# Mixed-Signal IC Design Notes set 2: 

 Fundamentals of Analog IC DesignMark Rodwell
University of California, Santa Barbara
rodwell@ece.ucsb.edu 805-893-3244, 805-893-3262 fax

## This note set

-reviews the basics
-starts at the level of a first IC design course
-moves very quickly

## This will

-establish a common terminology
-accommodate capable students having minimal background in ICs.

# DC models DC bias analysis 



Provided that $V_{c e}>0$, $I_{c}=I_{s} \exp \left(V_{b e} / V_{T}\right)$ and $I_{b}=I_{c} / \beta$, where $V_{T}=k T / q$ ...note that $V_{b e}$ is specified internal to the emitter resistance $R_{e x}$

The $I_{e} R_{e x}$ drop is significant for HBTs operating at current densities near that required for peak transistor bandwidth.

We have $V_{b e 1}+I_{e 1}\left(R_{e x 1}+R_{e e 1}\right)=V_{b e 2}+I_{e 2}\left(R_{e x 2}+R_{e e 2}\right) R_{e e 2} I_{e 2}$ and $V_{b e 1}=V_{t} \ln \left(I_{c 1} / I_{s 1}\right), V_{b e 2}=V_{t} \ln \left(I_{c 2} / I_{s 2}\right)$

Assume that $\beta \gg 1, R_{e e 2}=2 R_{e e 1}$
\& assume that $A_{E 1}=A_{E 2}$ ( $A_{E}$ is the emitter area).

This implies $R_{e x 1}=R_{e x 2} / 2$, and $I_{s 1}=2 I_{s 2}$,
from which we find $I_{c 2}=I_{c 1} / 2$


It is often sufficient in bias analysis to ignore the variation of $V_{b e}$ with $I_{c}$ and instead take $V_{b e}=V_{b e, o n}=\phi$.
$V_{b e, o n}$ depends upon current density and technology.
Biased at current densities within $\sim 10 \%$ of peak bandwidth bias,
$V_{b e, o n}=\phi \sim\left\{\begin{array}{c}0.9 \mathrm{~V} \text { Modern } \mathrm{Si} / \mathrm{SiGe} \text { HBTs } \\ 0.7 \text { or } 0.9 \mathrm{~V} \mathrm{InGaAs/InP} \mathrm{HBTs} \\ 1.4 \mathrm{~V} \mathrm{GaAs} / \mathrm{GaInP} \mathrm{HBTs}\end{array}\right.$


If we neglect the $I_{b} R_{b}$ drops, then $V_{b 1}=V_{b 2}=0$ Volts.
Approximate $V_{e 1}=V_{e 2}=-\phi \cong-0.9 \mathrm{~V}$ (SiGe).
$I_{c 1}+I_{c 2}=2 I_{c 1}=\left(-V_{e e}-0.9 V\right) / R_{e e}$
$I_{c 1}=I_{c 2}=\left(-V_{e e}-0.9 \mathrm{~V}\right) / 2 R_{e e}$

If $I_{b} R_{b}$ drop is singificant, one can solve simultaneous equations :
$I_{c 1}+I_{c 2}=2 I_{c 1}=\left(-V_{e e}-\phi-I_{b 1} R_{b}\right) / R_{e e}$ where $I_{b 1}=I_{c 1} / \beta$,

Quicker : find by iteration :

1) solve $I_{c 1}=\left(-V_{e e}-\phi\right) / 2 R_{e e}$
2) solve $I_{b 1} \cong I_{c 1} / \beta$
3) use this value of $I_{b}$ to solve $I_{c 1}=\left(-V_{e e}-\phi-I_{b 1} R_{b}\right) / 2 R_{e e}$

Works because any well - designed circuit has DC bias only weakly dependent upon $\beta$.
 more precise--often more compact
but loads emitter node with $\mathrm{C}_{\text {cb }}$---or worse and provides path for stage-stage coupling

Resistive biasing--- resistively loads emitter node---lower DC precision

## 


stage-stage coupling through $C_{c b}$ and the shared current mirror reference...

## 

Because of $C_{c b}$ and $C_{b e}$, the current source output impedance $Z_{c s}(j \omega)$ varies with frequency.

We will derive this in later lectures.

