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Abstract—We report 0.2 to 6-GHz MMIC power amplifiers

R.
1
with 12-dB gain, over 23-dBm output power, and more than 25% °_W\'1
power-added efficiency (PAE) in a GaAs MESFET technology Vv t C GV
offering 18-GHz f, and 12-V breakdown. These circuits have 0. W «—> & T8 m°gs
gain-bandwidth products of ~1.3 - f,- and are more efficient than 1
distributed power amplifiers. A first demonstration of similar B =
circuits in GaN/AlGaN HEMT technology yielded 11-dB gain, . implified del used f Ivsi
0.2 to 7.5-GHz bandwidth amplifiers with over 31.5-dBm output ~'9- 1+ Simplified ac FET model used for analysis.
power and up to 15% PAE. With improved devices and models we
expect significantly higher power from the GaN HEMT circuits. approaching twice the transistgi [10], [11]. As a power
Index Terms—Broadband amplifiers, FET circuits, power am-  amplifier f.-doubler circuits can provide higher efficiency and
plifiers. smaller die area than conventional distributed amplifiers. In this
paper we report GaAs MESFET power amplifiers with 12-dB
I. INTRODUCTION ggin_and bandwidths as high as 33% £, compa_rable t_o
- distributed power amplifiers. PAE in excess of 25% is obtained,
W'DE‘BANPV\”DTH power amplifiers are key Com- higher than reported for distributed amplifiers. AlGaN/GaN
ponents in phased-array radars and instrumentatiQienTs have highf, Vi, products [12], and are good candi-
These amplifiers must operate over a decade bandwidth wifles for high-power broadband amplifiers. First results on
high output power and pqwer—added eff_ICIenCy (F_’AE)- Slmp!ﬁ-doumer power amplifiers using single and dual-gate GaN
lumped broadband amplifiers have gain-bandwidth produgigpTs are also presented [13].

limited by the current-gain cut-off frequengy. Distributed or
traveling-wave amplifiers (TWAS) can provide gain-bandwidth
products up to the power-gain cutoff frequengy,.. [1], [2].
Conventional distributed amplifiers with reverse termination As impedance transformation over a decade bandwidth is dif-
have poor efficiency due to the drain-line reverse wave. REcult to realize on-wafer, most wideband amplifiers use(50-
ported monolithic distributed power amplifiers typically hav@®utput loading. Transistor output power is then limited to

10% to 15% PAE [3], [4]. Distributed amplifiers using tapered Vi 1y
impedance drain-lines can in theory provide efficiencies up to Py < Vi = Vio)” (1)
the class-A limit of 50%, by eliminating the reverse termination 82,

[5], [6]. Tapered drain-line TWAs require high impedancehereVs, is the breakdown voltagd;. the knee voltage and
transmission lines with limited current carrying capability, angt — 502. The device peripheri¥ is chosen to provide satu-

thus are hard to realize for high output powers in monolithigtion current/pss, determined by the load-line constraint
form. Cascode-delay-matched distributed amplifiers have also

Il. CIRcUIT DESIGN

been shown to be an efficient topology realizable for high Toce — (Vir — V1) )

output powers [7]. Though these maodifications improve the ss Z, '

zfr'fézency, distributed amplifiers in general occupy a large die A common-source amplifier, using a simplified FET model
We had presented [8] an alternative lumped broadband pov%r!:'g' 1, has a short circuit current gain

amplifier based on thé.-doubler topology [9]. The'--doubler fr

small-signal amplifiers have shown gain-bandwidth products 21,es = <F) ®3)
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Fig. 2. Short circuit current gaiiif,; for common-source, Darlington, and Fig- 4. Load-lines seen by the t‘f"o devices iff-adoubler power amplifier,
f.-doubler configurations. superimposed on the devidg, — V. plot.

Q2. Thus, we must havéyss; = V, /22, or Wi = W/2.
Therefore, in the Darlington power amplifier, the total device
periphery and the net bias current are a factor of 1.5 higher than
in a common-source power amplifier designed for the same ac
output current. DC power consumption is a factor of 1.5 higher
and the PAE is impaired. Improved bandwidth is obtained at
the cost of lower PAE. Potential instability due to negative
input resistance

Grnl
w? C(gsl Cgs?

