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Generalized Time- and Transfer-Constant Circuit
Analysis

Ali Hajimiri,

Abstract—The generalized method of time and transfer con-
stants is introduced. It can be used to determine the transfer
function to the desired level of accuracy in terms of time and
transfer constants of first order systems using exclusively low
frequency calculations. This method can be used to determine the
poles and zeros of circuits with both inductors and capacitors.
An inductive proof of this generalized method is given which
subsumes special cases, such as methods of zero- and infinite-
value time constants. Several important and useful corollaries of
this method are discussed and several examples are analyzed.

Index Terms—Circuit Analysis, method of time and trans-
fer constants (TTC), determination of poles and zeros, zero-
value time constants (ZVT), infinite-value time constants (IVT),
Cochran-Grabel method, bandwidth enhancement techniques.

I. INTRODUCTION

ANALOG circuit design depends on analysis as a beacon
to provide qualitative and quantitative input on how we

can improve circuit performance by modifying its topology
and/or parameters. A great deal of effort goes into improving
the accuracy of device models and circuit simulators to predict
the expected experimental outcome accurately on a computer
before testing going to the lab. However, these absolutely nec-
essary tools are not sufficient for analog circuit design, which
by its nature is open-ended and divergent. This necessitates
analytical techniques that can provide insight into how and
where the circuit can be modified for design purposes.

The identification of the dominant source of a problem
is at the core of design as it focuses creative energy on
critical parts of the circuit and more importantly identify what
kind of modifications will improve it. Generally, this is done
by reducing the analysis into smaller more straightforward
calculations that allow one to arrive at progressively more
accurate approximations without performing the full analysis.

Although mesh and nodal analysis provide a systematic
framework to apply Kirchhoff’s current and voltage laws (KCL
and KVL) to the circuit problem and convert them to a linear
algebra problem (e.g., works of Bode [1] and Guillemin [2])
that can be solved numerically using a computer, they are not
effective design tools. The analysis must be carried to the end
before approximate results can be obtained and even then it
is hard to obtain design insight from the resultant algebraic
expressions particularly in terms of identifying the dominant
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sources of problem and topological solutions to them. This
need was recognized by some of the early works in this area,
e.g., [3] and [4].

An early instance of an approach suitable for design is
the method of open-circuit time constants (OCT) developed
by Thornton, Searle, et al. in early 60’s [5]. The OCT was
developed for lumped electronic circuits with capacitors as
their sole energy storing (reactive) element to estimate their
bandwidth limitation. It states that the coefficient of the term
linear in complex frequency, s, in the denominator of the
transfer function is exactly equal to the sum of time constants
associated with each capacitor alone when all other capaci-
tors are open circuited and sources are nulled. The original
derivation of the OCT [5] and its subsequent generalizations
to both capacitors and inductors, namely the method of zero
value time-constants (ZVT), was based on evaluation of the
determinant of the Y matrix in the nodal equations and how its
co-factors change due to the capacitors [5]. The ZVT method
is powerful since it provides a clear indication of the dominant
source of bandwidth limitation and guidance into potential
solutions. In Section IV, we present an alternative inductive
derivation of ZVT’s and generalize using transfer constants to
account for the effect of zeros on the bandwidth estimate

The approach used in [5] was generalized in early 70’s
by Cochran and Grabel [6] to determine as many of the
denominator coefficients as needed by calculating the time-
constants associated with each reactive element under differ-
ent combinations of shorting and opening of other reactive
elements in the circuit. Unlike nodal analysis, this process can
be stopped at any point when the desired level of accuracy for
the denominator has been obtained. The notation was cleaned
further in the 80’s by Rosenstark to express denominator
coefficient only in terms of time constants in a systematic way
[10]. In the 90’s the method was generalized to include the
effect of transcapacitors by Fox et al.[12] and mutual inductors
by Andreani et al.[14].

In late 70’s Davis developed a method for determination of
the numerator (and thus the zeros) of the transfer functions of
lumped RC circuits using a combination of the time-constants
and the low frequency transfer functions under different com-
binations of shorting and opening of the capacitors [7]-[9].
We will discuss a generalization of this method with a more
intuitive notation in Section V.

The transfer function of a first order system can also be
determined using the extra element theorem presented in late
80’s by Middlebrook [11]. In this case, two of the three
low frequency calculations are identical to Davis’s approach
[7]. The third calculation used to determine the numerator of
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the transfer function involves a null-double injection, which
involves simultaneous usage of two sources to null the output
signal. The approach was generalized to N extra elements in
late 90’s in [13][15], where the denominator of the transfer
function is calculated the same way as the Cochron-Grabel
method [6] and its numerator using multiple null double
injections. The approach presented in this paper does not use
the null double injection and provides a more intuitive link
between the zeros and the time and transfer constants.

In Section II, we discuss some of the general properties
of a transfer function. We find the general transfer function
of a first order system in Section III, where the concept of
transfer constant is defined. Next we investigate an N th order
system and derive its first-order numerator and denominator
coefficients. We provide an inductive intuitive proof and a
generalization of the method of zero-value time constants
and its generalization for the numerator using the concept of
transfer constant in Section IV. In Section V, we discuss how
all the coefficients of the numerator and denominator can be
calculated using the method of time and transfer constants
(TTC) and thus provide a complete method to determine the
transfer function to the desired level of accuracy. Some of the
important corollaries to circuit design will be discussed in VI.
Finally, Section VII provides several examples of the method,
which will be referred to through the text.

II. GENERAL PROPERTIES OF TRANSFER FUNCTIONS

For a single-input single-output linear time-invariant (LTI)
network, the transfer function can be defined as the ratio of
the voltages and/or currents of any two arbitrary ports of the
circuit, including the ratio of the voltage and current of the
same port. We designate the input and output variables as x
and y. For example, when x is an input voltage due to a voltage
source and y is the voltage of another node in the circuit,
the transfer function, H(s) ≡ vo(s)/vi(s), would correspond
to a voltage gain. On the other hand, if the input, x, is the
current of a current source driving a given port of the circuit,
while the output, y, is the voltage across the same port, the
transfer function, Z(s) ≡ v1(s)/i1(s) would correspond to the
impedance looking into that port1.

The transfer function of a linear system with lumped ele-
ments can be written as2:

H(s) =
a0 + a1s + a2s

2 + . . . + amsm

1 + b1s + b2s2 + . . . + bnsn
(1)

where all ai and bj coefficients are real and s represents the
complex frequency. Coefficient a0 is the low frequency (dc)

1One has to be careful about the choice of stimulus and output. If a node
is excited with a current source and the voltage across that node is measured,
then the quantity measured is the impedance, Z(s). On the other hand, if
the same port is excited by a voltage source and its current is the output
variable, the calculated transfer function is the admittance Y (s). Although in
the end we must have Z(s) = 1/Y (s), one should keep things consistent,
as the poles of Z(s) are the zeros of Y (s) and vice versa. This is important
in nulling the independent source, which means a short-circuit for a voltage
source and an open-circuit for the current source.

2The leading one in the denominator is absent for transfer functions that
go to infinity at dc (e.g., the input impedance of a capacitor to ground). In
such cases, it is more straightforward to evaluate the inverse transfer function
(e.g., admittance in the case of the capacitor).

transfer function. This equation can be factored as:3

H(s) = a0 ·
(1− s

z1
)(1− s

z2
) . . . (1− s

zm
)

(1− s
p1

)(1− s
p2

) . . . (1− s
pn

)
(2)

where based on the fundamental theorem of algebra, the pole
and zero frequencies (pi and zi) are either real or come as
complex conjugate pairs.

The order of the denominator, n, determines the number of
natural frequencies of the system and is equal to the number
of independent energy storage elements. This is equal to the
maximum number of independent initial conditions (capacitor
voltages and inductor currents) that can be set, as we will
see later in Section V. Natural frequencies of the circuit are
independent of the choice of the input and output variables
and are intrinsic characteristics of the circuit4.

On the contrary, the zeros of the transfer function, i.e., the
roots of the numerator of (1), do depend on the choice of the
input and output. While it is possible to answer what the poles
of a circuit are without knowing what the input and output
variables are, it is meaningless to ask the same question about
the zeros, as they assume different values for different choices
of the input and/or the output.

Knowing the coefficients of the transfer function of an LTI
system (or equivalently its poles and zeros), we can predict
its dynamics. In the following sections we see how we can
determine the transfer function of an N th order system to
the desired level of accuracy using low frequency calculations
of port resistances and low-frequency values of the transfer
functions (transfer constants) for different combinations of
shorting and opening of other elements. We will start with
first order systems to elucidate the point, which is similar to
that in [7] with a modified, more generalizable notation:

III. FIRST ORDER SYSTEM

Let us consider an LTI circuit with a single energy-storing
element, an input x, and an output y, as shown in Figure 1a
and b for a system with a capacitor or an inductor, respectively.
Although these circuits include only one reactive element, C1

or L1, the network in the box can be quite complex with any
number of frequency-independent elements, such as resistors
and dependent sources.

