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Strategy

There i1s not time in 145¢/218c to develop this subject in detail.

Strategy :

give backround sufficient for correct calculation of
SNR, spectral densities, correlation functions,
signal correlations, error rates.

More detail can be found in my noise class notes (on the web),
or in the literature. Van der Zeil's book is comprehensive.
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Topics

Math:

distributions, random variables, expectations,

pairs of RV, joint distributions, covariance and correlations.
Random processes, stationarity, ergodicity, correlation functions,
autocorrelation function, power spectral density.

Noise models of devices:
thermal and shot noise.
Models of resistors, diodes, transitors, antennas.

Circuit noise analysis:

network representation. Solution.

Total output noise. Total input noise. 2 generator model.
En/In model. Noise figure, noise temperature.

Signal / noise ratio.




random variables
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The first step: random Variables

During an experiment,a random variable X takes ona particular value x.
The probability that x lies between x, and x, Is

P{Xx, < x<X,}= _[ f, (X)dx
f. (X) Is the probability distribution function.

i (x)

A
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Example: The Gaussian Distribution

The Gaussian distribution :
1 —(x=x)
fo(x)= ex

We will define shortly the mean (X) and the standard deviation (¢?).

Because of the *central limit theorem™, physical random processes arising
from the sum of many small effects have probability distributions close to

that of the Gaussian.
f. (X)

|
>



Mean values and expectations
.

Expectation of a function g(X) of the random variable X

E[g(x)]= [ 9(x) fx (x)dx

Mean Value of X

(X)=X = E[X]:Txfx(x)dx

Expected value of X?

(x?)=E[x?]= sz f, (X)dx



Variance

The variance o of X isits root - mean - square deviation
from its average value

ot = (X = xP) = E[x =)= [(x—%F 1, (x)x

The standard deviation o, of X issimply
the square root of the variance



Returning to the Gaussian Distribution

The notation describing the Gaussian distribution :

1 —(x =X
f —
0 ﬂp( 257 j

should now be clear.

|




Variance vs Expectation of the Square

The variance Is the expectation of the square
minus the square of the expectation.
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Pairs of Random Variables

To understand random processes,
we must first understand pairs of random variables.

In an experiment, a pair of random variables X and Y
takes on specific particular values x and .

Their joint behavior is described by the joint distribution f,. (X, Y)

DB
P{A<x<BandC<y< D}:H f., (X, y)dxdy
CA



Pairs of Random Variables

Marginal distributions must also be defined

+00B

P{A<Xx<B}= ” f.. (X, y)dxdy

—0A

:_E.i f, (x)dx

and similarly for Y .

D+

P{C<y< D}:j j f.. (X, y)dxdy

f, (y)dy

O = U



Statistical Independence

In the case where

fXY (X1 Y) — fx (X) fY (y) ’
the variables are said to be statistically independent.

This is not generally expected.



Expectations of a pair of random variables

The expectation of a function g(X, Y) of the random variablesY and Y is

400400

E[g(x V)= | [ 9(xy) fy (x, y)dxdy

—00—00

Expectation of X :

+00+00

E[X]=x= _foXY(x y)dxdy = jxf (x)dx

—00—00

Expectation of X?

+004-00

E[X?]=(X2)= [ [ (x, y)dxdy = jx £, (x)dx

—00—00

...and similarly forY andY °.



Correlation between random variables

The correlation of Xand Y IS

+00+-00

Ryy = E[XY]: _[ jxy' fyy (X, y)dxdy

—00—00

The covariance of X and Y IS
Cyy = E[(X =X)Y —¥)]= E[XY - XY — Xy + Xy]

=Ryy =Xy

Note that correlation and covariance are the same if either
X or Y have zero mean values.
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Correlation versus Covariance

When we are working with voltages and currents, we usually separate
the mean value (DC bias) from the time - varying component.

The random variables then have zero mean.
Correlation is then equal to covariance.

It is therefore common in circuit noise analysis
to use the two terms interchangably.

But, nonzero mean values can return when we e.g. calculate
conditional distributions.

Be careful.
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Correlation Coefficient

The correlation coefficient of X and Y Is

Pxy =Cy [ ox0y

Note the (standard) confusion in terminology
between correlation and covariance.