Implications :

increased common - mode gain at high frequencies
common-mode instability

Given that $V_{b e}=V_{t} \ln \left(I_{c 2} / I_{s 2}\right)=(k T / q) \ln \left(I_{c 2} / I_{s 2}\right)$
....note that $I_{s} \propto T^{3 / 2}$, so at constant $I_{c}$,
$d V_{b e} / d T=(k / q) \ln \left(I_{c 2} / I_{s 2}\right)-(k T / q)\left(d I_{s 2} / d T\right)^{-1}$
The device has some thermal resistance $d T / d P=\theta$
(Kelvin/Watt). Current mirror is thermally unstable if
$1<\frac{d I_{c}}{d V_{b e}} \bullet \frac{d V_{b e}}{d T} \bullet \frac{d T}{d P} \bullet \frac{d P}{d I_{c}}$
$1<\frac{1}{R_{e x}+k T / q I_{e}+R_{e e}} \bullet \frac{d V_{b e}}{d T} \bullet \theta \bullet V_{c e}$


Fast Bipolar ICs normally use $I_{e} * R_{e e} \sim 300 \mathrm{mV}$ to avoid thermal runaway. Thermal runaway can also result from internal device temperature gradients. Large area devices must therefore be avoided...use array of smaller devices with ballasting. (process dependent)...UCSB HBT process puts safe maximum device area $\sim 10$ square microns at $10^{5} \mathrm{~A} / \mathrm{cm}^{2}$ biasing

# small-signal baseband analysis 

$$
\begin{aligned}
& R_{b e}=\beta / g_{m} \\
& \tau_{f}=\tau_{b}+\tau_{c}
\end{aligned}
$$



Accurate model, but too detailed for quick hand analysis


In most high-frequency circuits, the node impedance is low and $R_{c e}$ is therefore negligible.
Neglecting $R_{b b}$ in high-frequency analysis is a poor approximation but is nevertheless common in introductory treatments.

The "textbook" analyses which follow use this oversimplified model. These introductory treatments will later be refined.

$$
\begin{aligned}
& \text { 7) } R_{i n, T}=\delta V_{b} / \delta I_{b}=\beta\left(r_{e}+R_{e}\right) \\
& \text { 2) } \delta V_{C}=-R_{L e q} \cdot \delta I_{C} \\
& \text { 3) } \delta V_{e}=R_{E} \cdot \delta I_{e} \\
& \text { 4) } \delta V_{b e}=\delta I_{e} /{ }_{g_{m_{-}}}^{+} \\
& \text {1) } \delta I_{e} \cong \delta I_{c}
\end{aligned}
$$

8) $\delta V_{\text {out }} / \delta V_{\text {in }}=\delta V_{\text {out }} / \delta V_{B}=-R_{\text {Leq }} /\left(r_{e}+R_{e}\right)=-R_{\text {Leq }} /\left(R_{e}+1 / g_{m}\right)$

Gain is $-R_{\text {Leq }} /\left(R_{e}+1 / g_{m}\right)$; Transistor $R_{\text {in }}$ is $\beta\left(r_{e}+R_{E}\right)$
6) $R_{i n, T}=\delta V_{b} / \delta I_{b}=\beta\left(r_{e}+R_{L e q}\right)$

7) $\delta V_{\text {out }} / \delta V_{\text {in }}=\delta V_{\text {out }} / \delta V_{E}=R_{\text {Leq }} /\left(r_{e}+R_{\text {Leq }}\right)=R_{\text {Leq }} /\left(R_{\text {Leq }}+1 / g_{m}\right)$

Gain is $R_{\text {Leq }} /\left(R_{\text {Leq }}+1 / g_{m}\right)$;Transistor $R_{\text {in }}$ is $\beta\left(r_{e}+R_{E}\right)$
6) $\delta V_{\text {in }}=\delta I_{e} \cdot\left(r_{e}+R_{b} / \beta\right) \quad$ 2) $\delta V_{\text {out }}=R_{\text {Leq }} \cdot \delta I_{C}$

$$
\text { 7) } R_{i n, T}=\delta V_{e} / \delta I_{e}=r_{e}+R_{B} / \beta
$$


7) $\delta V_{\text {out }} / \delta V_{\text {in }}=R_{\text {Leq }} /\left(r_{e}+R_{b} / \beta\right)$

Gain is $R_{\text {Leq }} /\left(r_{e}+R_{b} / \beta\right)$; Transistor $R_{\text {in }}$ is $r_{e}+R_{b} / \beta$

E.F. output impedance is same problem as C.B.input impedance
$R_{\text {out }, \text { emiter }}=r_{e}+R_{B} / \beta=1 / g_{m}+R_{B} / \beta$
$R_{\text {out }, \text { amp }}=R_{\text {out,emiter } \|} \| R_{\text {EE }}$


These are (trivially) added in parallel with the transistor terminal impedances to determine the net circuit impedances.