A circuit with one reactive element has one pole and one
zero5. For a first order system, (1) reduces to:

H(s) =
a0 + a1s

1 + b1s
(3)

3The factorization of (1) is most suitable to describe a low-pass system. In
the case of a band-pass amplifier with a well defined mid-band gain, amid,
(where a0 can be very small or even zero) the poles and the zeros can be
divided into two groups: those occurring below mid-band and those that fall
above it. To have a flat pass-in this case, the number of poles and zeros below
mid-band must be equal. Thus, (2) can be reordered as (due to Middlebrook):

H(s) =
(1− z1

s
) . . . (1− zk

s
)

(1− p1
s

) . . . (1− pk
s

)
· amid ·

(1− s
zk+1

) . . . (1− s
zm

)

(1− s
pk+1

) . . . (1− s
pn

)

This representation is helpful when we try to separate the effect of the poles
and zeros affecting the low cut-off frequency, ωl, from those controlling the
high cut-off frequency, ωh.

4The implicit assumption here is that these modes are observable in the
control theoretical sense.

5Sometime we say there is “no zero” when it is at infinity.
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Fig. 1. A first order system with a) a capacitor as the energy storing element,
b) an inductor.

where a0 is the low-frequency transfer function. The pole will
be at p = −1/b1 corresponding to a pole time constant of
τ ≡ b1. The zero occurs at z = −a0/a1.

Now we use transfer constants defined as low frequency
transfer functions from the input to the output under different
combinations of shorted and opened reactive elements (shown
with capital H with different superscripts) to determine of the
transfer function. Our first transfer constant is the value of
the transfer function when the reactive element (or in general
all reactive elements) is (are) zero valued (C = 0, i.e., open
circuited capacitor and L = 0, i.e., short circuited inductor).
This transfer constant is designated as H0. This is the same as
the low frequency transfer function since setting every reactive
element to zero removes any frequency dependence from the
circuit, i.e.,

a0 = H0 (4)

For a first order system with a capacitor, C1, the only time
constant, τ1, is simply R0

1C1, where R0
1 is the resistance

seen across the capacitor with all the independent sources
(including the input) nulled. (Nulling a source means replacing
an independent voltage source with a short circuit and an
independent current source with an open-circuit.) Here, the
circuit of Figure 1a simply reduces to the parallel combination
of capacitor, C1, and the low frequency resistance it sees, R0

1.
Therefore, we have a pole time constant of

τ1 ≡ R0
1C1 = b1 (5)

where the superscript zero in R0
1 indicates that the independent

sources and the energy-storing element are at their zero values
and the subscript is the index of the energy storing element.
Equivalently, if the reactive element is an inductor, L1, the
time-constant is

τ1 ≡ L1

R0
1

. (6)

Let us continue with the case of capacitor for the time being.
The impedance of the capacitor C1 is simply 1/C1s. We notice
that the capacitance, C1, and the complex frequency, s, always
appear together as a product, so the transfer function of (3)
can be unambiguously written as:

H(s) =
a0 + α1C1s

1 + β1C1s
(7)

where α1 and β1 have the appropriate units. Combining (5)
and (7), we obtain,

β1 = R0
1 (8)

We can use another transfer constant to determine the
numerator of (7). This time assume that the value of C1 goes to
infinity. For a capacitor this is equivalent to having it replaced
with a short circuit. For C1 → ∞, the second terms in the
numerator and the denominator of the transfer function of (7)
dominate and hence it reduces to:

H1 ≡ H|C1→∞ =
α1

β1
(9)

where H1 is another transfer constant given from the input
x to the output y with the reactive element at its infinite
value, e.g., capacitor C1 short circuited. This is simply another
frequency-independent gain calculation. Note that in general
this transfer constant, H1, is different from the first transfer
constant, H0, which is the low frequency transfer function
with the energy storing element being zero valued (capacitor
open circuited or inductor shorted).

Considering (8)-(9) and comparing (3) to (7), we easily
determine a1 to be:

a1 = α1C1 = R0
1C1H

1 = τ1H
1 (10)

where τ1 is simply the pole time constant defined by (5) or
(6).

The result of this derivation is that the transfer function of a
system with one energy-storing element can be expressed as:

H(s) =
H0 + τ1H

1s

1 + τ1s
(11)

where H0 is the zero-valued transfer constant from the input,
x, to the output y when the reactive element is zero-valued
(C1 opened or L1 shorted), H1 is the infinite-value transfer
constant (C1 shorted or L1 opened), and τ1 is the time constant
associated with the reactive element and resistance it sees
with the independent sources nulled, R0

1. As can be seen
for a single energy-storing element, (11) provides the exact
transfer function of the system, in terms of three low-frequency
calculations.

IV. ZERO-VALUE TIME AND TRANSFER CONSTANTS

Having considered a system with one energy storage ele-
ment, in this section we take the first step toward a complete
generalization of the approach to the case with N energy
storing elements, which will be presented in Section V. We
will start by determining the first term in the denominator
and numerator of (1), namely, b1 and a1 in a system with N
reactive (energy-storing) elements. First, using an alternative
inductive, more intuitive, derivation than that of [5], we
determine b1 as the sum of the so-called zero-value time
constants (ZVT) of the network6. Next, we also derive a
general expression for a1 in terms of these ZVT’s and some
low frequency transfer functions.

Any network with N energy-storing (reactive) elements can
be represented as a system with N external ports (in addition

6In [5], the first denominator term, b1, for capacitors only is derived using
an n-port nodal analysis of the above system and calculations of the co-factors
of the circuit determinant. It is generalized in [6] using a similar matrix-based
approach.
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Network with

 no dynamics

x y

Ci

LjC1
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Fig. 2. A network with N ports in addition to the input and output with all
the inductors and capacitors presented at the additional ports and no energy
storing element inside.

to the input and output) with no frequency-dependent elements
inside (e.g., containing only resistors and dependent voltage
and current sources) and each reactive element (namely induc-
tors and capacitors) attached to one of the ports, as shown in
Figure 2. (If more than one reactive element is connected to
the same pair of terminals, each one of them is assumed to
have a port of its own with a separate index.)

The only way for a coefficient s to occur in a transfer
function of a lumped circuit is as a multiplicative factor to a
capacitor or an inductor, as in Cis or Ljs. Let us initially limit
our discussion to just capacitors and then generalize to include
the inductors. In that case, the b1 coefficient in (1) must be a
linear combination of all the capacitors in the circuit, i.e., the
b1 term cannot contain a term CiCj because such a term must
have an s2 multiplier. Applying the same line of argument, the
b2 coefficient must consist of a linear combination of two-way
products of different capacitors (CiCj), as they are the only
ones that can generate an s2 term7. In general the coefficient
of the sk term must be a linear combination of non-repetitive
k-way products of different capacitors. The same argument
can be applied to ak coefficients in the numerator and hence
we can write the transfer function as

H(s) =

a0 + (
N∑

i=1

αi
1Ci)s + (

16i∑

i

<j6N∑

j

αij
2 CiCj)s2 + . . .

1 + (
N∑

i=1

βi
1Ci)s + (

16i∑

i

<j6N∑

j

βij
2 CiCj)s2 + . . .

(12)
where coefficients α and β have the appropriate units. Note
that the double (and higher order) sums are defined in such a
way to avoid redundancy due to the repetition of terms such
as, CiCj and CjCi. Also note that the superscript “i” is used
as an index and not an exponent.

The idea behind the derivation of ai and bi coefficients in
general is to choose a set of extreme values (zero and infinity
or equivalently open and short) for energy storing elements
in such a way that we can isolate and express one of the
α or β parameters at a time in terms of other parameters
we already know and low-frequency calculations involving no
reactive elements at all.

7We will see in footnote 8 why they cannot be the same capacitor, i.e.,
(Ci)

2.

Network with

 no dynamics

x y

Ci

Lj=0C1=0

L2=0

Fig. 3. A network with N ports in addition to the input and output with
with all the inductors and capacitors zero valued except Ci.

A. Determination of b1

In this subsection, we show that b1 is exactly equal to
the sum of the zero-value time constants (ZVT) and thereby
provide an alternative derivation of the ZVT method. The zero-
value time constant for each reactive element is essentially the
time-constants of the first-order systems formed by forcing all
other reactive elements to be at their zero values, i.e., open-
circuited capacitors and shorted-circuited inductors.