Sum of TWO Random Variables

Sum of two random variables: Z = X +Y

E[z2]= E[(X +Y)?|= E[X*+2XY +Y?]
—E[x?|+ E[ 2]+ 2R,,

If X andY both have zero means
Elz2]=[x?|+E[y?]+ 2c,,

This emphasizes the role of correlation.
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Pairs of Jointly Gaussian Random Variables

If X and Y are Jointly Gaussian :
1

foo(X.y)=
xv (X, Y) Y
Xexp{ 1 ((x-i)z+(X—Y)(y—V)+(y—2V)2ﬂ

21— Py ) o Ox Oy Oy

This definition can be extended to a larger # of variables.

In general, we can have a Jointly Gaussian random vector

(X1’ Xores, Xn)
which is specified by a set of
means X,, variances E[,x ], and covariances E[x,x;



Linear Operations on JGRV's

If X and Y are Jointly Gaussian, and if we define
V=aX+bY andW =cX +dY

ThenV andW are also Jointly Gaussian.
This is stated without proof; the result arises because
convolution of 2 Gaussian functions

producesa Gaussian function.

The result holds for JGRVs of any number.



Probability distribution after a Linear Operation on JGRV's

V =EN]=E[aX +bY|=aX +bY and W =cX +dY
o2 =EN?|-V? = a’E[X 2|+ b2E|Y 2|+ 2ab- E[XY |- (aX +bY)’
o2 = EW?2|-W?2 = c2E[X 2|+ d2E|y ?]+ 2¢cd - E[XY ]- (cX + dY)?
C, = EVW |-VW = E[(aX +bY)(cX +dY)|-VW
= ElacX 2 + (ad +bc) XY +bdY 2 |-VW
= acE[X 2|+ (ad + bc)E[XY ]+ bd - E[Y 2 |- (aX +bY)(cX +dY)

s|fejap snojpa}

We can now calculate the joint distribution of V and W.
1
276, Oy Al 1— Py,

Xexp{ 1 .L(V—V)Z +(v—\7)(w—v_v)+(w—v_v)2ﬂ

) 2(1- o) oy Oy Oy Oy

fvvv (V’ W) —
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Why are JGRV's Important ?

The math on the last slide was tedious but there is a clear conclusion:

With JGRV's subjected to linear operations, it issufficient to keep track
of means, correlations, and variances.

With this information, distribution functions can always be simply found.

This vastly simplifies calculations of noise propagation in linear systems
(linear circuits).



Uncorrelated Variables.

Uncorrelated :
C, =0

Statistically independent :
fxv (X’ y) — fx (X) fY (y)

Independence implies zero correlation.
Zero correlation does not imply independence.

For JGRV's, uncorrelated does imply independence
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Summing of Noise (Random) Voltages

Two voltages are applied to the resistor R
The power dissipated In the resistor is a random variable P

E[P]=(P)= <(V1+V)> < + VN, +V,))

:%<v12>+ £2C,, + ;<V22> O %R
:%<v12>+%20w2 +%<V22> (i) v2

= () () 220, 0,0,

%

The noise powers of the two random generators do not add -
-a correllation term must be included.

The instantaneous time values of the random noise voltages do add.
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Shot Noise as a Random Variable

l¥¢ 44 l*
The fiber has transmission probability p.
Send one photon, and call the # of received photons N.,.

EIN,]=N,=p and E[Nf]: p SO oy = E[Nf]— N7 =p-p?

If we now send many photons (M of them), transmission of each Is
statistically independent, so - - - calling the # of received photons N,

E[N]J=M-E[N,]=Mp and o} =M-of =M (p-p?)

Now suppose M >>1, p<<1and Mp >>1,

— o =N
The variance of the count approaches the mean value of the count.



E145C /218C notes, M. Rodwell, copyrighted 2007

Thermal Noise as a Random Variable

.
A capacitor C is connected to a resistor R .
The resistor is in equilibrium with a ' reservoir" (a warm room) at temperature T

R can exchange energy with the room in the form of heat.
C can dissipate no power : it establishes thermal equilibrium with
the room via the resistor.

From thermodynamics, any independent degree of freedom of a system
at temperature T has mean energy KT/2, hence

(E)=KT /2
<CV2/2>:kT/2
<V2>:kT/C

)|
/1
py

The noise voltage has variance KT/C.



random processes
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Random Processes

Draw a set of graphs, on separate sheets of paper,
of functions of voltage vs. time.