From which, $V_{\text {in }} / V_{\text {gen }}=R_{\text {in, amp }} /\left(R_{i n, \text { amp }}+R_{\text {gen }}\right)$, etc.

# small-signal baseband analysis 



Analyzing frequency response is difficult: cannot separate stage-by-stage Method \#1: nodal analysis: accurate, general, tedious.

Method \#2: method of time constants: accurate, limited applicabilty, quick \& intuitive

## Nodal Analysis

Simple \& very familiar example : common - emitter amplifier.


Reduced circuit :

$$
\begin{aligned}
& \left(R_{i}=R_{g e n}\left\|R_{b e}\right\| R_{b}\right) \\
& I_{i}=V_{g e n} / R_{g e n} C_{b e} R_{i} \quad g_{m} V_{b e} C_{L} R_{L}
\end{aligned}
$$

Step 1: Write Nodal Equations from KCL

$$
\left[\begin{array}{cc}
G_{i}+s C_{b e}+s C_{c b} & -s C_{c b} \\
g_{m}-s C_{c b} & G_{L}+s C_{L}+s C_{c b}
\end{array}\right]\left[\begin{array}{c}
V_{\text {in }} \\
V_{\text {out }}
\end{array}\right]=\left[\begin{array}{c}
I_{i} \\
0
\end{array}\right]
$$

Step 2 : Solve Nodal Equations:

$$
\begin{aligned}
& V_{\text {out }} / I_{i n}=N(s) / D(s) \\
& N(s)=\left|\begin{array}{cc}
G_{i}+s C_{b e}+s C_{c b} & 1 \\
g_{m}-s C_{c b} & 0
\end{array}\right|=-\left(g_{m}-s C_{c b}\right) \\
& D(s)=\left|\begin{array}{cc}
G_{i}+s C_{b e}+s C_{c b} & -s C_{c b} \\
g_{m}-s C_{c b} & G_{L}+s C_{L}+s C_{c b}
\end{array}\right| \\
& D(s)=\left(G_{i}+s C_{b e}+s C_{c b}\right)\left(G_{L}+s C_{L}+s C_{c b}\right)-\left(g_{m}-s C_{c b}\right)\left(-s C_{c b}\right)
\end{aligned}
$$

Step 3: Organize in powers of $s$ $D(s)=G_{i} G_{L}$

$$
\begin{aligned}
& +s\left(G_{i} C_{L}+G_{i} C_{c b}+G_{L} C_{b e}+G_{L} C_{c b}+g_{m} C_{c b}\right.
\end{aligned}
$$

Step 4 : Separate into dimensionless ratio - of - polynomials form, separating constants and gains from the transfer function...
$\frac{V_{\text {out }}}{I_{\text {in }}}=\frac{V_{\text {out }}}{V_{\text {gen }} / R_{\text {gen }}}=\frac{N(s)}{D(s)}$

$$
=\frac{-\left(g_{m}-s C_{c b}\right)}{\binom{G_{i} G_{L}+s\left(G_{i} C_{L}+G_{i} C_{c b}+G_{L} C_{b e}+G_{L} C_{c b}+g_{m} C_{c b}\right.}{+s^{2}\left(C_{b e} C_{L}+C_{b e} C_{c b}+C_{c b} C_{L}\right)}}
$$

$$
\frac{V_{\text {out }}}{V_{\text {gen }}}=\frac{-\left(g_{m}-s C_{c b}\right) R_{i} R_{L} / R_{\text {gen }}}{\binom{1+s\left(R_{L} C_{L}+R_{L} C_{c b}+R_{i} C_{b e}+R_{i} C_{c b}+g_{m} R_{i} R_{L} C_{c b}\right.}{+s^{2}\left(C_{b e} C_{L}+C_{b e} C_{c b}+C_{c b} C_{L}\right) R_{i} R_{L}}}
$$