The transfer function of (12) is determined independently
of the specific value of the capacitor and must therefore be
valid for all capacitor values including zero and infinity. To
determine b1, let us look at a reduced case when all capacitors,
except Ci, have a value of zero, as depicted in Figure 3.
The transfer function of (12) with a single Ci reduces to the
following first-order one8,

Hi(s) =
a0 + αi

1Cis

1 + βi
1Cis

(13)

We have already determined the transfer function of a
general first order system in (11). The reduced system of
Figure 3 is one such first order system with a time constant
of

τ0
i = R0

i Ci, (14)

where R0
i is the resistance seen by the capacitor Ci looking

into port i with all other reactive elements their zero value
(hence the superscript zero), namely open-circuited capacitors
(and short-circuited inductors), and the independent sources
nulled. Equations (11), (13), and (14) clearly indicate that

βi
1 = R0

i (15)

This argument is applicable to any capacitor in the system.
Hence, the first denominator coefficient in (1), b1, is simply

8 Here, we can see why the higher order terms in (12) cannot contain any
self-product terms (e.g., Ci · Ci) from Figure 3. A (Ci)

2 term in the sums
defining a2 or b2 in (12) would result in a second order transfer function
in (13) which contradicts the fact that the reduced system of Figure 3 has
only one energy storing element. By the same token, terms such as (Ci)

2Cj

cannot appear in higher order terms, such as b3.
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Network with
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Ci →∞
Lj=0C1=0

L2=0

Fig. 4. Calculation of Hi ≡ y
x
|Ci→∞;else:ZV with Ci shorted (infinite

valued) and all other inductors and capacitors zero valued.

given by the sum of these zero-value time constants (ZVT)9,

b1 =
N∑

i=1

τ0
i (16)

where τ0
i coefficients are the ZVT’s given by (14) for capaci-

tors. With both inductors and capacitors present, the summa-
tion terms in (12) will be linear combination of inductors and
capacitors and sums of their products for higher order terms.
With an inductor Lj at port j, setting all the other elements
to their zero value and nulled independent sources, the system
reduces to yet another first order system with a time constant
similar to (6), i.e.,

τ0
j =

Lj

R0
j

(17)

Hence, in general, the τ0
i terms are zero-value time constants

associated with the capacitor or the inductor given by (14) or
(17).

Note that the sum of zero-value time constants in (16) is
exactly equal to the sum of pole characteristic times (−1/pi)
which is also equal to b1, as can be easily seen by comparing
(1) and (2). However, it is very important to note that in
general10 there is no one-to-one correspondence between the
individual zero-value time constant, τi, and pole frequency,
pi. (For one thing the individual poles can be complex while
the time constants are always real. Also, as we will see in
Section VI-A, the number of the poles and the number of
time constants are not necessarily the same.)

B. Determination of a1

Next we determine the numerator coefficient a1, which can
be used to approximate the effect of the zeros. We will see that
a1 can be written in terms of the zero-value time constants
already determined in calculation of b1 and low-frequency
transfer constants evaluated with one reactive element infinite-
valued at a time. We rely on the first order system result of
Section III to determine the αi

1 coefficients in (12).

9This method is sometimes referred to as the method of open-circuit
time (OCT) constants. This terminology only makes sense when applied to
capacitors because a zero-valued capacitor corresponds to an open circuit.
Unfortunately, an inductor at its zero value corresponds to a short circuit and
thus the name becomes misleading.

10Unless all poles are decoupled as defined in Section VI-B.

When Ci →∞ in (13) while the other elements are still at
zero value, (Figure 4) the transfer function from the input to
the output reduces to a constant, i.e.,

Hi ≡ H|Ci→∞
Cj=0
i 6=j

=
αi

1

βi
1

(18)

where Hi is a first-order transfer constant between the input
and the output with the single reactive element i at its infinite
value (i.e., short circuited capacitor or open circuited inductor)
and all others zero-valued11. We have already determined βi

1

to be R0
i in (15), which leads to αi

1 = R0
i H

i from (18).
Therefore, αi

1Ci = R0
i CiH

i = τ0
i . Thus we can write:

a1 =
N∑

i=1

τ0
i Hi (19)

which is the sum of the products of zero-value time constants
given by (14) or (17) and the first-order transfer constants,
Hi, evaluated with the energy storing element at the port i at
its infinite value, as shown in Figure 4. Note that transfer
constants Hi are easily evaluated using the low frequency
calculations. The same line of argument can be applied for
a combination of capacitors and inductors.

Note that the τ0
i time constants have already been computed

in determination of b1 and hence all that needs to be calculated
to determine a1 are transfer constants, namely the Hi coeffi-
cients. Also as we will see later, it is the ratios of Hi’s to H0

that determine the zero location and hence the exact details of
Hi’s do not matter to the extent we know how it is changed
with respect to H0, eliminating the need for recalculation of
all parameters with a change in the circuit.

Equation (19) suggests that if all transfer constants of
different orders are zero, there will be no zeros in the transfer
function. This suggests an easy test to determine whether there
is a zero in the transfer function by looking for capacitors
shorting of which (or inductors opening of which) results in
a non-zero low-frequency transfer function12. We will see in
Section V how this concept can be generalized to determine
the number and location of the zeros. We will see in VI-D
and Example VII-3 how (19) is used to include the effect of
zeros in ZVT calculations. Next, we discuss the general case.

V. HIGHER ORDER TERMS: GENERALIZED TIME AND
TRANSFER CONSTANTS (TTC)

In this section, we generalize the approach to be able to
determine the transfer function to any degree of accuracy
(including exact result) by calculating higher-order an and bn

terms in (1). As we discussed earlier, the transfer function
of the N th order system of Figure 2 can be expressed in

11From a notation perspective, we place the index(es) of the infinite valued
element(s) in the superscript. An index 0 in the superscript (as in R0

1) simply
indicates that no reactive element is infinite valued , i.e., all elements are at
their zero values.

12Sometimes the transfer function has a pole that exactly coincides with a
zero. When that happens the above procedure still predicts the existence of a
zero, while there will be a pole at exactly the same location. An example is a
parallel RC network not connected to the rest of the circuit, which generates
a at 1/RC and a zero at exactly the same frequency.
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Network with

 no dynamics

x y

Ci →∞

C1=0

L2=0
Cj

Fig. 5. The network with a single capacitor Cj present, while Ci is infinite
valued (shorted) and all the inductors and capacitors zero valued.

the form of (12). Note that in (12), the higher order sums
are defined in such a way that for any two indexes m and n
only one of the βmn

2 and βnm
2 is present in the sum to avoid

multiple permutations of the same product13. Since relabeling
the capacitors should not change the poles and zeros of the
transfer function, we conclude that βmn

2 = βnm
2 . A similar

argument can be applied to the numerator to conclude that
αmn

2 = αnm
2 . Also note that the higher order terms in (12)

denoted by (. . .) have coefficients that are sums of products
of at least three different capacitors.

We showed in Section IV that b1 and a1 in (1) are always
given by (16) and (19), respectively, i.e., βi

1 = R0
i and αi

1 =
R0

i H
i in (12). Now we determine higher order coefficients

in (1). Next assume that we set Ci to infinity and consider a
capacitor Cj at port j while all other capacitors have a value
of zero (i.e., are open). The network will look like Figure 5.
This is yet another first-order system different from the one in
Figure 3 used to determine b1. The time constant of this new
first-order system is

τ i
j = Ri

jCj (20)

where Ri
j is the resistance seen at port j with port i infinite

valued (capacitor Ci shorted). Evaluating (12) with Ci → ∞
and all other capacitors other than Ci and Cj at their zero
value (i.e., open) we obtain:

H(s)|Ci→∞ =
Cis · (αi

1 + αij
2 Cjs)

Cis · (βi
1 + βij

2 Cjs)
=

αi
1

βi
1

·
1 + αij

2
αi

1
Cjs

1 + βij
2

βi
1
Cjs

(21)
which is the transfer function of the new first order system
shown in Figure 5. Equating the coefficient of s in the
denominator of (21) to (20), we obtain:

βij
2 = βi

1R
i
j = R0

i R
i
j (22)

where we have used (15) in the last step. The second coeffi-
cient of the denominator, b2, can be calculated as:

b2 =
16i∑

i

<j6N∑

j

R0
i CiR

i
jCj (23)

13More generally, we can expect that any circular rotation of the ijk . . .
indexes in the superscript of αijk...

l
and βijk...

l
should result in the same

value due to the same invariance to the labeling of the capacitors.

which in general can be written as

b2 =
16i∑

i

<j6N∑

j

τ0
i τ i

j (24)

One important point is that since βij
2 = βji

2 , as discussed
earlier, we conclude:

R0
i R

i
j = R0

jR
j
i (25)

This equality provides alternative ways of calculating higher
order time constant products, some of which may be more
straightforward to calculate in the actual circuit. Equivalently,
we have the more useful form:

τ0
i τ i

j = τ0
j τ j

i (26)

Now to obtain a2, we will let both Ci and Cj to go to
infinity (short circuited) and all other reactive elements to be
zero valued (e.g., open capacitors). The second order input-
output transfer constants are simply given by:

Hij ≡ H|Ci,Cj→∞
Ck=0
i 6=j 6=k

=
αij

2

βij
2

(27)

Since we have already determined βij
2 in (22), we determine

that αij
2 = R0

i R
i
jH

ij and thus:

a2 =
16i∑

i

<j6N∑

j

R0
i CiR

i
jCjH

ij (28)

which again more generally can be written as

a2 =
16i∑

i

<j6N∑

j

τ0
i τ i

jH
ij (29)

where Hij is the low-frequency input-output transfer constant
with both ports i and j shorted (or in general the reactive
elements at ports i and j at their infinite value). The above
approach can be continued by induction to determine higher
order ai and bi coefficients using an inductive line of argument
to (12)

In general, the nth order bn coefficient of the denominator
is given by:

bn =
16i<∑

i

j<k∑

j

...6N∑

k···
. . . τ0

i τ i
jτ

ij
k . . . (30)

which is the same result as in [6], written in a more compact
form.