Put them into a garbage can. V.00 \f
/\\_"I’
This garbage can is called ZUR PPN m
the probability sample space. > \
e
b “ v
Pick out one sheet at random. - ™
/'\”

This is our random function of time. /-
The random process isV (t). L
The particular outcome is v(t)




Time Averages vs. Sample Space Averages

Recall the definion of the expectation of a function g(X) of a random variable X

E[g(x)]= [g(x) fx(x)dx=g

g Is the *average value * of g, where the average Is over the sample space.

With our random process definition,
we can define an average over the
sample space at some particular timet, :

E[g(v(t)]= [ g(v(t)) f, (v(t))d (v(t))

We can also define an average of the
function over time:

Alg(v(t)]= [a(v(t)dt

o




Ergodic Random Processes
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An Ergodic random process has
averages over time equal to
averages over the statistical sample space

Elg(v(t))]= Alg(v(t))]

In some sense, we have made

"random variation with time"

equivalent to

"random variation over the sample space"




Time Samples of Random Processes

With time samples at timest, and t,
the random processV (t) has valuesV (t,) and V (t,).

V (t,) andV (t,) have some joint probability distribution.
They might (or might not) be jointly Gaussian.

v(t) ,

v(t,) <
v(t,) <




Random Waveforms are Random Vectors

Using Nyquist's sampling theorem,

If a randomsignal is bandlimited,

and If we pick regularly -spaced time samplest,...t
we convert our random process into a random vector.

We can thus analyze random signals using
vector analysis and geometry.

This i1s mostly beyond the scope of this class.
v(t) \

~+



Stationary Random Processes

.
The statistics of a stationary process do not vary with time.

N™ — order stationarity :
E[fV (). V). V)=E[fV({t +7)V(t,+7),..V(t +7))]
..and lower orders

2" — order stationarity :

E[f (V). (©)]=E[fVEt+2)V(t,+7))]
lower orders — E[f (V (t))]= E[f (V (t, + 7))]

v(t) .
v(t,) <
v(t,) <
t t t
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Restrictions on the random processes we consider

We will make following restrictions to make analysis tractable:

The process will be Ergodic.

The process will be stationary to any order: all statistical properties are independent of
time. Many common processes are not stationary, including integrated white noise and 1/f
noise.

The process will be Jointly Gaussian. This means that if the values of a random process
X(t) are sampled at times t1, to, etc, to form random variables X1=X(t1), etc, then X1,X>,

etc. are a jointly Gaussian random variable.

In nature, many random processes result from the sum of a vast number of small
underlying random processses. From the central limit theorem, such processes can
frequently be expected to be Jointly Gaussian.
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Variation of a random process with time
|
For the random process X(t), look at X1=X(t1) and Xo=X(t2).

Rx1x2 = E[Xlxz]: j J-X1X2 * fxlxz(xli Xz)dx1dxz

To compute this we need to know the joint probability distribution. We have assumed a
Gaussian process. The above is called the Autocorrellation function. IF the process is
stationary, it is a function only of (t;-to)=tau, and hence

R (7) = E[X(®)X(t + 7)]

this is the autocorrellation function. It describes how rapidly a random voltage varies
with time....

PLEASE recall we are assuming zero-mean random processes (DC bias subtracted). Thus
the autocorrellation and the auto-covariance are the same
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Variation of a random process with time

Note that Ry, (0)= E[X(t)X(t)]= oy gives the variance of the random process.

The autocorrelation function gives us variance of the random process and the correlation
between its values for two moments in time. If the process is Gaussian, this is enough to
completely describe the process.

R, (7)

Narrow autocorrelation:
Fast variation

Broad autocorrelation
Slow variation
RXX(T)




Autocorrelation is an Estimate of the Variation with Time

If random variables X and Y are Jointly Gaussian, and have zero mean,

then knowledge of the value y of the outome of Y results in a best estimate of X as
follows:

R
E[XIY =y]=(Xly = y) ==&y

Oy

"The expected value of the random variable X, given that the random variable Y has value
y iS ...ll

Hence, the autocorrellation function tells us the degree to which the signal at time t is
related to the signal at time t+¢

A narrow autocorrelation is indicative of a quickly-varying random process
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Power spectral densities

The autocorrellation function describes how a random process evolves with time.

Find its Fourier transform:

Syx (a)) = J‘ Ryx (T)eXp(_ jor)dr
This is called the power spectral density of the signal.

