High Speed Mixed Signal IC Design Notes set 5:
 Digital IC design at the Gate level

Mark Rodwell

University of California, Santa Barbara
rodwell@ece.ucsb.edu 805-893-3244, 805-893-3262 fax
class notes, ECE594A, rodwell, University of California, Santa Barbara, copyrighted

High speed digital IC design at the transistor level

ECL and CML gate designs, DC design
circuit structures for and / or / xor / latches ...
large-signal delay analysis, design for high speed
transmission line interconnects, signal distribution
power-delay relationships

Basic Gates, Logical Description

And

OR

$-$| | $A=1$ | $A=0$ |
| :--- | :--- | :--- |
| $B=1$ | $C=1$ | $C=1$ |
| $B=0$ | $C=1$ | $C=0$ |

XOR

(exclusive OR)

	$A=1$	$A=0$
$B=1$	$C=1$	$C=0$
$B=0$	$C=0$	$C=1$

ECL gate, circa ~1965

This is an *OR/NOR gate....port 3 is high if ports 1 or 2 are high ...port 4 is the logical complement of port 3

ECL gate, circa ~1965

Emitter follower buffering of interconnect capacitance (good ? Bad ?)
DC output swing is 400 Ohms * $1 \mathrm{~mA}=400 \mathrm{mV}$.....IoRL in general Minimum Input voltage swing is $2 \mathrm{kT} / \mathrm{q}+2 \mathrm{loRex}$.
Need loRL>>(2kT/q +2loRex) for adeguate noise margin ...typically $500-600 \mathrm{mV}$ output swing employed

Current sources replaced by resistors or current mirrors

Problems with old-fashioned ECL gate

Gate is single-ended....differential ckt generally preferred why ? (standard reasons given are not so convincing...) one reason is 2:1 lower permissible logic swing, less power
Gate uses emitter followers on **output**....this can result in strong transmission-line ringing....

Output impedance of emitter follower is
$Z_{\text {out }} \approx 1 / g_{m}+R_{L}\left(\right.$ if / $\left.f_{\tau}\right)$, which is inductive.

Load on receving end is capacitive....
Line can ring strongly.

Partial mitigation : EF biased by pull-down resistor
on receving end of line, biased at e.g. - 2 Volts...this consumes substantial power

Differential Gates, CML and ECL

CML

Differential CML gate, other attributes

Operates with complementary inputs and outputs Quite low power consumption, as not many pull-down current sources...

Differential CML gate, DC operation.

DC output swing is $\Delta V_{\text {Logic }}=I_{0} R_{L}$
DC linear input range is $\Delta V_{\text {in }}=2 k T / q+2 I_{o} R_{e x}$
Transistor operates at $V_{c e}=V_{b e, o n}$ when off
Transistor operates at $V_{c e}=V_{b e, o n}-I_{o} R_{L}$ when on Need HBT with LOW $V_{c e, s a t}$

Differential CML AND / NAND gate

2-input logic gates must be implemented using series gated current steering. 3 input gates would require cascading 2 -level gates, or 3-level series current steering. 3 level currrent steering is faster, but needs a more negative supply. OR/NOR gate is created by taking complements of both inputs and output.

Differential Current-Steering Series-Gated Bipolar Logic Gates

class notes, ECE594A, rodwell, University of California, Santa Barbara, copyrighted

HEMT Logic Gates

Direct-coupled FET logic

Need enhancement-mode and depletion-mode devices slow driving long wires
single-ended...threshold problems with low $\Delta \mathrm{V}$

Source-Coupled FET logic:

Need a monolithic diode level-shift fairly high power due to source followers Source follows needed for level-shifting

FET equivalent of CML :
Need a monolithic diode level-shift need enhancement mode device would be best for fast / low-power

Logic family plays strong role in power Need diodes for SCFL
DCFL needs enhancement mode HEMTs:

Differential CML XOR gate

the 6-transistor cell is often referred to as a Gilbert cell (originating with his analog multipliers...). Note that the whole gate requires 3 pull down current sources

Differential ECL buffer / inverter

emitter followers on high "A-level" inputs result in faster gate operation and larger Vce across switching transistors, at expense of considerably higher current consumption. Emitter followers are usually assocaiated with gate inputs, not outputs.