The an coefficient for the numerator is

an =
16i<∑

i

j<k∑

j

...6N∑

k···
. . . τ0

i τ i
jτ

ij
k . . . Hijk... (31)

where τ ij...
k corresponds to the time constant due to the

reactive element at port k and the low frequency resistance
seen at port k when ports whose indexes are in the superscript
(i, j, . . .) are infinite valued (shorted capacitors and opened
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inductors). In the presence of inductors a similar line of
argument can be applied, noting that the time constant τ ij...

k

associated with inductor Lk is simply the inductance divided
by Rij...

k which is the resistance seen at port k with the reactive
elements at ports i, j, . . . at their infinite values14. So the time
constants in (30) and (31) will have one of the following
forms depending on whether there is an inductor or a capacitor
connected to port k. For capacitor, Ci:

τ jk...
i = CiR

jk...
i (33)

and for inductor, Ll:

τmn...
l =

Ll

Rmn...
l

(34)

Finally, Hijk... is the nth-order transfer constant evaluated
with the energy storing elements at ports i, j, k, . . . at their
infinite values (shorted capacitors and opened inductors) and
all others zero valued (opened capacitors and shorted induc-
tors). It is noteworthy that (30) indicates that the poles of the
transfer function are independent of the definition of input
and output and are only characteristics of the network itself,
while the zeros are not a global property of the circuit and
depend on the definition of the input and output ports and
variables, as evident from the presence of the Hij... terms.
This is consistent with the fact that poles are the roots of the
determinant of the Y matrix [1] defined independent of the
input and output ports.

Several observations are in order about this approach. First
of all this approach is exact and makes it possible to determine
the transfer function completely and exactly. More importantly,
unlike writing nodal or mesh equations, one does not need to
carry the analysis to its end to be able to obtain useful infor-
mation about the circuit. Additional information about higher
order poles and zeros can be obtained by carrying the analysis
through enough steps to obtain the results to the desired level
of accuracy. Also, the analysis is equally applicable to real
and complex poles and zeros. Once mastered, this analysis
method provides a fast and insightful means of evaluating
transfer functions, as well as input and output impedances for
general circuits. The generalized time and transfer constants
(TTC) approach has several important and useful corollaries
that will be discussed in the next Section.

VI. COROLLARIES AND APPLICATIONS

A. Number of Poles and Zeros

It is a well known result that the number of poles (i.e.,
the number of natural frequencies) of a circuit is equal to the
maximum number of independent initial conditions we can
set for energy-storing elements. This result can also be easily
deduced from (30), where the highest order non-zero bn is
determined by the highest order non-zero time constant, τ jk...

i

in the system.

14 Equations (25) can be generalized noting the invariance of the βijk...
l

to a rotation of the indexes to produce

R0
i Ri

jRij
k

. . . Rijk...
m = R0

jRj
k

. . . Rjkl...
m Rjkl...

i (32)

It is easy to see that each purely capacitive loop with no
other elements in the loop reduces the order of the system by
one. This is because the highest order time constant associated
with the last capacitor, when all the other ones are infinite
valued (shorted) is zero, since the resistance seen by that
capacitor in that case is zero15 (see Example VII-2 in Section
VII). The same effect holds for an inductive cut-set, where
only inductors are attached to a node. Again the time constant
associated with the last inductor, when all others are infinite-
valued (opened) is zero since the resistance seen is infinity.

The number of zeros can also be determined easily in the
approach presented here. The number of zeros is determined
by the order of the numerator polynomial, which is in turned
determined by the highest order non-zero transfer constant,
Hijk..., in (31). In other words, the number of zeros in
the circuit is equal to the maximum number of energy-
storing elements that can be simultaneously infinite-valued
while producing a non-zero transfer constant Hijk... from
the input to the output. This way we can easily determine
how many zeros there are in the transfer function of the
system by inspection without having to write any equations
(see Examples VII-2, VII-3, and VII-8). This is one of the
advantages of this approach over that presented in [15].

B. Decoupled Poles
The second important corollary of the TTC relates to

decoupled poles of the circuits. As we mentioned in subsection
IV-A, there is no one-to-one correspondence between the zero-
valued time constants, τ0

i and the poles’ characteristic times
(−1/pi). However, an important exception is when a time-
constant is decoupled from all other ones. This happens when a
time constant does not change for any combination of shorting
and opening of other energy-storing elements, i.e., in our
notation,

τ0
N = τ i

N = τ ij
N = · · · = τ ij...m

N (35)

In this case, the term (1 + τ0
Ns) can be factored out of the

denominator16 and the pole associated with it is simply a real

15In general, in a circuit with N +1 nodes (including ground) we can have
up to N(N + 1)/2 distinct capacitors connected among the nodes. Despite
this potentially large number of distinct capacitors, we can only define N
independent initial conditions. This can be seen if we assume that the voltages
between individual capacitors from each node to ground is set. This sets all the
node voltages and thus no more initial condition can be defined independently,
meaning we can have a maximum of N poles in such a circuit.

16This can be proved rather easily by reordering the terms of the denomi-
nator as:

D(s) = 1 + b1s + b2s2 + · · ·

= 1 + s

N∑
i=1

τ0
i + s2

16i∑
i

<j6N∑
j

τ0
i τ i

j + · · ·

= 1 + s(τ0
N +

N−1∑
i=1

τ0
i ) + s2(

N−1∑
i=1

τ0
i τ i

N +

16i<∑
i

j6N−1∑
j

τ0
i τ i

j ) + · · ·

= (1 + sτ0
N ) + (1 + sτ0

N )s

N−1∑
i=1

τ0
i + (1 + sτ0

N )s2

16i<∑
i

j6N−1∑
j

τ0
i τ i

j + · · ·

= (1 + sτ0
N )

[
1 + s

N−1∑
i=1

τ0
i + s2

16i∑
i

<j6N−1∑
j

τ0
i τ i

j · · ·
]

(36)
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one at pN = −1/τ0
N .

This concept can be generalized to a group or groups
of time constants that can be decoupled from the rest of
the time constants but internally coupled. An example is a
multi-stage amplifier, with no interstage capacitors, where
the time constants within each stage may be coupled and
cannot be factored into products of first order terms, however,
it is possible to factor the numerator and denominator into
product of lower order polynomials each associated with one
set of externally uncoupled yet internally coupled set of time
constants internal to each stage. This can be viewed as a
partitioning of time constants into these mutually uncoupled
subsets. (See Example VII-4).

C. Bandwidth Estimation using ZVT’s

The b1 coefficient calculated in (16) can be used to form a
first-order estimate of ωh, the −3dB bandwidth of a circuit
with a low-pass response17. More importantly, it is a powerful
design tool allowing the designer to identify the primary
source of bandwidth limitation and can serve as a guide in
making qualitative (e.g., topological) and quantitative (e.g.,
element values) changes to the circuit.

There are several simplifying assumptions involved in ap-
plication of the basic ZVT method to bandwidth estimation.
The original ZVT approach [5] assumes that there are no
(dominant) zeros in the transfer function. Next in subsection
VI-D, we will augment the approach to account for dominant
zeros in the transfer function and how to determine if they are
present.

For now let us assume there are no dominant zeros in the
transfer function. In this case, the transfer function can be
approximated as

H(s) ≈ a0

1 + b1s + b2s2 + . . . + bnsn
(37)

which is the transfer function of low-pass system with a low-
frequency value of a0.

At dc (s = 0), the only term in the denominator that matters
is the leading 1. As the frequency goes up and approaches ωh,
the first term that becomes non-negligible would be b1s, so in
the vicinity of the ωh, (37) can be further approximated as a
first order system

H(s) ≈ a0

1 + b1s
(38)

This implies that ωh, bandwidth of the complete system, can
be approximated as[5]:

ωh ≈ 1
b1

=
1

N∑

i=1

τ0
i

(39)

where the term in the bracket is of order of sn−1.
17As we saw in section II, we can split a bandpass response with a well-

defined mid-band gain into a low-pass and a high-pass one. We can arrive
at the low pass response by setting certain biasing elements such as bypass
capacitors, coupling capacitors, and RF chokes to their infinite values (shorted
capacitor and open inductor). Then using the method of zero-value time
constants we can approximate ωh. A dual process called the method of
infinite-value time (IVT) constants discussed in section VI-G can be use to
estimate ωl in the high-pass system.

where τ0
i are the zero value time constants defined by (14) and

(17) for capacitors and inductors, respectively18. This approx-
imation is conservative and underestimates the bandwidth[16].