Remembering the usual Fourier transform relationships, if the power spectrum is broad,
the autocorrellation function is narrow, and the signal varies rapidly--it has content at high
frequencies, and the voltages of any two points are strongly related only if the two points
are close together in time.

If the power spectrum is narrow, the autocorrellation function is broad, and the signal
varies slowly--it has content only at low frequencies and the voltages of any two points are
strongly related unless if the two points are broadly separated in time.



Power spectral densities
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Sxx(omega)

omega

Sxx(omega)

omega

Rxx(tau)

X(t k

time
tau

Rxx(tau)

X(t

tau .
time
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Power Spectral Densities

Recall that the power spectral density Is
the Fourier transform of the autocorrelation function

S ()= [ Ry (2)exp(— joor)dz

The inverse transform holds, so that
j S,y (@)exp(jor)dw

speC|f|caIIy,

R (0) = 0% = i] S (@M

So, if o iscalled the power in the process, then integrating
the power spectral density will give us the power.

This is the justification for the term, " power spectral density"



Correlated Random Processes

Two processes can be statistically related.
Consider two random processes X(t) and Y/(t).

Define the cross - correllation function of the processes
Ry (T) = E[X (t)Y (t T T)]

They will have a cross - spectral density as follows :

Syy (a)) = TRXY (r)exp(— Jor)dr

+00

and therefore R, (7 )= 2i jSXY (w)exp(jor)dw
TU



Single-Sided Hz-based Spectral Densities

Double - Sided Spectral Densities

Ry (7)=E[X ()X (t+7)]= Zif S, (jo)exp(jor)dw
n —00
Syx (Jw) = TRXX (r)exp(— Jot)dr

Single - Sided Hz - based Spectral Densities

Ryx (T) = E[X (O X (t+ 7)] — %+f§xx (Jf )exp(jZﬁT)df

—~

Sxx (Jf ) =2 j Ryx (r)exp(— j2487)dr



Single-Sided Hz-based Spectral Densities- Why ?

Why this notation ?
The signal power in the bandwidth {f,ow, fhigh}

fh gh Fhign

Power_— jsxx Jf)df+— jsxx Jf)f = [ Sy (Jf )i

o fh igh flow fIow

— S, (jf )is directly the Watts of signal power
per Hz of signal bandwidth
at frequencies lying close to the frequency f.
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Single-Sided Hz-based Cross Spectral Densities

Double - Sided Cross Spectral Densities

RXY( ) E[X ()Y (t‘H') J-SXY Jo eXp(Ja)r)da)
Syy (Ja)) = TRXY (r)exp(— Jor)dr

Single - Sided Hz - based Cross Spectral Densities

Ry, (7)= E[X ()Y (t+7)]= j S, (jf Jexp(j2fz)df

~

Sxy (Jf ) =2 I Ry (T)eXp(_jZﬂfT)d 4

~

S, (jf )is also often written as :—f<XY>



Example: Cross Spectral Densities

V(1) = X (1) +Y (1)

' @ X P=V?/R

V
va( ) [(X(t)+Y(t))(X(t+r)+Y(t+r) Y § R
_Rxx( )+RYY( )+RXY( )+RYX( )

va(ja)): Syx (Ja))+ Syy (Jw)+ Syy (Ja))+ Sxv (Ja))
Syx (JC‘))+ Syy (JC‘))+ 2: Re{sxv (Jw)}

Or, in single - sided spectral densities

S (if )= Sy (if )+ Sy (i ) +2- RefS,, (if )}
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Example: Cross Spectral Densities

The Power P =V *(t)/R has expected value @ X P=V2/R
V
EV(V({t)/R]=R,, (0)/R y SR

And in the bandwidth between f

fhign

P =[S, (jf Jf..

flow

Integrating with respect to frequency (over whatever bandwidth is relevant)
gives the total (expected) power dissipated in R.

and .,

low

Note that the cross - spectral density is relevant.



Noise passing through filters & linear electrical networks
.

If the filter has impulse response h(t) and transfer function H( jw),

then fOr any Vin (t) — Vout (t)’ Vout ( Ja)) — H ( ja))vin ( JC!))

We can show

SVoutVin ( Ja)) = H ( ja)) SVinVin ( Ja))
.\ : ., Vin(t) ht)
SVinVout ( Ja)) o S\/inVin ( J a)) H ( Ja)) I

Vout(t)

and

Sy v (j@)=[H(jo)| S, (j»)

out ¥ out
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