Mixed-Signal IC Design Notes set 1.

Quick Summary of Device Models

Mark Rodwell

University of California, Santa Barbara

rodwell@ece.ucsb.edu 805-893-3244, 805-893-3262 fax



ECE194J /594J notes, M. Rodwell, copyrighted 2011

Background / Review

This material was covered in ECE145A
Quickly review key information.
Transistor models
Interconnect models
2 - port parameters

If greater detail is required, please refer to the ECE145a online notes.



Transmission Lines



Transmission Lines for On-Wafer Wiring

geometry voltages currents
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where 17, ~ 377Q and
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propagation velocity: v=——
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where c is the speed of light.

These are approximate relationships : learn how to use ADS



Transmission Lines: Waves, Voltage, Current

V(z,t)=V " (t-z/v)+V (t+z/v) forward and reverse wave voltages
Vi(t—z/v) V (t+z/v)

1 (z,1) = forward and reverse wave currents
0 0

where

Z, =~/ L/C characteristic impedance

and

v =1/+/LC propagation velocity



Reflections
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At end of line:

V- =TV" whereT, = (2,/2,)-1 load reflection coefficient

(Zl/ZO)+1

At beginning of line:

V'=TV +TV,, where[, = (2,/2,)-1 source reflection coefficient
(Z./Z,)+1

Z . .
and T, = > OZ source transmission coefficient
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Pulse Reflections on Transmission Lines
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Relating Lumped and Distributed Circuits
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Short Tramission Lines Can Be Modeled asL'sand C's

L=2,r,C=17/Z,

High-Z, line:
large L, small C.
— approximately
an inductor

Low-Z, line:
large C, small L.
— approximately
a capacitor.
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Skin effect loss

—  ~W +2H <—I

Current penetrates the conductor by one skin depth
0= \/a),UG/Z
where o Is the conductivity.

Line has added series resistance per unit length
_1(@+))

surface

Py where P Is the effective current - carrying periphery.
O



package resonance
and grounding
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What is Ground Bounce ?

digital
l>_)_ ADC _y-{sections

input
buffer
Lground
g + ground return
currents
e > §
u -

noise

"Ground" simply means a reference potential shared between many circuit paths.
To the extent that it has nonzero impedance, circuits will couple in unexpected ways

RFI, resonance, oscillation, frequently result from poor ground systems
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Ground Bounce on an IC: break in a ground plane

|signal line — —

“ground”

| signal line

ground plane 1 l

D common-lead inductance

coupling / EMI due to poor ground system integrity is common in high-frequency systems
whether on PC boards
...or on ICs.




ECE194J /594J notes, M. Rodwell, copyrighted 2011

Ground Bounce: IC Packaging with Top-Surface-Only Ground

Peripheral grounding allows parallel plate mode resonance
die dimensions must be <0.4mm at 100GHz

Bond wire inductance aggravates the ————*

: IC: parallel-plane transmission line
effect: resonates with through-wafer P P 1SSIoN 1

capacitance at 5-20 GHz

peripheral peripheral
bond inductances bond inductances



power-supply resonance
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Power Supply Resonance

Resonates at f =1/ an/Lbonde_
gain peak / suckout, oscillation, etc.

Active (AC) supply regulation

Passive filter synthesis
R= /L, /Cl

supply impedance is R at all frequencies ~




ECE194J /594J notes, M. Rodwell, copyrighted 2011

Power Supply Resonances; Power Supply Damping
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90 GHz--local resonance between power supply capacitance and supply lead inductance
~N*5GHz resonances--global standing wave on power supply bus

Power supply is certain to resonate: we must model, simulate, and add dampling during design.
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Standard cell showing power buses




Interconnects:
Summary,
Design Strategy
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IC Interconnects -- Thin-Film Microstrip

. . . thin-film microstip line
narrow line spacing — IC density

Ground Plane —

Low &, | Via

no substrate radiation, no substrate losses

fewer breaks in ground plane than CPW

... but ground breaks at device placements

InP mm-wave PA

still have problem with package grounding (Rockwell)

...need to flip-chip bond

thin dielectrics — narrow lines
— high line losses
— low current capability
— no high-Z lines

®» »®» O 0 G
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Z _ 0
° 51’2(W+Hj
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IC Interconnects -- Inverted Thin-Film Microstrip

narrow line spacing — IC density inverted microstip line

Ground Plane

Low &
' /Via Via

Some substrate radiation / substrate losses

No breaks in ground plane

... ho ground breaks at device placements

still have problem with package grounding

...need to flip-chip bond

thin dielectrics — narrow lines
— high line losses
— low current capability
— no high-Z lines

®» » GO o ® G

InP 8 GHz clock rate delta-sigma ADC
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VLSI Interconnects with Ground Integrity & Controlled Z,

narrow line spacing — IC density

©

no substrate radiation, no substrate losses

negligible breaks in ground plane

© @ ©

M6 metal 6:
microstrip
lines

=} = = M5 = = = metal 5—
.. . microstrip
negligible ground breaks @ device placement crossovers
s — N —J metal 4:
ground
plane
— N — N — . — | — = — e — | 1: — I — =
= = /| M2, — | — |
L e
still have problem with package grounding -
Silicon substrate

...need to flip-chip bond

thin dielectrics — narrow lines
— high line losses
— low current capability
— no high-Z lines

o0 O
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No clean ground return ? — Interconnects can't he modeled !