As mentioned earlier, the coefficient b1 is the sum of
the pole characteristic times (−1/pi) with no one-to-one
corresponds among pi’s and τi’s, in general. Therefore, the
imaginary parts of complex conjugate pole pairs cancel each
other in the b1 sum. As a result, ZVT method by itself does
not provide any information about the imaginary part of the
poles and is completely oblivious to it. This can result in gross
underestimation of the bandwidth using (39), when the circuit
has dominant complex poles which could lead to peaking in
the frequency response. We will see how we can determine
whether or not complex poles are present and how to estimate
their quality factor (Q) in Section VI-F and Example VII-5.

D. Modified ZVT Bandwidth Estimation for a System with
Zeros

The ZVT approximation of (39) can be improved in the light
of (19). In the presence of zeros using a similar argument used
to arrive at (38), we conclude that close to ωh, the transfer
function can be estimated as:

H(s) ≈ a0 ·
1 + a1

a0
s

1 + b1s
(40)

which is a first order system with a pole at −1/b1 and a zero at
−a0/a1. The zero has the opposite effect on the magnitude of
the transfer function compared to the pole since it increases the
magnitude of the transfer function with frequency. According
to (19), we have,

a1

a0
=

N∑

i=1

τ0
i

Hi

H0
(41)

First, let us assume that all Hi/H0 terms are positive. In
this case, the numerator’s first order coefficient, a1/a0, will
be positive and the dominant zero is left-half plane (LHP).
In this case, using the first Taylor series expansion terms of
the numerator and the denominator, the ωh estimate can be
modified to

ωh ≈ 1
b1 − a1

a0

=
1

N∑

i=1

τ0
i (1− Hi

H0
)

(42)

If some of the Hi/H0 terms are negative, it means that the
transfer function has right-half plane (RHP) zeros. However,
the RHP zeros have exactly the same effect on the amplitude as
LHP ones unlike their phase response. Since ωh only depends
on the amplitude response and not the phase, a LHP zero at a
given frequency should produce the exact same ωh as a RHP
zero at the same frequency. Therefore, in general, a better

18Intuitively, ωh is the frequency at which the total output amplitude drops
by a factor of

√
2 with respect to a0. Under normal circumstances, at this point

the contribution of each one of the energy-storing elements is relatively small
and hence (39) can be thought of as the sum of their individual contributions
to the gain reduction, assuming the other ones are not present.
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approximation for ωh (assuming it exists) is

ωh ≈ 1
N∑

i=1

τ̄0
i

(43)

where

τ̄0
i = τ0

i · (1− |
Hi

H0
|) (44)

are modified ZVT’s that are only different from the original
ZVT’s for reactive element which result in non-zero transfer
constants when infinite valued (e.g., capacitors shorting of
which does not make the gain zero). Also note that (43) and
(44) subsume (42) for LHP zeros and reduces to (39) when
there are no zeros, i.e., all Hi terms are zero (corresponding
to a1 = 0). Usually only a few of the original ZVT’s need
be modified. Note that the correction to the time constants
can be done at the same time they are calculated simply by
evaluating the change in the low frequency transfer function
when the element is infinite valued.

Example VII-3 shows how the modified ZVT’s produce a
useful result in the presence of zeros, while regular ZVT’s
result is substantially inaccurate.

E. The Creation and Effect of Zeros

Unlike poles that are natural frequencies of the circuit and
hence are not affected by the choice of the input and output
variables, zeros change with the choice of the input and output
variables, as evident by the presence of Hijk... terms in the
an’s. As mentioned earlier, as long as infinite valuing of some
reactive elements results in non-zero low-frequency transfer
function, there are zeros in the system.

1) Zeros in a First-Order System: For a first-order system
with a single energy-storing element, we can easily obtain the
following relation between the pole and the zero from (11):

z =
H0

H1
· p (45)

This expression is sufficient to evaluate the relative position of
the zero with respect to the pole. It is clear from (45) that if the
infinite- and zero-value transfer constants have opposite signs,
the pole and the zero will be on two opposite half-planes. For
instance, these correspond to low frequency gain of the system
with a capacitor short- and open-circuited. In stable systems
where the pole is in the LHP, the zero will be on the RHP for
opposite polarities of H0 and H1, as in Example VII-2. On
the other hand if H0 and H1 have the same polarity, the pole
and the zero will be both on the LHP (see Example VII-3).

The magnitude of H0/H1 determines which one occurs at
a lower frequency. As evident from (45), the zero happens
first (at a lower frequency than the pole, i.e., |z| < |p|) when
|H0/H1| < 1. Alternatively, the pole occurs before the zero
(|p| < |z|), for |H0/H1| > 1. This assessment can almost
always be done by inspection because we only need to know
the relative size and magnitude of H0 and H1, as summarized
in Table I.

t

s1(t) s2(t) s(t)

t t

H
0

H
1

H
1

H
0

+ =

Fig. 6. The step response of a first order system decomposed as the sum
of the step response of a first-order low-pass system, s1(t) and high-pass
systems, s2(t).

2) The Time-Domain Response due to a Zero: In a first
order system, the transfer function of (11) can be expressed
as the sum of a first order low-pass and a first order high-pass
system, i.e.,

H(s) =
H0

1 + τs
+

H1

1 + 1
τs

(46)

resulting in a step response of

s(t) = H0(1− e−t/τ )u(t) + H1e−t/τu(t) (47)

where u(t) is the unit step. Since both responses have the same
time constant, τ , the overall response would be an exponential
with an initial value, H1, and a final value, H0, and a time
constant, τ , as shown in Figure 6. Again, the relative size and
polarities of H0 and H1 determines the general behavior of
the response.

When H0 and H1 have opposite polarities, the low- and
high-pass responses will go in different directions resulting in
an undershoot. On the other hand, when H0 and H1 have
the same polarities, but 0 < H0/H1 < 1, the step response’s
initial value (H1) is greater than its final value (H0) and hence,
there will be an overshoot. For 1 < H0/H1, the step response
starts at the smaller value H1 at t = 0 and then increases
exponentially to its final value (similar to Figure 6.)

Next, let us consider a second order system with two
arbitrary real poles and a single zero. The transfer function
of such a system can be written as

H(s) = H0 · 1− s
z

(1− s
p1

)(1− s
p2

)
= H0 · 1 + τzs

(1 + τ1s)(1 + τ2s)

where H0 is the zero-value transfer constant of the circuit.
We can assume |p1| < |p2| (i.e., τ1 > τ2) without loss of
generality. The zero can be LHP or RHP and H(s) can be
written, as the sum of partial fractions, as depicted in Figure

TABLE I
RELATIVE POSITION OF THE POLE AND ZERO IN A FIRST-ORDER SYSTEM.

H0

H1
> 0

H0

H1
< 0

|H
0

H1
| < 1 |z| < |p| |z| < |p|

Same Half Plane Opposite Half Plane

|H
0

H1
| > 1 |z| > |p| |z| > |p|

Same Half Plane Opposite Half Plane
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R1

R2

C1

A1

C2

A2

vin vout+

+

slow path

fast path

Fig. 7. A system consisting of two signal paths each with a first order
response followed by unilateral ideal voltage amplifiers.

7 [17]19

H(s) =
A1

1− s
p1

+
A2

1− s
p2

=
A1

1 + τ1s
+

A2

1 + τ2s
(49)

where τ1 = −1/p1 and τ2 = −1/p2 are the pole characteristic
times (τ1 > τ2) and we have,

τz = −1
z

=
A2τ1 + A1τ2

A1 + A2
(50)

This system can be completely modeled using the dual-
path system of Figure 7, where the upper path with the low-
frequency gain A1 is slower than the lower one with the gain
A2. It has two first-order parallel paths each with a single pole
transfer function and no zeros. While the two-path system of
Figure 7 may appear quite idealized, it can be used to represent
any second order system with two LHP real poles and a zero.
Each of these poles would be at exactly the same frequency
as those of the real poles of the original second order system.
Interestingly, a new real zero is created that did not exist in
either of the constitutive first-order systems of Figure 7. This
is essentially due to the fact that the summation of the two
different responses in the two parallel systems will result in the
two responses canceling each other at a complex frequency.

Using the decomposition of Figure 7, we conclude that the
time-domain response is the sum of the responses of the two
first order single-pole systems, i.e.,

s(t) = A1(1− e−t/τ1) + A2(1− e−t/τ2) (51)

A careful look at (50) indicates that if the gains of the two
paths have the same polarities (i.e., A1A2 > 0), the zero is
LHP and falls between the two poles, as (50) could be looked
at as the weighted average of τ1 and τ2. In this case, the
response is the sum of two exponentials going in the same
direction with two different time constants as shown in Figure
8a, resulting in a droop, as the response associated with p2

settles quickly but the response corresponding to p1 takes a
while longer to reach its final value.