$$
\text { note that } \frac{R_{i}}{R_{g e n}}=\frac{\left(R_{b e}\left\|R_{b}\right\| R_{g e n}\right)}{R_{\text {gen }}}=\frac{\left(R_{b e} \| R_{b}\right)}{\left(R_{b e} \| R_{b}\right)+R_{\text {gen }}}=\frac{R_{\text {in } A m p}}{R_{\text {in }, A m p}+R_{\text {gen }}}
$$

SO...

$$
\begin{aligned}
\frac{V_{\text {out }}}{V_{\text {gen }}}= & \left(\frac{R_{\text {in, Amp }}}{R_{\text {in, Amp }}+R_{\text {gen }}}\right)\left(-g_{m} R_{L}\right) \\
& \times \frac{-\left(1-s C_{c b} / \widehat{g_{m}}\right)}{\binom{1+s\left(R_{L} C_{L}+R_{L} C_{c b}+R_{i} C_{b e}+R_{i} C_{c b}+g_{m} R_{i} R_{L} C_{c b}\right)}{+s^{2}\left(C_{b e} C_{L}+C_{b e} C_{c b}+C_{c b} C_{L}\right) R_{i} R_{L}}} a_{1}
\end{aligned}
$$

$$
\Rightarrow \frac{V_{\text {out }}(s)}{V_{\text {gen }}(s)}=\left.\frac{V_{\text {out }}}{V_{\text {gen }}}\right|_{\text {mid -band }} \frac{1+b_{1} s}{1+a_{1} s+a_{2} s^{2}}
$$

Step 5: Find the roots (poles \& zeros) of the polynomial

$$
\frac{V_{\text {out }}(s)}{V_{\text {gen }}(s)}=\left.\frac{V_{\text {out }}}{V_{\text {gen }}}\right|_{\text {mid-band }} \frac{1+b_{1} s}{1+a_{1} s+a_{2} s^{2}}=\left.\frac{V_{\text {out }}}{V_{\text {gen }}}\right|_{\text {mid-band }} \frac{1+b_{1} s}{\left(1-s / s_{p 1}\right)\left(1-s / s_{p 2}\right)}
$$

what are efficient methods of finding the poles?

## Finding Poles

from Transfer Functions

Ratio - of - Polynomial Form :
$\frac{V_{\text {out }}(s)}{V_{\text {gen }}(s)}=\left.\frac{V_{\text {out }}}{V_{\text {gen }}}\right|_{\text {lat mid-band }} * s^{m} \frac{1+b_{1} s+b_{2} s^{2}+\ldots}{1+a_{1} s+a_{2} s^{2}+\ldots}$

Poles and Zeros:
$\frac{V_{\text {out }}(s)}{V_{\text {gen }}(s)}=\left.\frac{V_{\text {out }}}{V_{\text {gen }}}\right|_{\text {at mid-band }} * s^{m} \frac{\left(1-s / s_{z 1}\right)\left(1-s / s_{z 1}\right)\left(1-s / s_{z 1}\right) \ldots}{\left(1-s / s_{p 1}\right)\left(1-s / s_{p 1}\right)\left(1-s / s_{p 1}\right) \ldots}$

$$
\frac{V_{\text {out }}}{V_{\text {gen }}}=k \frac{1+b_{1} s+b_{2} s^{2}+\ldots}{1+a_{1} s+a_{2} s^{2}+a_{3} s^{3}}
$$

If $a_{3} / a_{2} \ll a_{2}$ then we can ignore the $s^{3}$ at moderate frequencies and $\frac{V_{\text {out }}}{V_{\text {gen }}} \approx k\left(\frac{1+b_{1} s+b_{2} s^{2}+\ldots}{1+a_{1} s+a_{2} s^{2}}\right)$

