-k+1 

These results can be extended to find ak, the coefficient 
of sk where k 5 n, which becomes 

EXAMPLE 

Consider the two-stage amplifier at high frequencies 
as shown in Fig. 2. The capacitors C&4 correspond to 
the port capacitors in Fig. 1, for n =4. 

To find the driving-point resistances required to 
determine u4, the simplified circuits of Fig. 3 may be 
used. The results are given as follows: 

n-(k-l) n-(k-2) 

.C,RiiQRjji . . . R,,,,ij . . . (n - 1). (32) 

R&z 
Rllo = ___ 

RI + R2 

R22’ = 
RdR4 + Rd 

Rs -I- R4 + Rs 

The results expressed in (14), (22), (27), (29), and 
(32) indicate that simple resistance calculations suffice 
in determining the coefficients of the transfer function. 
The example in the next section illustrates the technique. 

R&i &12 = ___ 
R4 + RS 

RaJz3 = R,j. (33) 
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1 Fig. 5. Equivalent circuit of an amplifier with a capacitor loop 
made up of Cl, G, and CZ. 

Substitution of the component values and the use of 
(33) in conjunction with (30) gives 

CCCCRRRRR 123412346 

a4 = (RI + &>(RI + R4 + Rb) 
= 7.6 X 10-32. (34) 

Inspection of (26) indicates many of the resistance val- 
ues are known from ~4. The remaining values may be 
found by inspection of the circuit that yields 

&a’ = &@a + RJl(Ra + R4 + Rd 

R44 ‘3 = R4423 = &+ (35) 

The remaining resistances R4412, R3s2, and R22O can be 
found using the circuits of Fig. 4. 

Fig. 4(a) is the result of taking Cl= C2 = Q), but 
Ca = C4 = 0. R4412 is determined as 

R4412 = $$ (1 + g&) + Rs 
4 6 

Similarly, 

= IW2(1 + @a) + &. (36) 

R22O = Rue 1 + gl ( 
Ra(& + Rd 

> + 
Ra(R4 + Rs) 

Ra -I- R4 -I- R6 Ra + R4 -I- RS 

= RnO(l + g&9 + R22’. (37) 

By use ‘of numerical values of the circuit parameters 
and the above results, us becomes us= 1.14X 10-22. 

By following the same processes, the coefficients a2 
and al can be found readily as 

u2 = 2.91 X lo-” 

al = 4.04 X lO-‘. 

A computer program for this circuit gives the same 
values for these coefficients, accurate to four decimal 
places; however, uncertainty about the transistor pa- 
rameters hardly merits such accuracy. The approximate 
pole positions are obtained as 

-pl N l/al = 2.46 X lo6 

-p2 ‘v al/a2 = 1.39 X 10’ 

-pa ‘v a2/u3 = 2.9 X lo* 

- p4 ‘v u3/a4 = 1.5 X log. 

The same computer program gives the poles as 

-pl = 3.258 X lo6 

~2 = 1.1127 X 10’ 

pa = 3.1018 X lo8 

p4 = 1.669 X log. 

The nearly 25percent deviation between computed 
values and those using the dominant-pole analysis is 
expected as the two poles nearest the origin are separated 
by only a factor of three. However, the use of the tech- 
nique described permits identification of the RC product 
closest to the origin and the degree of interaction be- 
tween the poles. 

A SPECIAL CASE 

The previous example was a perfectly general circuit 
configuration for which the number of coefficients was 
equal to the number of c’s. A special situation arises 
when there are capacitor loops that occur naturally in 
some amplifier configurations. Insight gained from the 
general derivation makes it possible to handle this spe- 
cial case. If Cl, CZ, and Ca constitute a loop, it can be 
seen that letting any two of the C’s= 00 results in the 
third capacitance also being shorted. Resistances of the 
form R11z3, R2213, and Rs312 will be zero wherever they 
occur. The result is that a, =0 or the order of the poly- 
nomial is reduced. If there is only one loop, the a,,-1 
term will exist, although it may be ‘modified somewhat 
by the single loop. Two separate loops would result in 
the a,,-1 term also going to zero. 

An example of a circuit with a capacitor loop is given 
in Fig. 5. Fig. 5 is the equivalent high-frequency circuit 
for a two-stage J-FET amplifier. Application of (30) to 
the circuit of Fig. 5 results in 

Rllo = RI Rz2’ = R2 R44=’ = Rs Rs312 = 0. 