19A1 and A2 are given by:

A1 = H0 · p2

z
· z − p1

p2 − p1
(48a)

A2 = −H0 · p1

z
· z − p2

p2 − p1
(48b)

P1 P2

droop overshootnegligible undershoot

opposite polaritiessame polaritiesopposite polarities

jω

σ

Fig. 9. The impact of the location of the zero on the step response behavior
and the implied relative polarity of the paths in its two-path equivalent.

The condition −1 < A1/A2 < 0 results in a LHP zero
closer to the origin than either p1 and p2. Again using the
equivalent system of Figure 7, we see that the two paths have
opposite polarities and the magnitude of the slower path’s
gain (A1) is smaller than the faster path (A2), as shown in
Figure 8b. The faster path which has a higher gain results in
an overshoot in the response that is eventually reduced by the
slower path. Note that this overshoot is not caused by complex
poles, rather by the zero in the transfer function.

We have a LHP zero if A1/A2 < −τ1/τ2, but the zero is at
a higher frequency than either p1 and p2 and hence usually has
a negligible effect. Another way to see this is by noting that
in this case slow response has significantly higher gain than
the faster one, so it modifies the slope of the response of the
primary path slightly but its effect is completely diminished
by the time the high-gain slower path reaches steady-state.

When the gains have opposite polarities and their ratio is in
the range −τ1/τ2 < A1/A2 < −1, we have a RHP zero. The
slower path still has a larger gain magnitude but the faster one
has high enough gain to produce an undershoot, as in Figure
8c. The undershoot is a trait associated with RHP zeros.

To summarize, two parallel paths with the same polarity
result in a real zero between p1 and p2 which causes a droop
in the step response. Having two signal paths with opposite
polarities can result in an undershoot if the faster path has a
smaller gain and an overshoot if it has a larger gain. These
results are summarized in Figure 9.

As a side note, although in the dual path system of Figure
7 there are two capacitors, C1 and C2, shorting of either one
results in a non-zero transfer function. Nonetheless, there is
only one zero in the transfer function, since simultaneous
shorting (infinite-valuing) of both results in a zero transfer
function (H12 = 0), as given by the criterion discussed in
subsection VI-A.

F. Properties of Second Order Systems

The transfer function of a second order system can be
expressed in terms of the natural frequency, ωn, and the quality
factor, Q,

H(s) =
N(s)

1 +
s

Qωn
+

s2

ω2
n

(52)

where N(s) is the numerator and Q = 1/2ζ is a measure
of the energy loss per cycle in the system (ζ is called the
damping ratio). Note that the quality factor and the damping
factor are defined independent of the numerator. Evaluating
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Effect of the slow pole

Complete step response

Effect of the fast pole

Time

Undershoot

A1

A2

Complete step response

Effect of the slow pole

Effect of the fast pole

Time

Overshoot

A1

A2

Effect of the slow pole

Effect of the fast pole

Time

Overall step response

A1

A2

Droop

Fig. 8. The step responses of two paths with a) same polarities (A1A2 > 0) (droop), b) opposite polarities (A1A2 < 0) and |A2| > |A1| (overshoot), c)
opposite polarities (A1A2 < 0) and |A2| < |A1| (undershoot).

(52) in terms of bn coefficients we obtain:

Q =
1
2ζ

=
√

b2

b1
(53)

which for a second-order system can be written in terms of
the time-constants:

1
Q

= 2ζ =
τ0
1 + τ0

2√
τ0
1 τ1

2

=

√
τ0
1

τ1
2

+

√
τ0
2

τ2
1

(54)

where (26) has been used in the last step to arrive at a more
symmetrical result. It is easy to see from quadratic roots of
the denominator of (52) that for Q > 1

2 the roots of the
denominator become complex.

The undamped resonance or natural frequency, ωn, can be
readily related to the b2 by

ωn =
1√
b2

(55)

which can be written in terms of the time constants as

ωn =
1√
τ0
1 τ1

2

=
1√
τ0
2 τ2

1

(56)

Equations (53) and (55) are useful in the light of the relatively
straightforward relation between Q and ωn with b1 and b2

coefficients given by (53) (see Example VII-5). They are
also useful as approximations in higher order to estimate the
amplitude and the frequency of peaking of the response (see
Example VII-5).

G. Infinite Value Time Constants

We saw earlier in Section II (footnote on page 2) that the
transfer function of a bandpass system with a well-defined
pass-band can be factored into the part responsible for the
low-frequency behavior in terms of inverse poles and zeros,
which results in a high pass response and a part responsible
for the high-frequency behavior in terms of conventional poles
and zeroes that form a low pass response. We can apply the
infinite value time-constant (IVT) approach to determine the
low-frequency behavior, in particular, its low -3dB frequency,
ωl.

To have a unity response at high frequencies in a high-pass
response, the numerator should be of the same order as the
denominator. If there are no zeros close to ωl, we have:

H(s) ≈ ansn

1 + b1s + b2s2 + · · ·+ bnsn

=
amid

1 + bn−1
bns + · · ·+ 1

bnsn

(57)

where amid = an/bn is the gain at very high frequencies. As
we lower the frequency, the most dominant term affecting ωl

is bn−1/bn.
For an nth order high-pass system, we can approximate ωl

with bn−1/bn, i.e.,

ωl ≈ bn−1

bn
=

16i<∑

i

j<k∑

j

...6N∑

k···
. . . τ0

i τ i
jτ

ij
k . . .

τ0
i τ i

jτ
ij
k . . . τ ij...m

n

=
1

τ23...n
1

+
1

τ13...n
2

+ · · ·+ 1

τ
12...(n−1)
n

(58)

where we have used the rotational symmetry discussed in
the footnote on page 7. The time constant, τ

12...(i−1)(i+1)...n
i ,

which we will denote as, τ∞i , is the time constant for the ith
element with all other ports at infinite values hence called an
infinite-value time constant, IVT20.

This can be summarized as:

ωl ≈ bn−1

bn
=

N∑

i=1

1
τ∞i

(59)

where,
τ∞i = CiR

∞
i (60)

for capacitor, Ci, and

τ∞l =
Ll

R∞l
(61)

for inductor Ll. Resistance R∞i is the resistance seen looking
into port i when the capacitors and inductors at all other

20When the energy-storing elements are capacitors only, this method is
often referred to as the method of short-circuit time constants. Obviously, the
term infinite value time-constant is advantageous because it applies to both
capacitors and inductors.
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ports are at their infinite values (shorted capacitors and opened
inductors).

VII. EXAMPLES

In this section, we present several examples of the appli-
cation of the TTC method. We use well-known circuits to
demonstrate application of the method in a familiar context.

1) Common-Emitter, ZVT’s: Consider the common-emitter
stage of Figure 10a with three capacitors, Cπ, Cµ, and CL

connected at the output. The equivalent small-signal model
for this stage is shown in 10b. The low-frequency gain is
obviously

a0 = H0 =
vout

v1
· v1

vin
= −gmR2 · rπ

rπ + R1

First let us calculate the coefficient b1 by calculating the
three ZVT’s associated with capacitors. In this example, we
will use the π, µ, and L indexes to identify the elements.
To determine the zero-value resistance seen by Cπ , we null
(short-circuit) the input voltage source and by inspection, we
have

τ0
π = CπR0

π = Cπ(R1 ‖ rπ)

The resistance seen by Cµ we have21:

τ0
µ = CµR0

µ = Cµ[R1 ‖ rπ + R2 + gm(R1 ‖ rπ)R2]

And the zero-value resistance seen by CL is trivial as nulling
the vi sets the dependent current source to zero (open circuit)
and hence:

τ0
L = CLR0

L = CLR2

Apply (16) we obtain,

b1 =
∑

i

τ0
i = τ0

π + τ0
µ + τ0

L (66)

21A useful result in many of these calculations is the resistance seen by
capacitors connected between various terminals of a three terminal transistor
with external resistors, RB , RC , and RE from the base (gate), collector
(drain), and emitter (source) to ac ground respectively. It can be shown that
ignoring transistor’s intrinsic output resistance, ro, the base-emitter (or gate-
source) resistance, R0

π , is given by

R0
π = rπ ‖ RB + RE

1 + gmRE
(62)

The base-collector (or gate-drain) resistance, R0
µ is given by:

R0
µ = Rleft + Rright + GmRleftRright (63)

where

Rleft ≡ RB ‖ [rπ + (1 + β)RE ] (64a)
Rright ≡ RC (64b)

Gm ≡ 1

rm + RE
=

gm

1 + gmRE
(64c)

Note that Rleft it the resistance seen between the base (gate) and the ac
ground which reduces to RB for a MOSFET (β →∞). Resistance Rright

is the resistance between the collector (drain) and ac ground, and finally Gm

is the effective trans-conductance. The resistance seen between the collector
and the emitter (drain and source), R0

θ , is given by

R0
θ ≈

RC + RE

1 + gmRE
(65)

where the approximation disappears for β →∞. Note that R0
θ is not the same

as the resistance seen between the collector and ground, namely, Rright.