Differential ECL AND / NAND gate

Same circuit structure as CML gate, except note added emitter followers on B level inputs and added diode level shifts on A-level inputs

Differential ECL XOR gate

class notes, ECE594A, rodwell, University of California, Santa Barbara, copyrighted

Driving Interconnects: EF associated with gate outputs

This can ring quite badly, due to inductive EF output impedance and capacitive CS input impedance.

Driving Interconnects, and basic power-delay products

sending end termination....matched termination....
line should not (ideally) ring...actually does due to receiving end capacitive load... logic swing is Io*Zo...with Zo of 100 Ohms typical, this requires 2 mA drive current for 200 mV logic swing in a 100 Ohm environment...

Driving Interconnects Receiving end termination

receving end termination....matched termination....
line should not (ideally) ring...actually does due to transistor capacitances ... logic swing is Io*Zo...with Zo of 100 Ohms typical, this requires 2 mA drive current for 200 mV logic swing in a 100 Ohm environment...

Double line termination

double matched termination....ringing more strongly suppressed, use where needed....
... logic swing is Io*Zo/2... with Zo of 100 Ohms typical, this requires 4 mA drive current for 200 mV logic swing in a 100 Ohm environment...

unterminated lines

here lines are not terminated. Acceptable only when line delay is short in comparison with risetimes of concern. A short unterminated line will act as a capacitive load; a long unterminated line will ring. More on this in a few slides.
... logic swing is lo*RL...current consumption greatly reduced (and smaller HBTs used)....

unterminated lines: delay due to wiring capacitance

If and only if $\tau_{\text {wire }} \ll T_{\text {risel fall }}$, can treat as lumped interconnect.
If and only if $R_{L} \gg Z_{\text {wire }}$, then $L_{\text {wire }} / R_{L} \ll R_{L} C_{\text {wire }}$ \& can ignore wiring inductance Then:
$C_{\text {wire }}=l_{\text {wire }} / \nu_{\text {wire }} Z_{\text {wire }}=\tau_{\text {wire }} / Z_{\text {wire }}$
Charging time constant:

$$
\tau_{\text {intercomnect }}=R_{L} C_{\text {wire }}=\tau_{\text {wire }}\left(R_{L} / Z_{\text {wire }}\right)=\tau_{\text {wire }} \frac{\left(\Delta V_{\text {logic }} / I_{o}\right)}{Z_{\text {wire }}}
$$

Power Consumption in ECL and CML with singly-terminated Lines

CML Gate:
Fast
emitter followers on lower level only (level-shifting)
$\mathrm{V}_{\mathrm{cc}}=3 \mathrm{~V}_{\mathrm{be}}+300 \mathrm{mV}$ <--IR drop on mirror resistor
$\mathrm{I}=3 \mathrm{I}_{\text {switched }}=3^{\star} \Delta \mathrm{V}_{\text {logic }} / \mathrm{Z}_{\text {o }}$ (approx.)
ECL Gate:
Adds emitter followers on upper level
Somewhat faster
$\mathrm{V}_{\mathrm{cc}}=4 \mathrm{~V}_{\mathrm{be}}+300 \mathrm{mV}$
$\mathrm{I}=5 \mathrm{I}_{\text {switched }}=5^{*} \Delta \mathrm{~V}_{\text {logic }} / \mathrm{Z}_{\text {o }}$ (approx.)

$\mathrm{E}^{2} \mathrm{CL}$ Gate:

Double emitter followers driving both levels helps with $\mathrm{f} / \mathrm{f}_{\tau}$, higher $\mathrm{V}_{\text {ce }}$ for high J / C
$\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V}_{\mathrm{be}}+300 \mathrm{mV}$
$\mathrm{I}=7 \mathrm{I}_{\text {switched }}=7^{*} \Delta \mathrm{~V}_{\text {logic }} / \mathrm{Z}_{\text {o }}$ (approx.)

Need to use CML for low power

CML

ECL

Power and Power-Delay Products

Device sized for 100Ω load: (300 mV ECL logic swing) $0.25 \mu \mathrm{~m} \times 6 \mu \mathrm{~m}$ emitter Jpeak=2 mA/um^2
\rightarrow peak speed at 2 mA
Shorter stripe length device:
$0.25 \mu \mathrm{~m} \times 0.5 \mu \mathrm{~m}$ emitter peak speed at $250 \mu A$ bias

The smaller device consumes 12:1 less power but cannot use terminated lines. The lines then act as capacitive parasitics, and circuit speed is reduced due to the resuling RLCwire time constant.

