16

1IEEE TRANSACTIONS ON CIRCUIT THEORY, VOL. CT-20, NO. 1, JANUARY 1973

A Method for the Determination of the Transfer Function of

Electronic Circuits

BASIL L. COCHRUN anp ARVIN GRABEL

Abstract—A general method based on the Laplace expansion for
determining the transfer function of a wide variety of linear elec-
tronic circuits is discussed. The technique developed requires only
the calculation of a number of driving-point resistances to specify the
coeficients of the transfer function. Dominant-pole techniques are
used and extended, making the procedure useful in both analysis and
design. As computation only involves resistance networks, complex
arithmetic is not required in determination of the response.

INTRODUCTION

DOMINANT—pole techniques [1]-[3] have been

used to approximate both the frequency and

time-domain responses of linear active systems.
Most of these techniques require that the coefficients of
the characteristic polynomial be known in order to be
applied. This paper describes a method for determining
the coefficients of the characteristic polynomial without
the need for evaluating the system determinant. In
addition, the method allows the circuit designer to re-
late system performance to specific circuit elements and
by means of dominant pole techniques to assess their
effect on the circuit.

For convenience, the low-pass case is developed. The
results obtained are readily transformed to the high-
pass case by duality and frequency translation. The
basic approach to the problem is to generate the charac-
teristic polynomial of the form

Ao
G = . 1
(©) 14 ais+ ass?+ - - - aps® )

The nth-degree polynomial is considered to arise from a
system containing # storage elements. By use of the
Laplace expansion of a determinant [4], the coefficients
are generated. The calculations involved require only
that driving-point functions of purely resistive net-
works be determined. For a wide variety of electronic
circuits, the method significantly reduces the algebra
required compared with that required for the evaluation
of a determinant.

THE #-CAPACITANCE SYSTEM

Consider an n-port system, shown in Fig. 1, with »
capacitances Cy, Cy, - - -, C, across ports 1, 2, - - -, n,
respectively. The circle encloses a linear active network
with no energy storage elements. The entire network
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Fig. 1. n-port with n capacitances.

can be represented by a set of node equations with the
admittance determinant A given by (2), where the C’s
appear only on the principal diagonal:

811 + sCy 812 813 te 81n
g2 822 + sC» 823 o gon
A= gs1 g3z gss +sCs - - - §an . (2)
g;zl g;ﬂ ' 8n3 ot Ban + Scn

The natural frequencies are determined by A(s)
= > 2 bist=0. In order that A(s) be conveniently com-
pared to the denominator of (1), A(s)/bo is formed as

A n
— =14 D asi=14as+as’+ - -asm (3) .
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To derive the general result it is convenient to define
the following:

A determinant, with none of the C’s=0;
A =A, when only C,=0;
A2 =A, when only C; and C;=0;

AlZ s (n—1)
A12 seen

=A, when all C's=0, except C,;
=A=A, when all C's=0.

The same notation will be followed for all cofactors.
Single subscripts will be used for the cofactors, as they
are all based on deletion of the same row and column
number:

Al determinant, when row 1 and column 1 are
eliminated with C1=0;.
A;'?  determinant, when rows and columns 1 and 3

are eliminated with C;=C,=0.
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Without loss of generality, the results are derived for
n=4 and are extended by induction. The procedure is
based on the Laplace expansion of A(s) and is as follows:

A = Al + 5C1A;! (1)
Al = AT + 5CyA,12 )
Arl = Ayl 4 sCiA g2, (6)
Combination of (12)—(14) yields
Al = A1 4 5CoA,'12 4+ sC1A12 4 52C,CeA12. (7)

Continuation in this manner results in
A = $%C1C2CC1A1934* + $3{C1C:C3h155°
+ C1C:CaBns® 4 CoCiCalrass®}
+ 82{C1C2A12° + C1C3418" + C1C4A14°
+ CoCabes® 4 CoCula® + CsCilrs'}
+ s{C141° + CoA2® + C3Ay® + Cin®} + A0 (8)
= bas® + bys? + bys? + bys + AO. 9)
Division of (9) by A® gives the characteristic poly-

nomial in the form ass*+ass®+asst+ais+1, from which
the a, coefficient is

by CiA° + C2A® + C3As® + CiAL°

a; = Z‘; = A0 (10)
tCA0
=2 : (11)
-1 A°

A/A® is merely the resistance seen at the ith port with
all the C’'s =0. Define this resistance as