If the roots of this are complex, then

$$
\begin{aligned}
& \frac{V_{\text {out }}}{V_{\text {gen }}}=k\left(\frac{1+b_{1} s+b_{2} s^{2}+\ldots}{1+a_{1} s+a_{2} s^{2}}\right)=k\left(\frac{1+b_{1} s+b_{2} s^{2}+\ldots}{1+\left(2 \zeta / \omega_{n}\right) s+s^{2} / \omega_{n}^{2}}\right) \\
& \frac{V_{\text {out }}}{V_{\text {gen }}}=k\left(\frac{1+b_{1} s+b_{2} s^{2}+\ldots}{\left(1-\frac{s}{-\zeta \omega_{n}+j \omega_{d}}\right)\left(1-\frac{s}{-\zeta \omega_{n}-j \omega_{d}}\right)}\right)
\end{aligned}
$$



If the roots are widely separated
e.g. $\left(a_{2} / a_{1}\right) \ll a_{1}$, then
$\frac{V_{\text {out }}}{I_{\text {in }}}=k\left(\frac{1+b_{1} s+b_{2} s^{2}+\ldots}{1+a_{1} s+a_{2} s^{2}}\right)$
$\frac{V_{\text {out }}}{I_{\text {in }}} \cong k \frac{1+b_{1} s+b_{2} s^{2}+\ldots}{\left(1+a_{1} s\right)\left(1+\left(\frac{a_{2}}{a_{1}}\right) s\right)}$
$s=-a_{2} / a_{1}$
$a_{1}$ is the dominant pole.

## Introductory

Circuit Design: summary

Using the oversimplified device model below, with Cpi denoting the sum of base-emitter depletion and diffusion capacitances, bandwidth of CE/CB/CC stages can be found....



Ri is the parallel combination of Rgen, Rin, and Rpi
RLeq is the parallel combination of RL, Rc, and Ro
Note in the dominant pole (a1) the miller-multiplication of the collector base capacitance

$a_{1}=C_{x}\left(R_{x} \mid\left(r_{e} \| R_{\text {Leq }}+R_{i}\left(1-A_{m b}\right)\right)\right)$


$$
+C_{\mu}\left(R_{i} \| \text { transistor input resistance }\right)
$$

$$
+C_{L}\left(R_{\text {Leq }} \| \text { transistor output resistance }\right)
$$

$$
a_{2}=\left(R_{i} \| \text { transistor input resistance }\right)\left(R_{\text {Leq }} \| r_{e}\right)
$$

$$
\times\left(C_{\mu} C_{\pi}+C_{\mu} C_{L}+C_{L} C_{\pi}\right)
$$

$$
\tau_{\text {zero }}=g_{m} / C_{\pi}
$$

Ri is the parallel combination of Rgen, and Rin,
RLeq is the parallel combination of Ree and RL
Note that the frequency response is a mess. Given CL, the transfer function very often has complex poles, and may show strong gain peaking, hence ringing in the pulse response.


Here we have a problem. To the extent that the CB stage is modeled by a very very simple hybrid-pi model (explicitly, with zero Rbb), we find (by very simple analysis) very high bandwidth, with poles having time constants equal to tau_b, to tau_c, and to the product of the load resistance times (Ccb+CL).
Note that

1) Input capacitance is indeed as noted. Does not include effect of tau_c
2) Ignoring Rbb in CB stage analysis, while appealing for simplicity (e.g. undergrad classes) is quite unreasonable, as CcbRbb often dominates high frequency rolloff. More regarding this later.

# Method of Time Constants 

make revision for 2008----first before MOTC, give by summary without derivation the standard stage expressions.
then define MOTC, first and second order then show a 1 -stage Darlington diff amp, and say caps to ground, caps between inputs and outputs.

Give expression for caps to ground
Give expression for caps between in and out of general block
then use this for CD stage Cgs only then use this for CC stage Cbe only then do for CE stage Ccb only
then work the full Darlington diff amp
then show how CE (with degen) CB CC are same problem
then re-show stage relationship

take a general RC network (no inductors or delays tau), and separate into 2 parts, network without capacitors, and the capacitors:


The internal capacitor-free network is now frequencyindependent. The MOTC method (not proven here) relies on results from n-port network theory