Power-Delay Product for a "Baseline" Device

 $1 \mu \mathrm{~m}$ by $1 \mu \mathrm{~m}$ emitter
0.5 mA per transistor, 1.5 mA total for gate. 3.3 V supply

Power consumption:

- 5 mW @ FO=2

Power-delay product (assuming 5 ps delay): 25 fJ @ FO=2

Wiring capacitance ignored
$P \approx 3 \cdot(3.3 V) \cdot\left(5 \cdot 10^{4} \mathrm{~A} / \mathrm{cm}^{2}\right) \cdot(1 \mu \mathrm{~m})^{2}=5 \mathrm{~mW}$

Power-Delay Product for Scaled Device

Design rules reduced to $0.1 \mu \mathrm{~m}$ assume gate delay still - 4 ps
$0.1 \mu \mathrm{~m}$ by $0.1 \mu \mathrm{~m}$ emitter
5 microamps per transistor
Power consumption:

- $50 \mu \mathrm{~W} @ \mathrm{FO}=2$

Power-delay product:
. 0.2 fJ @ FO=2
Wiring capacitance ignored
$P \approx 3 \cdot(3.3 \mathrm{~V}) \cdot\left(5 \cdot 10^{4} \mathrm{~A} / \mathrm{cm}^{2}\right) \cdot(0.1 \mu \mathrm{~m})^{2}=50 \mu \mathrm{~W}$

Low-power gates have large delay from wiring capacitance

$$
\begin{aligned}
& \tau_{\text {intercomnect }}=R_{L} C_{\text {wire }} / 2=\tau_{\text {wire }}\left(R_{L} / 2 Z_{\text {wire }}\right)=\tau_{\text {wire }} \frac{\Delta V_{\text {logic }}}{2 I_{o} Z_{\text {wire }}} \\
& \tau_{\text {gate }}=\tau_{\text {intercomnect }}+\tau_{\text {transistor terms }}=\tau_{\text {wire }} \frac{\Delta V_{\text {logic }}}{2 I_{o} Z_{\text {wire }}}+\tau_{\text {transisisor terms }} \\
& P_{\text {gate }}=V_{e e} N I_{o} \text {, where } N \text { is the number of current sources per gate } \\
& \tau_{\text {gate }} P_{\text {gate }}=V_{e e} N I_{o} \tau_{\text {wire }} \frac{\Delta V_{\text {logic }}}{2 I_{o} Z_{\text {wire }}}+V_{e e} N I_{o} \tau_{\text {transistor terms }} \\
& =\frac{N V_{e e}\left(\Delta V_{\text {logic }}\right)}{2} \frac{\tau_{\text {wire }}}{Z_{\text {wire }}}+V_{e e} N I_{o} \tau_{\text {transistor terms }}
\end{aligned}
$$

As transistors are scaled, becomes smaller, and power - delay product becomes interconnect - limited

Minimum allowable logic voltage swing

$\tau_{\text {gate }} P_{\text {gate }}=\frac{N V_{e e}\left(\Delta V_{\text {logic }}\right)}{2} \frac{\tau_{\text {wire }}}{Z_{\text {wire }}}+V_{e e} N I_{o} \tau_{\text {transistor terms }}$
Interconnect - limited delay becomes smaller as $\Delta V_{\text {logic }}$ is made smaller.
What are the limits to reducing $\Delta V_{\text {logic }}$?

Linear input voltage range is $2 k T / q+I_{0} R_{e x}$ $\Delta V_{\text {logic }}$ must be several times this.

Minimum Logic Voltage Swing

The linear input voltage range of the gate is
$\Delta V_{\text {linear }}=2 k T / q+2 I_{o} R_{e x}$
We need margin against signal degradation due to
signal ringing (interconnects, circuit - level a2)
gate-gate interference due to supply or ground coupling
This safety margin is called "noise" margin
has **absolutely ** nothing to do with thermal noise $\sqrt{4 k T R \Delta f}$ should instead be called "EMI + ringing" margin
In order to have adequate "noise" margin we need
$\Delta V_{\text {logic }} \sim>3^{*} \Delta V_{\text {linear }}=6 \mathrm{kT} / q+6 I_{o} R_{\text {ex }} \sim 150 \mathrm{mV}+6 I_{o} R_{e x}$

class notes, ECE594A, rodwell, University of California, Santa Barbara, copyrighted

class notes, ECE594A, rodwell, University of California, Santa Barbara, copyrighted