AL
R = ~ (12)
which allows a, to be written as
a1 = Ru°Ci + Rs°Ce 4+ R33°Cs 4 Ry°C. (13)
It can be seen that for any value of #,
a1 = 3, ROCa. (14)
=1
The a, coefﬁcienf is given as
b2 C1C2A120 + C1C3A13° + M + C3C4A340
y = — = (15)
A° A°
3 4 Aijo
=2 X CC (16)
1=1 j=i+1 0

Evaluation of a; in a more useful form is possible by
noting that

CAL A,-O‘ Ay A;°
—_— = = R;* X . (17)
AO AO A,‘O A‘_O
A;0/A® can be expanded as
ALY AL o+ giA0
Si Qi le=0 T il (18)
A° A

gm0 + giAD
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As g; approaches infinity, the right-hand side of (18)

approaches A;;%/A.° but A;;°=A;;° and A;°/A°=R;;° so

that (17) becomes
Aijo
AO

= R® X Rjjo

Gimco (19)
The second factor of (19) is merely the resistance seen
at the jth port when the zth port is shorted, or Ci=

with all other ('s=0. For convenience we shall define
A'.J.O/A'.O as

Al .
A0 = Ri'o gi=o0 — Riit (20)
aQy = R110R221C1C2 + R110R331C1C3 + R110R441C1C4
+ R220R332C2c3 + R220R442C2C4
+ R330R443Cac4- (21)
It can be seen that for any value of #,
n—1 n
as = Z Z CiCjR;,’oRjj". (22)
i=1 j=i41
The coefficient a; is obtained as
’ b3 2 2 4 A.,jkO
as=—=2. > 2 CCiC: (23)
A S ks ! A°
Since
A0 AL A Ay k0
i1k — 7 ik _ R“OR”-" X ik (24)
AO AO A.‘O A,‘jo Aijo

it follows that the procedure used for evaluating A;;9/A°
in (18)-(20) can be used to evaluate A;;x%/A;;% That is,

Ay ..
* Ri® = Ru? (23)
Aijo gi=gj=0w
which gives a3 as
a3 = C1CyC3R11°Ry3"R33'? + C1CoCaR11°R 20 Ryy™?
+ C1C3C4R110R331R4413 + C2C3C4R220R332R4423- (26)
Thus for any value of #,
) n—2 n—1 n o
asz = E Z Z C;CjCkRi;ORjjiRkkij. (27)
=1 jmitl k=jt+l
The coefficient a4 is obtained as
T by Ay234° Ayl
ay = Z—‘; = C1C2C3C4 A0 = CiC,'CkCI A,-jko (28)
but
. At
2 = RuORyRu R (29)

which gives a4 as

ay = C1C2C3C4R110R221R3312R44l23~ (30)
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Fig. 2. Equivalent circuit ¢ for two-stage transistor amplifier. Ri=Ry=Rs=1 kQ; R;=20 kQ; R,=200; R;=800;
C1=C3=200 pF; Co=C,=5 pF; g1=¢:=0.021.
Ry 12
o Ras
R c
Vip (8) Red O vq 4 I \ I o
: 3 ¢
—_— +
Rg § v2 % Re
fa) _ AR
+ vz .
R
o— I AL I . 3
. ¢, fal
2
v 2R : R 0
1 9V $°° f "5 R1q
o "
+
(b) < 4
. | vy ¥Ry Rp R3 Rs =RC3 <R3
V2 - I
Rg °
. . - .
V) R3 Rs$ =C3 {b)
Ra2
{c) 0
R1 Ra
* v, - _ )ll —9-
| | . 2
o ! 3 o
+ Ca Rq ¥ R3 Rs
91N
V3,l v 5 Rg
- 92'2
o e {c)
e ) Fig. 4. Circuits for finding three resistances for as in Fig. 2.
Fig. 3. Circuits for finding the four resistances for as (a) Finding (a) Finding Ry®. (b) Finding Rs?. (c) Finding Rz

Ry°. (b) Finding Ra'. (¢) Finding Rss®. (d) Finding Re.