1 1+ G, R; 1
+ <+ LN2 ) @)

. . . . . . jw C(gsl Cgs?
Fig. 3. AC schematics. (a) Basic Darlington. h)-doubler configuration. (c)
Cascodef -doubler configuration. is a further limitation of Darlingtons.
The f--doubler power amplifier [Fig. 3(b)] is a modified Dar-
If the drain of the common-drain device is connected to thggton stage where suitable source loadin@gplits the input

Zin,Darlington = Ril + Ri? -

amplifier output [Fig. 3(a)], then the current gain voltage equally betwee®); and @, so thatl, , = I, at
(1 +52f/f) all frequencies. The source loading consists of a resigtoe
H>1 parlington = W (4) 2/G,, in series with an inductaks = 2CsR; /G .. Published

f--doubler amplifiers [10], [11] have not incorporated this in-
is twice that of a common-source stage at high frequencigsctor.L, is required to obtain equal input voltage division be-
(Fig. 2), reaching unity a2f,. The peak output power obtain-tweenQ'1 andQ'2 for frequenciesf ~ 1/2xR;Cys; the L, /R,

able from a Darlington stage is time constant being equal to ti#& Cy, time constant.
(Voo = Ve = V)2 V,2,p—p With this source |Oﬂd|nng and @, carry equa_l ac drain
Pout, Darlington < = (5) current for all frequencies. Thus, for the two devices to reach

82, 82, saturation simultaneously, we require thats, = Inggy =
which is slightly less than the common-source case [see (1)],—p/2Z,. Hence the two devices should have half the pe-
because the peak—peak output volt&geg_,, is now reduced by riphery of a common-source stage of equal output power (i.e.,
the pinch-off voltagel,,. Of greater importance for efficiency W/2). The two deviceQ'1 and Q'2 have marginally different
is the ratio of the ac currents of the two devices. This ratio isad-lines given by27, + 2/G,,,) and2Z,, respectively. This
independent of device sizing and is frequency-dependent, giverlue to the extra source loading seendhy which limits the
by peak—peal’y, of Q| andQ, to (Vi,, — Vi) and(Vi, — Vi — V),

I . respectively (Fig. 4). This does not significantly affect the output

dsl _ M (6) power, provided thaZ, >> 1/Gy, or (Vi,: — Vi) > V,,. Asin

lae (A+351/17) the case of the Darlington amplifier, the peak output power
At low frequencies, transistap, provides the entire ac output
current. Thus, a Darlington amplifier designed for the same Pou, 5. —doubler < (Vor = Vi Vp)(;/br Vi = Vp/2)
power level as the common-source power amplifier must have 8%
Ingse = V,p—p/Z, or Wo = W, the same periphery as theis slightly smaller than the common-source power amplifier. DC
device in the common-source case. At high frequencies (of thewer consumption is similar to the common-source case pro-
order of f.) the ac output current is provided equally®@y and vided that dc power dissipation in the source resistance is elim-

(8)
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inated by grounding the source @f for dc using a RF choke. C
The current gain of th¢,.-doubler stage L B A R —
2 Vk drain - source voltage, Vdj Vbr
H1, 5 doubler = <—T> 9
Jif Fig. 8. Variation of load-line with frequency in the presence of a four-section

matching network at the output.

has a single pole and is unity 2, (Fig. 2). Thus bandwidth is

!mp:gvgg \évs't?r?:tr?'grt]'TﬁaggfﬁgZ?If'ﬁgggcﬁ'ljtab'“ty 1S alsopower as a function of frequency is dependentRar{Z;,) or
improv inputimp u Re(Y7) as decided by the magnitude Bf, [14]. For the case

1 1 of | Z.| < Z,, the load-line is limited by the maximum allowed
Cout + C 52> (10)  current swing(Ipsg). The peak output poweF....(f) is now
s s less than the optimum casg,; in (1)] and given by