Circuits become interconnect limited

$$
\tau_{\text {gate }} P_{\text {gate }}=\frac{N V_{e e}\left(\Delta V_{\text {logic }}\right)}{2} \frac{\tau_{\text {wire }}}{Z_{\text {wire }}}+V_{e e} N I_{o} \tau_{\text {transistor terms }}
$$

Interconnect limits: as transistors are scaled, wiring capacitance dominates

Power•delay becomes dependent only on supply voltage \& logic voltage swing
independent of design rules, independent of transistor bandwidth

Power-delay product in interconnect limit

$$
P_{\text {gate }} T_{\text {prop }}=(1 / 2) C_{\text {wire }} V_{c c} \Delta V_{\text {logic }}
$$

bipolar logic (static power)
$P_{\text {gate }} / f_{\text {clock }}=(1 / 2) C_{\text {wire }} V_{c c} \Delta V_{\text {logic }}$
CMOS logic (dynamic power)
$\left(T_{\text {prop }} f_{\text {clock }}\right)^{-1} \sim$ number gates between latches
For fast, low-power logic: reduce $V_{c c} \Delta V_{\text {logic }}$

The Interconnect Limit and Logic Gate Design

$$
A_{v}=\frac{R_{L}}{2 k T / q I_{2}}=\frac{I_{2} R_{L}}{2 k T / q}=\frac{\Delta V_{\text {logic }}}{2 k T / q}
$$

Voltage Gain must be >> 1
So: $\Delta V_{\text {logic }}=10 \cdot(k T / q)$
But: $P_{\text {gate }} T_{\text {gate }}>(1 / 2) V_{c c} \Delta V_{\text {logic }} C_{\text {wire }}$

$$
P_{\text {gate }} T_{\text {gate }}>(1 / 2)(1.5 \text { Volt })(10 \bullet k T / q) C_{\text {wire }}
$$

(power•delay) is constrained by interconnects
a fast transistor doesn't result in a fast IC
conclusion: a better circuit design is needed
Similar derivation for CMOS (Meindl, Proc IEEE, 1995)

Wiring capacitance? What if we use terminated transmission lines? (which we often do...)

$$
\Delta V_{\text {logic }}=I_{o} Z_{0}>\text { about } 5 * \mathrm{kT} / q
$$

$$
P_{g a t e}=V_{e e} I_{o}=V_{e e} \Delta V_{\text {logic }} / Z_{o}
$$

$$
T_{\text {delay }}=T_{\text {gate }}+T_{\text {wire }}
$$

$$
T_{\text {wire }}=l_{\text {wire }} / v_{\text {wire }}
$$

$$
P_{\text {gate }} T_{\text {delay }}=T_{\text {gate }}\left(V_{e e} \Delta V_{\text {logic }} / Z_{o}\right)+T_{\text {wire }}\left(V_{e e} \Delta V_{\text {logic }} / Z_{o}\right)
$$

$$
P_{\text {gate }} T_{\text {delay }}>T_{\text {wire }}\left(V_{e e} \Delta V_{\text {logic }} / Z_{o}\right)=V_{e e} \Delta V_{\text {logic }}\left(l_{\text {wire }} / V_{\text {wire }} Z_{o}\right)=V_{e e} \Delta V_{\text {logic }} C_{\text {wire }}
$$

so, even though "wiring capacitance" is no longer an accurate description, $\mathrm{CV}_{c c} \Delta \mathrm{~V}_{\text {logic }}$ is still an accurate expression for the power-delay limit

Master-Slave Latch

Cascading a pair of latches creates a circuit which reads the data input D , and outputs it as the value Q , Only on a falling edge of clock....output is otherwise held constant.... MS latch is used as timing control element...output is a version of the input, but sampled only at falling edge of clock

Master-Slave Latch timing diagram

class notes, ECE594A, rodwell, University of California, Santa Barbara, copyrighted

What are latches and MS latches used for ?

timing control
in logic system, prop delays will be function of transititon \& critical path. timing errors/fluctuations will accumulate...role of latch is to suppress this, restore timing.
decision element.
in ADCs and in communcations receveviers, must decide whether a signal exceeds / does not exceed a critical threshold at a particular set of points in time defined by a clock signal.