In a numerical example22 we have H0 = −57 and the time
constants are τ0

π ≈ 70ps, τ0
µ ≈ 1, 200ps, and τ0

L = 400ps lead-
ing to a bandwidth estimate of ωh ≈ 1/b1 ≈ 2π · 95MHz. A
SPICE simulation predicts a -3dB bandwidth of fh = 97MHz
in close agreement with the above result.

2) Common-Emitter, Exact Transfer Function: The com-
mon emitter stage of Figure 10 has three capacitors, but in fact
we can only set two independent initial conditions because of
the capacitive loop, i.e., it has only two independent degrees
of freedom.

We have already determined the coefficient b1 in (66). Now
let us determine b2 using (24). To do so, we determine three
time constants by short-circuiting the associated element with
the superscript and looking at the impedance seen by the
elements designated by the subscripts. Unlike ZVT’s, all of
which we needed, there are six such combinations of these
time constants (τπ

µ , τL
µ , τL

π , τµ
π , τµ

L , and τπ
L ), out of which we

can pick any three to cover each two-way combination once
and only once to be coupled with the ZVT’s. There are many
combinations, but noting that the expression for τ0

µ is longer
than other ZVT’s, we try to pick the ones that avoid it to make
our calculation more straightforward, i.e.,

τπ
µ = CµR2

τL
π = Cπ(rπ ‖ R1)

τL
µ = Cµ(rπ ‖ R1)

that are calculated using the circuits shown in Figure 11. These
combined with the ZVT’s calculated in (66) produce:

b2 =
16i∑

i

<j63∑

j

τ0
i τ i

j

= τ0
LτL

π + τ0
πτπ

µ + τ0
LτL

µ

= (rπ ‖ R1)R2 · (CπCµ + CπCL + CµCL) (67)

From (30) we see that with three energy-storing elements,
b3 = τ0

1 τ1
2 τ12

3 which has to be zero since τ12
3 = 0 due to the

capacitive loop. Thus the system is only second order with
two poles as expected.

Since Hπ and HL are zero, we only need to calculate Hµ.
Shorting Cµ, the circuit reduced to a resistive divider between
R1 and αrm ‖ R2. The voltage gain is simply given by the
resistive divider ratio, i.e.,

Hµ =
αrm ‖ R2

R1 + αrm ‖ R2
=

rπ

rπ + R1
· R2

R0
µ

(68)

Hence the voltage transfer function can be determined from
(11).

H(s) = H0 · 1 + Hµ

H0 τs

1 + b1s + b2s2
= H0 ·

1− Cµ

gm
s

1 + b1s + b2s2

22We assume the following parameters: a collector current of 1mA (translat-
ing to gm = 40mS), β0 = 100, Cje = 20fF , Cjc = 20fF , Cjs = 50fF ,
and τF = 2ps which corresponds to a Cb = gmτF = 80fF/mA at room
temperature, leading to Cπ = Cje + Cb = 100fF and Cµ = Cjc = 20fF .
Now consider an external capacitor on the output of Cout = 150fF which
together with Cjs form CL = Cout + Cjs = 200fF . These values
correspond to a transistor cut-off frequency, fT ≈ 53GHz. We also assume
R1 = 1kΩ and R2 = 2kΩ in the circuit of Figure 10
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Cπ

Cµ

CL

R2

R1

vin

vout

Cπ

Cµ

CL
R2

R1

vin

vout

rπ gmvπ

Fig. 10. a) A common-emitter stage with capacitors Cπ and Cµ driving a load capacitor, CL, b) its small-signal equivalent assuming ro is large (or absorbed
into R2).

R

R2

R1

rπ gmvπ

µ

R2

R1

rπ gmvπ R2

R1

rπ gmvπ

π
=R2 Rµ

L
=R1||rπ

Rπ

L
=R1||rπ

a) b) c)

Fig. 11. The equivalent circuit used to calculate for the common-emitter stage of Figure 10: a) τπ
µ , b) τL

µ , c) τL
π .

Cπ

Cµ

CL

R2

R1vin

vout
C1

Fig. 12. a) A common-emitter stage with a capacitor C1 in parallel with
the input resistance R1.

where the b1 and b2 were calculated (66) and (67), respectively.
It is noteworthy that in this example, H0 and Hµ have opposite
signs, which results in a RHP zero, z = gm/Cµ, in the transfer
function as expected. Note the relative ease of calculation of
this transfer function compared to writing the nodal equations.

3) Common-Emitter, Input Zero: Let us consider the com-
mon emitter stage of previous examples where a capacitor C1

is introduced in parallel with R1 at the input, as shown in
Figure 12. The time constants calculated in Example VII-1
remain the same. Only a new time constant, τ0

1 , associated
with C1 will appear in b1, which is easily calculated to be

τ0
1 = C1(R1 ‖ rπ)

Applying (16) to estimate the bandwidth, the ZVT simply
predicts a smaller ωh than when C1 is not there since we
have just added a new, and potentially large time constant to
the b1 sum.

Numerically, with C1 = 4.3pF and all other values the

same as those in Example VII-1, we have τ0
1 ≈ 3.07ns and

the bandwidth estimate according to the conventional ZVT
given in (16) is ωh ≈ 2π ·34MHz. However, this time SPICE
predicts a -3dB bandwidth of fh = 482MHz which is more
than an order of magnitude higher! The reason is that C1

introduces a LHP zero since shorting it results in a non-zero
transfer function H1 with the same polarity as H0. In this
example, the frequency of this zero has been adjusted by
choosing the right value of C1 to coincide with the first pole
of the transfer function effectively canceling it.

In this example, although (16) is still providing a conserva-
tive value, it is too far off to be of much use. The basic premise
for the approximation in the conventional ZVT is the absence
of any zeros close to or below ωh. Once this assumption is
violated, the conventional ZVT does not provide much useful
information.

This problem can be remedied by using the modified ZVT’s,
as defined in (44). To determine which time-constant must be
modified, we calculate the low-frequency transfer functions:

Hπ = 0

Hµ =
αrm ‖ R2

R1 + αrm ‖ R2
≈ rm

R1

HL = 0

H1 = −gmR2

Determination of H1 (which is the only H coefficient with a
significant value in this case) is straightforward, as it is simply
the gain without the input voltage divider. Since Hµ and H1
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are non-zero, the two ZVT’s that need to be modified are:

τ̄0
µ = τ0

µ · (1− |
Hµ

H0
|) = τ0

µ · (1− 0.0004) ≈ τ0
µ

τ̄0
1 = τ0

1 · (1− |
H1

H0
|) = τ0

1 · (1− 1.4) = −0.4 · τ0
1

As can be seen, the modification to τ̄0
µ is negligible, while the

modified τ̄0
1 has a significant impact.

The new bandwidth estimate using the effective time con-
stants in (43) is ωh ≈ 1/(70ps + 1.2ns + 400ps− 1.23ps) ≈
2π · 362MHz which is much closer to the SPICE results of
fh = 482MHz than the estimate of 34MHz obtained from
the conventional ZVT’s. As we can see after the correction, it
is the time constants associated with Cµ and CL in conjunction
with R2 that become significant and determine the bandwidth.
This result can be further improved by calculating coefficient
b2 using (24).

One thing to note is that we can quickly verify whether we
need to use the approximation of (42), or (39) simply suffices,
by determining if setting any of the energy-storing elements to
its infinite value results in a non-zero transfer function, namely
if we have any non-zero Hi terms. For non-zero Hi we should
evaluate |τ0

i Hi/H0| and see if its inclusion has a considerable
effect on b1. If that is the case, it should be subtracted from
b1 and otherwise simply ignored.

4) Cascode Stage: The cascode stage is illustrated in Figure
13a with its small signal equivalent circuit in Figure 13b.
We note that for a large transistor output resistance, ro, the
time constants associated with Cπ1, Cµ1, Cc1, and Cπ2 are
decoupled from those of Cµ2, Cc2, and Co, since the time-
constant of one group remains unaffected by any combination
of shorting and opening of the other batch. A closer look
also indicates that capacitors Cc1 = Cjs and Cπ2 are in
parallel, so are Cc2 = Cjs, Cµ2, and Co and hence we define,
Ce = Cc1 + Cπ2, and CL = Cc2 + Cµ2 + Co and deal with
four capacitors from this point on.