Thus for any value of #,
n—3 n—2 n—1 n
as= 2 > 2 2 CCOCCIRR;*Ru*Rut*. (31)

i=1 jmit1 ke=jtl I=k+1

These results can be extended to find ay, the coefficient
of s* where £ <#, which becomes

n—(k—1) n—(k—2)

"'ZCiC,--'-'_

'Rnni'i' « (n__ 1).

ar =
j=i+1

‘CaRiRj5* - -

i=1

(32)

The results expressed in (14), (22), (27), (29), and
(32) indicate that simple resistance calculations suffice
in determining the coefficients of the transfer function.
The example in the next section illustrates the technique.

EXAMPLE

Consider the two-stage amplifier at high frequencies
as shown in Fig. 2. The capacitors Ci—C, correspond to
the port capacitors in Fig. 1, for n=4.

To find the driving-point resistances required to
determine a4, the simplified circuits of Fig. 3 may be
used. The results are given as follows:

R;R,

R+ R,
L R3(R4 + Ry)

R;+ Ry+ Rs

R4R5
Rypl? = ————

Rs+ Rs

R.123 = R,

Ry’ =

22

(33)
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 Fig. 5.

Equivalent circuit of an amplifier with a capacitor loop

made up of Cy, Cy, and Ci.

Substitution of the component values and the use of
(33) in conjunction with (30) gives

_ C1C2C3C4R1 R R Ry R
(R1 + R){Rs + Ry + Ry)

ay

=7.6X 1072 (34)

Inspection of (26) indicates miany of the resistance val-
ues are known from a4 The remaining values may be
found by inspection of the circuit that yields

Raal = Rs(Ra + R4)/(R3 + R4 + Rs)

.R4413 = R4423 = Rs. (35)

The remaining resistances Ry!'?, Rg?, and Rs® can be
found using the circuits of Fig. 4.

Fig. 4(a) is the result of taking Ci=C,= », but
Cy=C4=0. Ry'? is determined as ‘

R4R;
P —— (1 + ngs) + Rs

R4412 =
R,+ Ry
= Ry3'*(1 + g2Rs) + Rs. (36)
Similarly,
R0
Ry? = R{|Ry + Ry| ———
Ry +1
R3;(R R Ri(R R
R22°=R11°(1+gl a(Rs + 5)> 3(Rs 4+ Rs)
R; + R, + R; R34+ R+ Ry
= Ruo(l + gle‘) + Ryl (37)

By use’of numerical values of the circuit parameters
and the above results, a; becomes a3 =1.14 X 1022

By following the same processes, the coefficients a,
and a; can be found readily as

a; = 2.91 X 10-1
-ay = 4.04 X 1077,

A computer program for this circuit gives the same
values for these coefficients, accurate to four decimal
places; however, uncertainty about the transistor pa-
rameters hardly merits such accuracy. The approximate
pole positions are obtained as

—p1~1/a; = 2.46 X 10°%
—pr~ai/a; = 1.39 X 107
—ps~az/a; = 2.9 X 108
—pi>=as/as = 1.5 X 10°

The same computer program gives the poles as

—p1 = 3.258 X 10°
pe = 1.1127 X 107
b3 = 3.1018 X 108

pa = 1.669 X 10°-

The nearly 25-percent deviation between computed
values and those using the dominant-pole analysis is
expected as the two poles nearest the origin are separated
by only a factor of three. However, the use of the tech-
nique described permits identification of the RC product
closest to the origin and the degree of interaction be-
tween the poles.

A SpeciAL CASE

The previous example was a perfectly general circuit
configuration for which the number of coefficients was
equal to the number of C’s. A special situation arises
when there are capacitor loops that occur naturally in
some amplifier configurations. Insight gained from the
general derivation makes it possible to handle this spe-
cial case. If €, Cy, and C; constitute a loop, it can be
seen that letting any two of the C’s= = results in the
third capacitance also being shorted. Resistances of the
form Ryu?, Rg'3, and Ry;'? will be zero wherever they
occur. The result is that a, =0 or the order of the poly-
nomial is reduced. If there is only one loop, the @,
term will exist, although it may be modified somewhat
by the single loop. Two separate loops would result in
the a,_, term also going to zero.