1
Zin,f,_—doubler = Ril + Ri? + — <
Jw

no longer has a negative resistance.
Because thef.-doubler topology alleviates the bandwidth Four(f) — Re(ZL)_ (11)
limitation due toCy,, the parasitiadCyq and Cys may then be- Pout Zo

come significant. Addition of a common-gate stage to form gq, the case ofZL| > Z,, the load-line is limited by the max-

cascodef;-doubler [Fig. 3(c)] reduces the effect 6La SUb-  jmum allowed voltage swingVi,,) and the peak output power
stantially. In this case, since thg-doubler is driving a low g now

input impedance common-gate stage, the two de\@;'léand
(), drive widely different loads ofl/G,,, and2/G,,, respec- Lou(f) = Re(Y1)Z,. (12)
tively (Fig. 5). However the power dissipateddn and@, is a Fout
small fraction of the net output power as in the case of a cascagi§ to obtain the maximum output power, the matching net-
(common-source - common-gate) amplifier. ~ works have to be designed to minimike(Z;) and Im(Y7)

For all the configurations considered above, the capacitangg@r the bandwidth. Fig. 8 shows the load-line variation
Cga and Cy, load the amplifier output. Broadbandsections in the presence of a four-section matching network. These
(Fig. 6) could be used to partially absorb the net output capagistworks will improve PAE over a bandwidth of at most

tance(Coy ) and improve matching. In small signal amplifiersa 7, - — Ipss /27 Coy Vise, the output pole frequency.
these networks are designed to minimize the magnitude of the

output reflection coefficien{l",.,; ), over the bandwidth.

In power amplifiers there is an additional constraint on the »
matching network, to improve output power and PAE at tHe- GaAs MESFET Power Amplifiers
upper band edge. In the absence of the matching network, th&he ICs were fabricated using the TriQuint Semiconductor,
load-line deviates fron¥, with increasing frequency (Fig. 7) Inc., TQTRX process. The circuits were simulated using TOM2
due toC,,; . With the matching network (Fig. 6), the peak outputarge signal MESFET models. Fig. 9 shows the circuit diagram

I1l. EXPERIMENTAL RESULTS
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Fig. 9. Complete schematic of the GaAs MESFET-doubler resistive 400 1
feedback power amplifier.
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Fig. 10. Simulated load-lines of the devices in the GaAs MESFE®@oubler
resistive feedback power amplifier (frequeney3 GHz), superimposed on the

simulated devicdy, — Vg, plot. Fig. 12. Complete schematic of the GaAs MESFET cascfideloubler
resistive feedback power amplifier.
of the f--doubler power amplifier. Resistive feedback matches r

input and output impedances to Q0without significantlossof I V 05 Vie-l0V
efficiency. Broadbandr-sections at the input and output were . &

’ . - ] A UM R T . step : -0.3V
designed to improve matching. High spiral inductors were B0 L
obtained by using two layers of metallization. External bias tees ] ;
were used to independently bias the two devices. The source of § 200 n
the first device was grounded for dc through a bias tee. This :‘ 1 . ’
also facilitates monitoring the device bias currents. The source . 1907 E
loading was split into three parallel sections, with the bias tee's 2 ] -
502 ac ports providing part of the RF termination. This helps é 100 Q - b
in monitoring the RF current split between the two devices. ‘,;" 50 4 \ b
For maximum efficiency operation, bias is adjusted to fill the 1 3 Tt
load-line of each device. The simulated load-line for the two 0] S\ W ———— A
devices (Fig. 10) at 3 GHz shows a nearly equal current divi- 0 2 4 6 8 10 12

sion. The capacitive current seen in the load-line is due to the drain - source voltage, V,, (V)
device parasitic capacitance at the drain. Measured power g 13. Simulated load-lines of the devices in the GaAs MESFET cascode
formance (output power, transducer power gain, and PAE) af Sdoubler resistive feedback power amplifier (frequeney 3 GHz),
GHz (Fig. 11) shows a peak output power of 23 dBm with 27%iperimposed on the simulated devige — V. plot.
PAE.