$E^{2} C L M / S$ Latch

Popular in $\mathrm{Si} / \mathrm{SiGe}$ due to (1) $\mathrm{H}_{21}{ }^{2}$ current gain and
(2) larger Vce across switching transistors helps Ccb/I ratio

ECL M/S Latch connected as 2:1 static frequency divider

Fast ECL 2:1 static frequency divider

class notes, ECE594A, rodwell, University of California, Santa Barbara, copyrighted

Logic Propagation delay analysis: start with one-level CML gate

Figure 4.1: a) Basic CML gate. b) HBT without parasitics. c) CML equivalent circuit used for calculating propagation delay.

First, basic assumptions: 2:1 fan-out, chain of identical gates

Basic Assumptions for Propagation delay analysis

a)

b)

c)

Figure 4.1: a) Basic CML gate. b) HBT without parasitics. c) CML equivalent circuit used for calculating propagation delay.

Transistor is nonlinear, how do we solve?
Small-signal analysis: $C_{\text {s.s. }} \equiv d Q / d V, g_{m} \equiv d I / d V$ etc.
Large-signal analysis: $C_{\text {s.s. }} \equiv \Delta Q / \Delta V, g_{m} \equiv \Delta I / \Delta V$ etc. where ΔV is the logic swing.

Basic Assumptions for Propagation delay analysis

$$
\text { Large-signal analysis: } C_{\text {s.s. }} \equiv \Delta Q / \Delta V, g_{m} \equiv \Delta I / \Delta V \quad \text { etc. }
$$

This implies:
$g_{m}=\Delta I / \Delta V=I_{o} / I_{o} R_{L}=1 / R_{L} \ll q I_{o} / k T$
$C_{b e, \text { diffusion }}=\Delta Q / \Delta V=I_{o} \tau_{f} / \Delta V=\tau_{f} / R_{L} \ll I_{o} \tau_{f} /(k T / q)=g_{m} \tau_{f}$
$A_{v}=\Delta V_{\text {out }} / \Delta V_{\text {in }}=-1$
$C_{j e, \text { large-signal }}=\Delta Q / \Delta V=\left(\int_{V_{b e, o n}-\Delta V}^{V_{b e, o n}} C_{j e}(v) d V\right) / \Delta V=C_{j e, e f f}$
$C_{c b, \text { large-signal }}=\Delta Q / \Delta V=\left(C_{c b} \Delta V\right) / \Delta V=C_{c b}$
Note that large signal operation greatly reduces the effective values of gm and the diffusion capacitance...by roughly a
factor of 10 . Logic speed is much more controlled by deplection
capacitances than it is by HBT base and collector stored charge

Why isn't base+collector transit time so important ?

Gate Propagation delay analysis
We now solve for gate delay
Method : replace transistors with their * large-signal * models
Circuit has transfer function of
$\left[\frac{V_{\text {out }}}{V_{\text {in }}}\right]=\left[\frac{V_{\text {out }}}{V_{\text {in }}}\right]_{\text {mid-band }} \frac{1+b_{1} s+b_{2} s^{2}+\ldots}{1+a_{1} s+a_{2} s^{2}+\ldots}$
It is elementary math to show that the * mean delay* of the transfer function is $\left(a_{1}-b_{1}\right)$, hence $1 / 2$ the mean delay (delay
to the 50% switching points) is $T_{\text {gate }}=\left(a_{1}-b_{1}\right) / 2$
Find a_{1} by the method of time constants
Find $b_{1}=\sum_{\text {emiter followers }} C_{b e} / g_{m}-\sum_{\text {common-emitter stages }} C_{c} / g_{m, \text { large-signal }}$

Gate Propagation delay analysis

Note that although the methods appear to be quite different, MOTC delay analysis on the linearized (large-signal) circuit, is identical to delay analysis by the charge - control method,
e.g. $T_{\text {gate }}=\frac{1}{2} \sum \frac{\Delta Q}{\Delta I}=\frac{1}{2} \sum \frac{1}{\Delta I} \int_{V_{\text {low }}}^{V_{\text {high }}} C(v) d V$

In both cases it is important to note that 2nd - order effects a_{2} in the circuit transfer function are neglected. This means, specifically, that emitter - follower ringing is neglected, which is a serious limitation

One-level CML Propagation delay analysis

Taking $\mathrm{T}_{\text {prop }}=\tau \ln (2)$ is equivalent to assuming
(1- $\exp (-t / \tau)$) charging behaviour. To the level of accuracy of the assumptions used, we have instead assumed linear node charging with time, which gives $\mathrm{T}_{\text {prop }}=\tau / 2$, e.g. (1/2) the mean delay