> work examples to illustrate this
$R_{11}^{0}$ is the small signal resistance measured at port one with all other ports open - circuited. This is determined by applying a test voltage (or current) at the port and computing from this the resulting current (or voltage)

$$
\begin{aligned}
& \frac{V_{\text {out }}}{V_{\text {gen }}}=\left(\frac{V_{\text {out }}}{V_{\text {gen }}}\right)_{m b} \frac{1+b_{1} s+b_{2} s^{2}+\cdots}{1+a_{1} s+a_{2} s^{2}+\cdots} \\
& a_{1}=R_{11}^{0} C_{1}+R_{22}^{0} C_{2}+R_{33}^{0} C_{3}+R_{41}^{0} C_{4}
\end{aligned}
$$

The MOTC first - order time constants directly give us the dominant time constant $a_{1}$ of the circuit. If (and only if) the secondary time constant $a_{2}$ is negligible, the $3-\mathrm{dB}$ bandwidth is $1 / 2 \pi a_{1}$. We must use the second - order (short - circuit) time constants to determine $a_{2}$.

Are we saving work relative to brute-force nodal analysis: MOTC would be of only moderate value if we had to calculate all the Ri's each time. Fortunately, most terms involve quantities already found in midband stage analysis: input and output impedances, load impedances, etc.

$R_{11}^{2}$ is the small signal resistance measured at port one with all other ports open - circuited, except for port 2 , which is shorted

$$
\frac{V_{o u t}}{V_{\text {gen }}}=\left(\frac{V_{\text {out }}}{V_{\text {gen }}}\right)_{m b} \frac{1+b_{1} s+b_{2} s^{2}+\cdots}{1+a_{1} s+a_{2} s^{2}+\cdots}
$$

$$
\begin{aligned}
& a_{2}=R_{11}^{0} R_{22}^{1} C_{1} C_{2}+R_{11}^{0} R_{33}^{1} C_{1} C_{3}+R_{11}^{0} R_{44}^{1} C_{1} C_{4} \\
& +R_{22}^{0} R_{33}^{2} C_{2} C_{3}+R_{22}^{0} R_{44}^{2} C_{2} C_{4}+R_{33}^{0} R_{44}^{3} C_{3} C_{4}
\end{aligned}
$$

notethat $R_{x x}^{0} R_{y y}^{x}=R_{x x}^{y} R_{y y}^{0}$
work example...second order terms in either CE stage or CC stage....

Because $R_{x x}^{y} R_{y y}^{0}=R_{x x}^{0} R_{y y}^{x}$, we always have 2 choices in finding each term in the MOTC. The trick is to work the problem so that as much as possible:

1) terms are related to input, ouput, load impedances
2) terms are ones found earlier, in $a_{1}$ analysis.

There are 2 "funny"cases which arise so often that I will give them on the next 2 pages (note these are intimately related to the well - known Miller effect)

$$
R_{x x}^{y}=R_{i}\left(1+A_{v}\right)+R_{\text {out }}
$$

## derive



If we decide explicitly that $R_{x}$ is to denote the parallel combination of any external circuit resistances and $R_{b e}$ ， and that $R_{\text {Leq }}$ similarly denotes the combined effect of external resistors and $R_{c e}$ ，then
$R_{y y}^{0}=R_{x}\left(1+g_{m} R_{\text {Leq }}\right)+R_{\text {Leq }}$


## work on the board...



$$
a_{2}=\ldots
$$

note that because $a_{1}, a_{2}$ are independent of location of input and output, the form is identical to that of CE stage.
Note also the Miller multiplication effect with $R_{b b} C_{c b}$

$$
\begin{aligned}
& \text { Cbe } \\
& \text { Cbe } \\
& a_{1}=C_{b e}\left(R_{b b}\left(1-\frac{R_{g e n}}{R_{g e n}+r_{e}}\right)+r_{e} \| r_{\text {gen }}\right) \|_{b} \\
& +C_{c b}\left(R_{b b}\left(1+\frac{R_{L}}{r_{e}+R_{\text {gen }}}\right)+R_{L}\right)+C_{L} R_{L}
\end{aligned}
$$

Relating amplifier gains to S-parameters
Cascaded common-emitter amplifiers, gain-bandwidth and ft limits
Resistive feedback amplifiers for higher bandwidths
The Cherry-Hooper (transcondcuctand-transimpedance) design
Darlington stages, benefits, limits, and headaches
Ft-doubler stages
Distributed amplifiers (breifly)
And later: input tuning for (1) improving S11, S22 and (2) improving bandwidth.

## End