35 GHz static divider
interconnects have no clear local ground return
interconnect inductance is non-local
interconnect inductance has no compact model

8 GHz clock-rate delta-sigma ADC
thin-film microstrip wiring
every interconnect can be modeled as microstrip
some interconnects are terminated in their Zo
some interconnects are not terminated

...out ALL are precisely modeled

InP 8 GHz clock rate delta-sigma ADC



Active Devices:
Bipolar Transistors
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HBT Physical Structure




ECE194J /594J notes, M. Rodwell, copyrighted 2011

Physical structure, symbolic

Device Stripe Length = L,
perpendicular to drawing

Web — |<— V\é —>| - Wb,cw

emitter

contact EB grade

> |4 sidewall

|
BC grade &
collector . N- drift collector collector contact
N+ sub collector —>| |
T Tb VVunder

|
T, semi-insulating InP substrate

<< V\é >
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Bipolar Transistor: DC characteristics: common-emitter

Vce,sat
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HBTs have a maximum operating current density J ..
This is set by : Kirk effect, Maximum power density.

More information in design project documentation.



HBT hybrid-Pi equivalent-circuit model

- C

g m gmo exp(_ J(DTc) | / chx

0., =ql./nkT I\

Rbe — ﬂ/ Omo B Rbb Cl;bl I:QC C

T, =T, + T, W I\ VMV~

+ :
JOTg
RS == == Vbe (1) In Vie
e -
Coeait =InTr Ci, ? R,
E

Given N, .. HBT fingers of emitter length L. :
(C ierCopi chx)vary In proportionto N g . L,
(Rbb, R, R., Ic,max)vary in proportionto1/ N . Le.



Active Devices:
MOSFETS
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MOSFETS

Cross-Section Layout (multi-finger)
gate metal _ _ 4
(silicide) dielectric G =
sidewall N
gate oxide <
N+ poly X
gate X
X

source contact (silicide) ) drain contact (silicide) X

|
N+ N+ drai X
source rain
XIS XBX

P substrate

gate . .
dielectric Inversion
layer
\( P substrate
N+
polysilicon
gate
—
-




MOSFET DC Characteristics

mobility-limited
b A | A )
d
Iincreasing \
Ves velocity-limited
> | L >
Vs V
gsS
Vin
For drain voltages larger than the knee voltage
mobility — limited current Generalized Expression
2
ID ox g(Vgs Vth) /2L [I—DJ +( ID le
velocity — limited current o, o,

ID,v_Cox g sat(vgs Vth)



Knee Voltage: Mobility-Limited Case

- constant-current

ID A

Ohmic

The knee voltage defines the boundary between
the Ohmic and constant - current regions

I increasing
Ves

In the mobility - limited regime, v __= Vos
the knee In curve occurs when ._|
Vdg :Vds _Vgs = _Vth

=
The Knee Voltage is further increased by voltage ~ Veo=™Vin- |

drops across the parasitic source & drain resistances. o

| R

D" 'S



Knee Voltage: Velocity-Limited Case

In the velocity - limited regime, the knee in curve
occurswhen Vg =vL /u ._| Vips=VoL /1

Agalin, the Knee Voltage is further increased
by voltage drops across the parasitic ,_||: " V=V L /1
source & drain resistances. '+




MOSFET Transconductance

mobility — limited

|
ID ox g(\/gs Vth) /2L |
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—> gm p— D — ILICOX g(Vgs V'[h)/L
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velocity — limited O] N L.
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Linear vs. Square-Law Characteristics: 90 nm
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Sorin Voinigescu, CSICS RF & High Speed CMOS, Nov. 12, 2008




ECE194J /594J notes, M. Rodwell, copyrighted 2011

90 nm MOSFET DC Characteristics
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Device Structure and Model

N =# gate fingers, W, = gate width

&

Om ~ T—Veff (NWg )Or Ti/u(NWg )(Vgs _Vth)

€q

£

Co ~— L (NWQ)
eq

Cyo ¢ NW,

Gy NWg

Ri ~1/gm

X
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Oversimplified Model

For rough hand analysis, etc G Rr

g é I\ 5
~ m R,
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C, T
~ v
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