When C1=C2= co, the resistance shunting Cs is evi- 
dently zero. Thus u4 = 0 and the u3 term will be only 

a3 = C1CzC4RlloR221R4412 + C1C3C4R110R331R4413 

+ C2CaCdb~~Raa~R44~~ (38) 

where the CiC& combination is missing because of 
R3312 =O. The u2 and al terms will be unchanged since 
they do not involve the shorting of two c’s. 

LOW-PASS R-L CIRCUITS 

Extension of this procedure to handle R-L networks 
is relatively straightforward. By duality, replacing C 



Fig. 6. Network containing three inductors. 

+ 

(8) 

by L, the principal diagonal of the mesh matrix contains 
terms of the form rii+sLi. By use of the Laplace expan- 
sion, the circuit determinant is of the form 

A(S) = A0 + S 2 LiAi + * * * fi Li. (39) 
i=l i=l 

Thus (39) is analogous to (8), so that division by A0 
permits the identification of appropriate L/R time con- 
stants. The interpretation given A0 in (39) is that of the 
resistive determinant obtained when all LiE 0. By iden- 
tification with the form of (32), the kth coefficient of 
A/A0 in (39) may be written as 

n-(&l) n-(&2) 

c&k= c c .-- 

i-1 j-i+1 

The resistances in the denominator of (40) are easily 
identified as follows. 

1) Rig0 is the resistance in series with Li with all other 
LjE 0. 

2) Riijis the resistance in series with L1 when Lj= CC 
and all other Lk=o. 

3) Riij’ “9 is the resistance in series with Li when 
Lj, Lk, . * ’ , L, = 00 and all other LM = 0. 

Therefore, al is interpreted as the sum of short-circuit 
time constants; aj is the sum of products of one short- 
circuit time constant with one open-circuit time con- 
stant. The interpretation of ai follows directly. An al- 
ternate interpretation of the short- and open-circuit 
values of L and C is the zero-frequency infinite-fre- 
quency calculation described earlier. Consider the net- 
work depicted in Fig. 6. This circuit results in a cubic 
as there are three inductors. By the use of the procedure 
outlined, the al coefficient is 

Ll L2 L3 

a’ = R111~211R3 + R3jjR2 +Ra . 
(41) 

The first term is found by taking L2 = Lp=O, which 
parallels all three resistances. When L1 =L3 =0, the 
resistance shunting L2 is just the parallel combination 
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of R2 and R,. With L1 = L2 = 0, the only resistance shunt- 
ing Lo is Rs. The a2 coefficient will be 

LlL2 -wJ L2L3 
-++ ~. 

a2 = Rl12R2z0 Rl13R3s0 
+ 

Rzz”RaaO 
(42) 

The resistance R112 is the resistance shunting L1 when 
Lz= 00 and LB =O, which is just R1. Thus R112R2z0 
=Rl(R2IIRd. Th e resistance shunting L1 when Lx = CO 

and L3 =0 is Rl13 = (R111R2), and the resistance shunting 
L3 when L1 = L2 = 0 is Raa O = 113. The resistance shunting 
L2 when Ls = co and L1 = 0 is R& = R2. Thus in terms of 
the circuit parameters, the a3 coefficient becomes 

L&2 Lb L2-b 
___ -. 

a3 = RI(&~IR~) + (Rl)jWs + R2R3 
(43) 

Finally, the a4 coefficient is found as 

-bL2L3 LlL2L3 

a4 = R1123R223k330 
=- 

R&R3 
(44) 

where R# is the resistance shunting LI when Lz=La 
= 00 and RX? and R3s0 have already been defined. 

CONCLUSIONS 

By use of the Laplace expansion of the system de- 
terminant it has been demonstrated that the system / 
function may be determined from a prescribed number 
of driving-point resistance calculations. The advantages 
of the method are as follows: 1) simplicity in numerical 
calculation; 2) avoidance of evaluating the system de- 
terminant; 3) the use of real as opposed to complex 
arithmetic in computation; and 4) the ease with which 
dominant-pole approximations may be used.\ In addi- 
tion, the circuit designer now has available a simple 
method of evaluating the relative importance on sys- 
tem performance of specific element values and their 
variation. 

These results are readily extended to high-pass cir- 
cuits (low-frequency performance of electronic circuits) 
by use of low-pass to high-pass transformation or by 
the analogy with the classical dominant-pole tech- 
niques [S]. 
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