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Extension of the Cochrun–Grabel Method
to Allow for Mutual Inductances

Pietro Andreani and Sven Mattisson

Abstract—The Cochrun–Grabel (C–G) method, an algorithm for find-
ing the characteristic polynomial of a circuit containing reactances, has
so far been restricted to circuits not employing mutual inductances.

In this paper we present an intuitive, yet rigorous, proof of the
Cochrun-Grabel method for a general RLC circuit, and we extend
the method to allow the analysis of an RLC circuit containing mutual
inductances.

Index Terms—Circuit theory, Cochrun–Grabel method, method of time
constants, mutual inductances.

I. INTRODUCTION

The Cochrun–Grabel (C–G) approach [1] to the problem of finding
the characteristic polynomial of a reactive circuit has two main
features: first, it only requires the analysis of frequency-independent
subcircuits derived from the circuit under study and second, it
shows clearly how the polynomial coefficients depend on the circuit
reactances.

The method may also be used for estimating the dominant pole
of a multistage amplifier (see, e.g., [2]–[4]) where typically only the
coefficient of the linears term in the polynomial is calculated. The
approximation so obtained is often very close to the actual pole value.

Extensions to the method have been presented in [5]–[7]. In this
paper we give a more physical, yet rigorous, proof of the method,1 and
we extend it to handle general RLC circuits with mutual inductances.

II. THE COCHRUN–GRABEL METHOD

It is well known that the characteristic polynomial of an RC circuit
is a linear function of each capacitive admittance. The characteristic
polynomial of an RLC circuit is also a linear function, but of each
capacitive admittance and each inductive impedance. To see this it
is sufficient to apply the modified nodal analysis [8] to a circuit,
resulting in the equation
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wheres is the complex frequency as usual. It is clear that the role
of theCs’s and theLs’s in the determinant expansion for the matrix
in (1) is identical.

The characteristic polynomial [i.e., the determinant of the matrix
in (1)] can be written in general as
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In the following, we will consider the normalized polynomial:

p(s) =
p0(s)
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We have seen thatp(s) is a linear function of the circuit reactances.
Therefore, we can write its coefficients as

ai = �j j ...j Xj Xj . . .Xj (4)

with X being eitherL or C. The summation is performed over the
(n
i
) combinations ofi reactive elements chosen from then available

reactive elements.
The main point upon which our construction of the C–G algorithm

hinges is that�j j ...j is independent of theX values (by the
very definition of�j j ...j ) so that�j j ...j can be determined by
assigning arbitrary values to eachX. In particular, these values can
be the limit values zero and infinity (for each�j j ...j the value
assigned to eachX changes in general). In turn, the circuit becomes
purely resistive when eachX has the value zero or infinity. We will
use this fact to show that the general expression for�j j ...j is a
product of resistances and conductances obtained from a resistive
subset of the circuit under study

�j j ...j = �
0

X �
X

X . . . �
X X ...X

X (5)

where �X is a resistance (conductance) ifX is a capacitance
(inductance). The superscriptsXj . . .Xj indicate that�X is to
be calculated withXj . . .Xj short circuited (open circuited) if
they are capacitances (inductances), while the remaining capacitances
(inductances) are open circuited (short circuited).

Equation (5) enables (4) to be expressed as a sum of products of
time constants, which is the form most usually taken by the C–G
theorem

ai = �
0

X Xj � �
X

X Xj � � � �
X X ...X

X Xj : (6)

A. Proof of the Method

In the following, a network with only one capacitor and one
inductor is considered, but it will be clear that the proof is easily
extended to the general case. The characteristic polynomial for such
an LC network is, according to (3) and (4)

p(s) = 1 + a1s+ a2s
2 = 1 + (�LL+ �CC)s+ �LCLCs

2: (7)

We must now supply a procedure for finding�L; �C , and�LC .
We start by lettingC ! 0. In this casep(s)! 1+�LLs and�L is

readily found through the well-known relation�L = G0

L; G
0

L being
the conductance seen byL whenC is open circuited. Similarly,�C
is equal toR0

C the resistance seen byC whenL is short circuited
(since in this caseL ! 0).

It remains to derive�LC . We start by noticing that if we let
L = kC; k in the appropriate units, then fork ! 1 the value
�1=�LL is a root ofp(s)

lim
k!1
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= 0:

We rewrite nowp(s) as an explicit function of its roots

p(s) = (1 + �1s)(1 + �2s) = 1 + (�1 + �2)s+ �1�2s
2: (8)
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(a) (b) (c)

Fig. 1. (a) Circuit containing the mutual inductanceM . (b) The mutual inductance modeled as a pair of current-controlled voltage sources, with
M1 = M2 = M . (c) Transformed circuit for the calculation ofR0

M = V1=i2.

Since�1=�LL is a root ofp(s) we can set�1 = �LL. From (7)
and (8) we obtain then

�2 =
�1�2
�1

=
�LCLC

�LL
=

�LCC

�L
: (9)

Thus,�2 depends onC, but not onL. Furthermore, since the condition
k ! 1 implies L ! 1 for a finite value ofC; C sees a circuit
whereL can be replaced by an open circuit, so that we can write�2 as

�2 = RLCC (10)

with RLC defined as the resistance seen byC with L open circuited.
From (9) and (10) we arrive at the final expression for�LC

�LC = �LR
L
C = G0

LR
L
C :

By interchanging the roles ofL and C we obtain the alternative
relation �LC = R0

CG
C
L .

The above procedure is straightforwardly generalized to a network
with n reactive elements, for which (5) holds.