An example of a circuit with a capacitor loop is given
in Fig. 5. Fig. 5 is the equivalent high-frequency circuit
for a two-stage J-FET amplifier. Application of (30) to

. the circuit of Fig. 5 results in

Riy®*= Ry, Ry'=Ry Ru'B=R; Ryll=

When Cy=C;= «, the resistance shunting C; is evi-
dently zero. Thus a; =0 and the a; term will be only
a3 = C1C2C4R11°R13'R4y'? + C1C3CiR11°R33' R 4413

+ C2C3C4R2°R332R.2*  (38)

where the CiC;C; combination is missing because of
R33'2=0. The @, and a4 terms will be unchanged since
they do not involve the shorting of two C's.

Low-Pass R-L CIrRcUITS

Extension of this procedure to handle R-L networks
is relatively straightforward. By duality, replacing C
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Fig. 6. Network containing three inductors.

by L, the principal diagonal of the mesh matrix contains
terms of the form 7;;4sL;. By use of the Laplace expan-
sion, the circuit determinant is of the form

AS) = A+ 53 Liae+ - [T L. (39
$=1

=1
Thus (39) is analogous to (8), so that division by A?
permits the identification of appropriate L/R time con-
stants. The interpretation given A% in (39) is that of the
resistive determinant obtained when all L;=0. By iden-
tification with the form of (32), the kth coefficient of
A/A%in (39) may be written as

n—(k—1) n—(k—2)
ar =
§eal =i+l

n LiL;---L,

> - (40)

.R»;lj . .n_lRJJk crep—~1 ., ., Rnno

The resistances in the denominator of (40) are easily
identified as follows.

1) R..is the resistance in series with L, with all other
LjE 0. '

2) R;/is the resistance in series with L; when L;= «
and all other L;=0.

3) R "¢ is the resistance in series with L; when
L;, L, - - -, Ly=c and all other Ly=0.

Therefore, a; is interpreted as the sum of short-circuit
time constants; ¢; is the sum of products of one short-
circuit time constant with one open-circuit time con-
stant. The interpretation of a; follows directly. An al-
ternate interpretation of the short- and open-circuit
values of L and C is the zero-frequency infinite-fre-
quency calculation described earlier. Consider the net-
work depicted in Fig. 6. This circuit results in a cubic
as there are three inductors. By the use of the procedure
outlined, the a; coefficient is

_ L, L, n L; (41)
RIR s

a1 +
Ri|R: R,

The first term is found by taking L,=L;=0,; which
parallels all three resistances. When L,=L;=0, the
resistance shunting L, is just the parallel combination
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of R; and R;. With Ly =L, =0, the only resistance shunt-
ing L3 is R;. The a2 coefficient will be

LiL, LiL3
" Ru’Rs® ' RuRssd

LyLs
"R22°Rs3s®

a; (42)
The resistance Ry ? is the resistance shunting L; when
Ly=oo and L3;=0, which is just R;. Thus R;2Rs°
=R1(R2||R3). The resistance shunting L; when L= «
and L; =0 is Ry’ = (Ry||R,), and the resistance shunting
Ls when Li=L,=0 is R3®=R;. The resistance shunting
L, when L;= o and L;=0 is Ry»?®=R,. Thus in terms of
the circuit parameters, the a3 coefficient becomes

L1L2 L1L3 L2L3
as = : (43)
Ri(RJ||Rs) = (Ri||R)R: = RuRs
Finally, the a4 coefficient is found as
o L1L2L3 L1L2L3 (44)

" Ru®RpRs® RiR.Rs

where Rj?® is the resistance shunting L; when L,=L;
= o and Ry? and R3® have already been defined.

CONCLUSIONS

By use of the Laplace expansion of the system de-
terminant it has been demonstrated that the system
function may be determined from a prescribed number
of driving-point resistance calculations. The advantages
of the method are as follows: 1) simplicity in numerical
calculation; 2) avoidance of evaluating the system de-
terminant; 3) the use of real as opposed to complex
arithmetic in computation; and 4) the ease with which
dominant-pole approximations may be used.> In addi-
tion, the circuit designer now has available a simple
method of evaluating the relative importance on sys-
tem performance of specific element values and their
variation. ’

These results are readily extended to high-pass cir-
cuits (low-frequency performance of electronic circuits)
by use of low-pass to high-pass transformation or by
the analogy with the classical dominant-pole tech-
niques [S].
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