One-level CML Propagation delay analysis: fan-outs

Here we are analyzing a gate chain with a fan-out of 2:1

Simplifying treatment of fan-outs

R_{L} is replaced by $2 R_{L}$ by symmetry arguments.
In order to count each parasitic capacitance ONCE per gate, we must consider only capacitors in the highlighted area

$$
\begin{aligned}
& \text { Gate Delay Calculation } \\
& a_{1}=C_{b e}\left(R_{b b}+N R_{L}\right)+C_{c b i l}\left[\left(N R_{L}+R_{b b}\right)\left(1-A_{v}\right)+R_{L}\right]+C_{c b x}\left[N R_{L}\left(1-A_{v}\right)+R_{L}\right] \\
& a_{1}=\left[C_{j e}+\frac{I_{o} \tau_{f}}{\Delta V_{\text {logic }}}\right]\left[R_{b b}+\frac{N \Delta V_{\text {logic }}}{I_{o}}\right]+C_{c b i}\left[\left[R_{b b}+\frac{N \Delta V_{\text {logic }}}{I_{o}}\right](1+1)+\frac{\Delta V_{\text {logic }}}{I_{o}}\right] \\
& \quad+C_{c b x}\left[\left[\frac{N \Delta V_{\text {logic }}}{I_{o}}\right](1+1)+\frac{\Delta V_{\text {logic }}}{I_{o}}\right] \\
& a_{1}=C_{j e} R_{b b}+C_{j e} \frac{N \Delta V_{\text {logic }}}{I_{o}}+N \tau_{f}+R_{b b} \frac{I_{o} \tau_{f}}{\Delta V_{\text {logic }}}+(2 N+1)\left[C_{c b x}+C_{c b i l}\left[\frac{\Delta V_{\text {logic }}}{I_{o}}\right]+C_{c b i} R_{b b}\right. \\
& b_{1}=-\left(C_{c b x}+C_{c b i}\right) / g_{m}=-\left(C_{c b x}+C_{c b i}\right)\left(\Delta V_{\text {logic }} / I_{o}\right)
\end{aligned}
$$

Gate Delay Calculation: Single-level CML gate at N:1 fanout

$2 T_{\text {gate }}=C_{j e} R_{b b}+C_{c b i} R_{b b}+N \tau_{f}$
$+R_{b b} \frac{I_{o} \tau_{f}}{\Delta V_{\text {logic }}}$

$$
+(2 N+2)\left[C_{c b x}+C_{c b i}\right]\left[\frac{\Delta V_{\text {logic }}}{I_{o}}\right]+C_{j e} \frac{N \Delta V_{\text {logic }}}{I_{o}}
$$

Note that the $C_{c b}\left(\Delta V_{\text {logic }} / I_{o}\right)$ and $C_{j e}\left(\Delta V_{\text {logic }} / I_{o}\right)$ terms usually dominate. This strongly favors the use of small logic swings and high current density

Effect of Current Density

$$
\begin{aligned}
2 T_{\text {gate }}= & C_{j e} R_{b b}+C_{c b i} R_{b b}+N \tau_{f} \\
& +R_{b b} \frac{J_{o} A_{e} \tau_{f}}{\Delta V_{\text {logic }}}+(2 N+2) \frac{\varepsilon A_{c}}{T_{c}}\left[\frac{\Delta V_{\text {logic }}}{A_{e} J_{o}}\right]+C_{j e} \frac{N \Delta V_{\text {logic }}}{A_{e} J_{o}} \\
2 T_{\text {gate }}= & C_{j e} R_{b b}+C_{c b i} R_{b b}+N \tau_{f} \\
& +\left(R_{b b} A_{e}\right) \frac{J_{o} \tau_{f}}{\Delta V_{\text {logic }}}+(2 N+2) \frac{A_{c}}{A_{e}}\left[\frac{\varepsilon \Delta V_{\text {logic }}}{T_{c} J_{o}}\right]+\frac{C_{j e}}{A_{e} J_{o}} N \Delta V_{\text {logic }}
\end{aligned}
$$

Effect of Logic Voltage Swing

$$
\begin{aligned}
2 T_{\text {gate }}= & C_{j e} R_{b b}+C_{c b i} R_{b b}+N \tau_{f}+R_{b b}\left(I_{o} \tau_{f} / \Delta V_{\text {logic }}\right) \\
& +(2 N+2)\left[C_{c b x}+C_{c b i}\right]\left(\Delta V_{\text {logic }} / I_{o}\right)+N C_{j e}\left(\Delta V_{\text {logic }} / I_{o}\right)
\end{aligned}
$$