III. M UTUAL INDUCTANCES

The C–G method cannot yet handle mutual inductances, and we
want to extend the algorithm to allow for the presence of such
components in the network (Fig. 1). Let the mutual inductanceM be
modeled as two current-controlled voltage sourcesM1i2 andM2i1.
The characteristic polynomial is then linear inM1 andM2 as (11)
clearly shows
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M2s L2s � � 0 0 �1 1
� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

i1
i2
�

�

v1u
v1d
v2u
v2d

=

0
0
�

�

�

�

�

�

: (11)

Letting every X except M1 approach zero, we obtainp(s) =
1 + �M M1s. On the other hand, (2) yields

p0(s) = �12M1s+� (12)

where� is the determinant of the matrix in (11) and�12 is the
determinant of the matrix obtained by removing the first row and
the second column from the matrix in (11). Both determinants are
calculated with everyX set to zero. Equation (12) yields�M =
�12=�. Since�=�12 = V1=i2 for the circuit in Fig. 1(c), we
obtain the relation�M = 1=R0

M ; R0

M being the transresistance

V1=i2. The transresistancesR
X ...X

M are determined in the same
way; however, if one or more mutual inductance values approach
infinity (e.g., one or moreXi = Mi ) we cannot proceed so

(a)

(b)

(c)

Fig. 2. (a) Circuit containing two mutual inductancesM and M 0. As
shown in Fig. 1(b), each mutual inductance can be modeled as a pair of
current-controlled voltage sources, withM1 =M2 =M; Mi =Mj =M 0.
(b) Transformed circuit for the calculation ofRMM = V1=i2jM !1. (c) The
nullator–norator pair makes the analysis of (b) easier.

easily as forXi = Li ; Ci , where the branch containingLi
(Ci ) simply becomes an open circuit (short circuit). Referring to
Fig. 2(a)–(b), ifMi !1, thenMisij !1 as well unlessij ! 0.
Since no voltage in the circuit can grow indefinitely,ij does tend
to zero, and the branch connectingVju and Vjd can be modeled
as a nullator, with constitutive equationsij = 0; Vju � Vjd = 0.
The branch connectingViu and Vid can, in turn, be modeled as
a norator (ij = unknown, Vju � Vjd = unknown) [9], Fig. 2(c).
Having so transformed the circuit, the transresistanceRMM can be
found by using standard circuit analysis techniques. In general, if
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(a)

(b)

Fig. 3. (a) Example of a circuit containing two mutual inductances. (b)
Transformed circuit for the calculation ofRM C

M .

n mutual inductances approach an infinite value,n nullator-norator
pairs appear in the circuit. It is worth noting that we have to calculate
RM

M only if i 6= 2, that is,Mi andM1 are not the same physical
mutual inductance. Ifi = 2, thenR0

M RM
M = �R0

L RL
L , which

is obvious if we expand the determinant of the matrix in (11) as
� = (L1L2s

2 �M1M2s
2)�0 + g, where�0 is the determinant of

the matrix obtained removing the first two rows and columns from
the matrix in (11), andg does not contain the productsL1L2 and
M1M2. The same determinant expansion shows that the equality
R
X ...X

M R
X ...X M

M = �R
X ...X

L R
X ...X L

L holds in general.
Equation (11) also shows that the productLiMj ; i; j = 1; 2

cannot appear inp(s). We have furthermoreR
X ...X M M

X =

R
X ...X L L

X , since if M1;M2 ! 1, then i1; i2 ! 0, while
V1u � V1d = unknownand V2u � V2d = unknown. These are in
turn the conditions imposed by the constraintsL1; L2 ! 1. Thus,
only few transresistances have to be calculated explicitly.

Finally, we notice that�j j ...j is much easier to derive if we
build it as

�j j ...j

= �0

X . . . �
X ...X

X �
X ...X

M . . . �
X ...X M ...M

M

whereXj . . .Xj are not mutual inductances. In this way we avoid
the use of nullators and norators in the calculation of the resistances
seen by capacitors and inductors.

IV. EXAMPLE

As an example of the method previously described, the tran-
sresistanceRM C

M for the network in Fig. 3(a) will be calculated.
We begin by transforming the circuit as shown in Fig. 3(b) where
inductancesL1 and L2 have been replaced by a nullator and a
norator, respectively. The presence of the nullator(v = 0) forces
the current throughRd to assume valueV4=PRd. Since no current
can flow in the nullator, the voltage at the norator output has value
V4Ra=PRd from which the relationsi3 = V4Ra=PRbRd and
RM C
M = V4=P i3 = RbRd=PRa immediately follow. Although the

calculations above are rather simple, it is clear that the presence of
multiple mutual inductances in the circuit can make the application
of the C–G method cumbersome.

With the exception ofRM C
M andRM C

M , all other transresistances
are directly found by inspection. Some values are listed below.

R0

M = R0

M = �Ra

R0

M = R0

M = �1

RC
M = RC

M = �Ra

RC
M = RC

M = �1

RL
M = RL

M = RL
M = RL

M = �Ra

RL
M = RL

M = RL
M = RL

M = �1

R0

M RM

M = �R0

L RL

L = �RaRb

R0

M RM
M = �R0

L RL
L = �RbRc

RM C
M = RM C

M =
RbRd

Ra

RL C

M = RL C

M = RL C

M = RL C

M = �Ra

RM M
M = �RL L

M = �Ra

RM M
M = �RL L

M = �Ra:

V. CONCLUSION

The work has shown how the Cochrun-Grabel method may be
extended to RLC circuits containing mutual inductances. The time
constants associated with the mutual inductances depend on various
transresistances seen by the mutual inductances. Transresistances are
no harder to find than resistances unless more mutual inductances are
present. In this case, calculations may become less straightforward
because of the appearance of nullator–norator pairs in the circuit.
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