The four ZVT time constants for these capacitors are:

τ0
π = Cπ(R1 ‖ rπ)

τ0
µ = Cµ[R1 ‖ rπ + αrm + gm(R1 ‖ rπ)αrm]
≈ Cµ[2(R1 ‖ rπ) + rm]

τ0
e = Ceαrm

τ0
L = CLR2

We notice that τ0
µ which was the dominant source band-

width reduction in the common emitter of Example VII-1,
is now reduced significantly, which explains the well-known
advantage of the cascode. A numerical calculation of the
ZVT’s with the same values as the previous examples, predicts
ωh ≈ 2π ·294MHz, where SPICE simulations indicate a -3dB
frequency of fh = 337MHz.

Noting that τL is decoupled from the other time constants,
we can express the transfer function as

H(s) = H0 · 1 + a′1
a0

s

(1 + b′1s + b′2s2)
· 1
1 + τLs

R1

vin
voutCπ

CL

Fig. 14. A source follower stage driving a capacitive load, CL.

where

b′1 = τ0
π + τ0

µ + τ0
e

b′2 = αrm(R1 ‖ rπ)(CπCµ + CπCe + CµCe)

and

−1
z

=
a′1
a0

=
Hµτ0

µ

H0
= −Cµ

gm

thereby determining the transfer function exactly with much
less effort and more insight that nodal analysis.

5) Source Follower with Capacitive Load: Now we con-
sider the gain of the source-follower stage with a source
resistance R1 driving a capacitive load, as shown in Figure
14 23. Considering Cπ and CL, the ZVT’s are:

τ0
π = rmCπ τ0

L = rmCL

and τL
π is given by

τL
π = R1Cπ

In a numerical example24, we have, b1 = τ0
π + τ0

L = 5ps
and b2 = τ0

LτL
π = 250(ps)2. Using (53) and (55), we obtain,

Q = 3.16 (about 10dB of peaking) and ωn = 2π · 10GHz.
The fact that Q is greater than 0.5 clearly indicates that we
have a pair of complex-conjugate poles.

Using (42) we obtain25 an estimate for ωh of 15.9GHz,
while the conventional ZVT’s predict ωh = 2π·32GHz, which
is twice as large. A SPICE simulations of this circuit shows
10.2dB of peaking at 9.8GHz, with an ωh = 2π ·15.5GHz all
very close to the predictions obtained from our calculations.
Note that in practice, this peaking is usually attenuated by
Cµ and is not as pronounced as shown in this example.
Nonetheless, the poles usually remain complex as the Q is
often greater than 0.5.

6) Reactive Bandpass Filter: In this example we apply
the approach to determine the exact transfer function of the
reactive bandpass network of Figure 15. The time constants
are:

τ0
1 = RC1 τ0

2 = L2/R τ0
3 = L3/R

τ1
2 = 2L2/R τ1

3 = L2/R τ2
3 = 0

τ12
3 = L3/2R

23This could be the case if the stage is biased with a current source.
24Assuming Cπ = CL = 50fF , gm = 20mS and an R1 = 2kΩ
25The only non-zero Hi terms are H0 = 1 and Hπ = 1 leading to

a0 = 1, a1 = rmCπ , and a2 = 0.
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Cπ1

Cµ1

Cc1

R2

R1
vin

vout

Cπ1

Cµ1

CL
R2

R1

vin

vout

rπ gmvπ

Co

Cµ2

Cc2

Cπ2

Vb

Ce
rm

is2

is2

Fig. 13. a) A cascode stage driving a load capacitor, CL, b) its approximate small-signal equivalent circuit assuming large ro.

R

vin R

vout
L3

L2

C1

Fig. 15. A third-order reactive bandpass filter.

All transfer constants are zero with the exception of

H12 =
1
2

which immediately results in the following transfer function:

H(s) =
L2C1s

2

1 + (RC1 + L2+L3
R )s + (2L2C1 + L3C1)s2 + L2L3C1

R s3

demonstrating the ease of application of the method to a
passive lossless reactive network.

7) Negative Resistance: In this example we analyze the
cross-coupled NMOS pair connected across and RLC res-
onator, as shown in Figure 16, where biasing details are not
shown26. Considering the input to be the differential current
source, iin, and the output to be the differential voltage, vout,
we determine the transfer function. The time constants are:

τ0
C = 0 τ0

L = L(−gm/2 + Go)

τL
C = C/(−gm/2 + Go)

All transfer constants with the exception of HL are zero.
Defining Geff ≡ gm/2 − Go, we easily see that HL =
1/Geff . These time and transfer constants correspond to
a0 = 0, a1 = L, and a2 = 0, as well as b1 = −GeffL
and b2 = LC. Hence, we can write the transfer function as

H(s) ≡ vout

iin
=

Ls

1−GeffLs + LCs2
(69)

26For instance the transistors could be biased through the center tap of the
inductor

Go

L2

vout

C1

iin

Fig. 16. A negative resistance cross-coupled oscillator.

R1

vin

RL

vout

L

C

Fig. 17. A common-source amplifier with a parallel LC trap in series.

As can be easily seen, for gm/2 > Go the denominator has
a pair of RHP complex conjugate poles, corresponding to an
exponentially growing response consistent with the start-up of
a cross-coupled LC oscillator [18]. This example shows that
the TTC approach is applicable to both stable and unstable
circuits.

8) Parallel LC in Series: In the common-source amplifier
of Figure 17, we have introduced a parallel LC in series. If
we ignore the transistor parasitic capacitors, the ZVT’s are

τ0
L =

L

R1 + R2
, τ0

C = 0
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rx 

vin
vout

Cπ

CL

iin

vin
vout

Cπ

CL

iin

a) b)

Fig. 18. a) A source-follower with Cπ driving a load capacitor CL, b) the
same stage with an infinitesimal resistance rx in series with CL.

Since τ0
C = 0 and τ0

CτC
L = τ0

LτL
C according to (26), we can

avoid an indeterminant case27 by calculating τL
C = (R1+R2)C

and hence
τ0
LτL

C = LC

The transfer constants are

H0 = HL = HLC = −gm(R1 ‖ R2)

HL = 0

which result in

H(s) = H0 1 + LCs2

1 + L
R1+R2

s + LCs2

where according to (53), we have

Q = (R1 + R2)

√
C

L

As can be seen from the transfer function, there is a pair of
imaginary zeros at ±j/

√
LC. Since the simultaneously infinite

valued inductor and capacitor result in a non-zero transfer
function, HLC , there are two zeros in the system28.

9) Input Impedance of Source Follower with Capacitive
Load: Consider the source follower of Figure 18a, driving a
capacitive load, CL (considering only Cπ and CL). Calculating
the input admittance, Y (s), and inverting it is easier since
the input impedance with both capacitors open is infinite. To
calculate Y (s) we must drive the input with a voltage source
(the stimulus) and take the input current as the output variable,
as seen in Figure 18a.

First let us calculate Y 0 when both capacitors are open. We
simply have:

Y 0 = 0

similarly,

Y π = 0 , Y L = 0

Now consider Y πL. When both Cπ and CL are shorted, a
short is seen looking into the input, and hence Y πL = ∞.
While correct this results in an indeterminant case, since for
this configuration τ2

1 = τ1
2 = 0 which results in a zero times

infinity case for the a2 coefficient. This can be easily resolved

27Since τ0
C = 0 and τC

L = L/0, the product is indeterminant. If one insists
on using the product τ0

CτC
L , it can be determined by placing a resistor rx in

series with L and setting it to zero in the final result.
28Note that in this example, a1 is zero while a2 is not, thus the zeros are

a conjugate imaginary pair on the jω-axis.

by introducing a resistance, rx, (which is always there in
practice anyway) in series with the CL (or the input) and
setting it to zero later, as shown in Figure 18b. The previously
calculated Y 0, Y π, and Y L terms are still zero. The new Y πL

is determined by inspection to be:

Y πL =
1
rx

Now to find the zero-value time constants, we see by
inspection that

τ0
π = R0

πCπ = rmCπ

τ0
L = R0

LC0 = (rm + rx)CL

and finally we go ahead and calculate τπ
L as

τπ
L = Rπ

LCL = rxCL

Using these time-constants and low-frequency transfer func-
tions and setting rx → 0, we obtain the input admittance:

Y (s) =
rmC1C2s

2

1 + rm(Cπ + CL)s

Note that the above expression has a single pole, because of the
arrangement of Figure 18 where Cπ and CL form a capacitive
loop with the voltage source drive nulled (shorted). The above
expression can be used to find the input impedance:

Z(s) =
1

Y (s)
=

gm

CπCLs2
+

1
(Cπ ‖ CL)s

which is modeled as series combination of a capacitor and
what is sometimes referred to as a “super capacitor” since it
has a 1/s2 behavior [19][20] More accurately it is a frequency
dependent negative resistance (FDNR), as setting s = jω we
see that it presents a negative resistance of

R = − gm

CπCLω2

at the input. This can useful in making oscillators or filters.

VIII. CONCLUSION

The transfer function of circuits can be expressed to the de-
sired level of accuracy in terms of time and transfer constants
calculated under different combinations of shorted and opened
energy-storing elements using exclusively low frequency cal-
culations. The approach has several useful corollaries in the
design of analog circuits.
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