Note that the linear input voltage range of the gate is
$\Delta V_{\text {linear }}=2 k T / q+2 I_{o} R_{\text {ex }}$
Recall than we need
$\Delta V_{\text {logic }} \sim>3^{*} \Delta V_{\text {linear }}=6 \mathrm{kT} / q+6 I_{o} R_{e x} \sim 150 \mathrm{mV}+6 I_{o} R_{e x}$
Logic voltage swing should be as small as possible, consistent with this limit...the $R_{b b}\left(I_{o} \tau_{f} / \Delta V_{\text {logic }}\right)$ term usually being nondominant.

Effect of Logic Voltage Swing

$$
\begin{aligned}
2 T_{\text {gate }}= & C_{j e} R_{b b}+C_{c b i} R_{b b}+N \tau_{f}+R_{b b}\left(I_{o} \tau_{f} / \Delta V_{\text {logic }}\right) \\
& +(2 N+2)\left[C_{c b x}+C_{c b i}\right]\left(\Delta V_{\text {logic }} / I_{o}\right)+N C_{j e}\left(\Delta V_{\text {logic }} / I_{o}\right)
\end{aligned}
$$

But
$\Delta V_{\text {logic }} \sim>3^{*} \Delta V_{\text {linear }}=6 \mathrm{kT} / q+6 I_{o} R_{e x} \sim 150 \mathrm{mV}+6 I_{o} R_{\text {ex }}$
Note that $C_{c b}\left(\Delta V_{\text {logic }} / I_{o}\right)=\left(\varepsilon / T_{c}\right)\left(A_{c} / A_{e}\right)\left(\Delta V_{\text {logic }} / J_{e}\right)$
Note that $I_{0} R_{e x}=J_{e} /\left(R_{e x} / A_{e}\right)$
If we push up current density, we do reduce Ccb charging time, but we must reduce the emitter resistance per unit area.
Otherwise, the voltage swing must increase, and no benefit is obtained

Scaling Laws, Collector Current Density, $C_{c b}$ charging time

Collector Field Collapse (Kirk Effect)

$$
V_{c b}+\phi>+\left(J / v_{s a t}-q N_{d}\right)\left(T_{c}^{2} / 2 \varepsilon\right)
$$

Collector Depletion Layer Collapse

$$
\begin{gathered}
V_{c b, \min }+\phi>+\left(q N_{d}\right)\left(T_{c}^{2} / 2 \varepsilon\right) \\
\Rightarrow \quad J_{\max }=2 \varepsilon v_{s a t}\left(V_{c b}+V_{c b, \min }+2 \phi\right) / T_{c}^{2}
\end{gathered}
$$

Note that $V_{b e} \cong \phi$, hence $\left(V_{c b}+\phi\right) \cong V_{c e}$
$C_{c b} \Delta V_{\text {LOGIC }} / I_{C}=\left(\varepsilon A_{\text {collector }} / T_{c}\right)\left(\Delta V_{\text {LOGIC }} / I_{C}\right)=\frac{\Delta V_{\text {LOGIC }}}{\left(V_{C E}+V_{C E, \text { min }}\right)}\left(\frac{A_{\text {collector }}}{A_{\text {emiter }}}\right)\left(\frac{T_{C}}{2 v_{\text {sat }}}\right)$
Collector capacitance charging time is reduced
by thinning the collector while increasing current

ECL Propagation delay: upper-level circuit

again assume a fan-out of $\mathrm{N}: 1$
Simplify by assuming beta>>1, Ree>>Re.

ECL Propagation delay: upper-level circuit

Next key point:
Depending upon the details of the IC design, the emitterfollowers may or may not switch.
For now, let us assuem they do not.
We consequently use small-signal quantities for the EFs, and large-signal quantities for the CS transistors.

class notes, ECE594A, rodwell, University of California, Santa Barbara, copyrighted

Do the emitter-followers switch ????

class notes, ECE594A, rodwell, University of California, Santa Barbara, copyrighted

Do the emitter-followers switch ????

There are 2 dangers. First, on a rising pulse, the peak EF current is
$I_{e f, p e a k}=I_{e f}+\Delta I=I_{e f}+C_{L} \Delta V_{\text {logic }} / \Delta T$
We must ensure that this peak current is below Kirk - effect limits.

Second, on a falling pulse, the minimum EF current is zero :
$I_{e f, \text { min }}=0=I_{e f}-\Delta I=I_{e f}-C_{L} \Delta V_{\text {logic }} / \Delta T$
From which
$\Delta T_{\text {min }}=C_{L} \Delta V_{\text {logic }} / I_{e f}$
This is slew - rate-limited discharging of C_{L}.

CML Propagation delay: two-level circuit

The logic voltage swing on the collector of Q2 is also*approximately*
$\Delta \mathrm{V}_{\text {logic }}$. Justification of this is a long and somewhat messy discussion.
Note that on the B level switching path that Q1is an EF,
Q2 is CE, and Q3 is CB. If the base of Q3 is high and
Q4 is low, then Q4 remains off and simply loads the collector of Q3in $C_{\text {je4 }}$

Also simplify the answer for clarity by assiming that $\beta \gg 1$, \& that the EF voltage gain is very close to 1 . Note that Q3 operates in CB mode... please refer back to earlier notes to review a_{1} terms for CB stages.

class notes, ECE594A, rodwell, University of California, Santa Barbara, copyrighted

ECL Propagation delay: two-level circuit

Logic Speed

..	$c_{j e}$	$c_{c b x}$	$c_{c b i}$	$\tau_{f} J / \Delta V_{L}$
$\Delta V_{L} / J$	1	6	6	1
$k T / q J$	0.5	1	1	0.5
ρ_{e}	-0.25	0.5	0.5	0.5
$r_{b b}$	0.5	0	1	0.5

Approximate delay coefficients $a_{i j}$ for an ECL master - slave flip - flop, found by hand analysis. Gate delay is of the form $T_{\text {gate }}=1 / 2 f_{\text {clock, max }}=\Sigma a_{i j} r_{i} c_{j}$, where $f_{\text {clock }}$ is the maximum clock frequency. The minimum logic voltage swing is $\Delta V_{\text {LOGIC }}>6\left(k T / q+J \rho_{e x}\right)$

Logic Speed: definition of terms

$c_{j e}$: emitter base depletion capacitance per unit emitter area
$c_{c b i}$: intrinsic collector base capacitance per unit emitter area
$c_{c b x}$: extrinsic collector base capacitance per unit emitter area τ_{f} : sum of base and collector transit times
J : emitter current per unit emitter area
$\Delta V_{\text {LOGIC }}$: logic voltage swing
$r_{b b}$: base resistance times emitter area (e.g."per - area" $R_{b b}$)
$\rho_{e x}$: emitter resistance times emitter area (e.g."per - area" $R_{e x}$)

What HBT parameters determine logic speed?

	Cje	Ccbx	Ccbi	$(\tau \mathrm{b}+\tau \mathrm{c})(1 / \Delta \mathrm{V})$	total
$\Delta \mathrm{V} / \mathrm{l}$	33.5\%	6.7\%	27.8\%		68.4\%
$\Delta \mathrm{V} / \mathrm{I}$				12.3\%	12.3\%
(kT/q) I	1.4\%	0.1\%	0.4\%	0.5\%	2.5\%
Rex	-1.3\%	0.1\%	0.3\%	0.9\%	0.1\%
Rbb	10.2\%		2.8\%	3.7\%	16.7\%
total	43.8\%	6.8\%	31.3\%	17.5\%	100.0\%
			3\%		

Sorting Delays by capacitances :
44% charging $C_{j e}$, 38% charging $C_{c b}$, only 18% charging $C_{\text {diff }}$ (e.g. $\tau_{b}+\tau_{c}$) Sorting Delays by resistances and transit times:
68% from $\Delta V_{\text {logic }} / I_{c}, 12 \%$ from $\left(\tau_{b}+\tau_{c}\right), 17 \%$ from $R_{b b}$ $R_{e x}$ has very strong indirect effect, as $\Delta V_{\text {logic }}>6 \bullet\left(k T / q+I_{C} R_{e x}\right)$

Caveats:
assumes a specific UCSB InP HBT (0.7 um emitter, 1.2 um collector $2 \mathrm{k} \AA$ thick, $400 \AA$ base, $1.5 \mathrm{E} 5 \mathrm{~A} / \mathrm{cm}^{\wedge} 2$) ignores interconnect capacitance and delay, which is very significant