Fig. 12 shows the circuit diagram of the cascafjedou- shows the simulated load-line for the three devices at 3 GHz.
bler power amplifier. A secondayC feedback network, effec- Measured power performance at 6 GHz (Fig. 14) shows a peak
tive at high frequency, provides unconditional stability. Fig. 18utput power of 23 dBm with 26% PAE.
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Common-source power amplifiers were also fabricated for
comparison. The die areas (Fig. 15) for the common-source,
f--doubler, and cascodg¢.--doubler amplifiers are 0.64 mm
x 0.66 mm, 0.7 mmx 0.7 mm, and 1.36 mmx 0.75 mm,
respectively. Thef,-doubler occupies similar die area as the
common-source power amplifiers.-doubler power amplifiers

—_
o

TRV S0 NN A 0 S0 YO A TN B I

power-added-efficiency (P
n
[e]

LN By B

: : er 01—
using dual-gate FETs should provide similar performance as 0 q 2 3 4 5 6 7 8
cascodef,-doubler power amplifiers without the excess die frequency, GHz
area.
FIgS 16-18 compare the power performance of the three cﬂg uencyMeasured PAE of the GaAs MESFET amplifiers as a function of

cuits measured over 0.1 to 8 GHz. The common-source powe
amplifier provides>24-dBm output power over 2-GHz band- .
width with >30% PAE. Thef, -doubler power amplifier and the B- GaN HEMT Power Amplifiers

cascodef,-doubler power amplifier provide-23-dBm output ~ GaN HEMTs with 0.7zm gate-length were fabricated on
power over 0.2 to 5-GHz and 0.2 to 6-GHz bandwidth, respeepitaxial material grown by MOCVD orC-plane sapphire.
tively, with >25% PAE. The roll-off in the output power andThe layer structure and process details are discussed in [15].
PAE is attributed to the FET output capacitance of 0.27 pF/mftotal device periphery oit’ = 2.4 mm was used to drive
resulting in an output pole at10 GHz. Circuits with multi- up to 1-A current into a 5® load, with the device break-
sectionLC networks at the output, as discussed in the previodswn exceeding 50 V. Simulations predicted 10-dB gain and
section, should provide improved PAE at the upper band-eddg&2 to 10-GHz bandwidth. The devices were flip-chip bonded
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amplifier (GaN HEMT on transparent sapphire substrate, flip-chip bonded on
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efficient heat-sinking. The GaN die also provides a second
plane of wiring for crossovers.

The single gate/.--doubler power amplifier (Fig. 20) uses re-
sistive feedback to match the input and output to¢50The
dual-gate cascodg -doubler power amplifier (Fig. 21) uses ca-
pacitive division [3] to decrease gain and improve bandwidth.
This design uses a resistive divider as a lossy input matching
network. The divider also provides a low-impedance path for
the gate bias preventing bias shifts at high RF drive. Biasing

to AIN substrates (Fig. 19) which has the passive componemaisdr-section matching networks were done similar to the GaAs
(NIiCr resistors, SiN4 capacitors) and coplanar waveguiddMESFET designs. The GaN die size is 1.1 mni.45 mm for

interconnects, and provides a low-resistance thermal path

@&dther circuit.
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Measured small-signal scattering parameters of the req4]
sistive feedback power amplifiers (Fig. 22) showd1-dB
small-signal gain with 0.2 to 7.5-GHz bandwidth. The dual-gate [5]
cascode power amplifier provides10-dB small-signal gain
with 0.2 to 8-GHz bandwidth and up to 1.5-W output power 6]
with 15% PAE at 6 GHz (Fig. 23). The resistive feedback
power amplifier (Fig. 24) provides-1-W output power over
1 to 7 GHz with>10% PAE. The bandwidth is limited by the
large extrinsic drain—source capacitanCg, resulting from 7]
the flip-chip bonding. Improved transistor pad layouts should
reduce the capacitance by a factor of two and improve circuit
bandwidth. In both circuits the output power is observed to
saturate at power levels well below what was expected from thgs]
transistor dc characteristics. Output waveform measurements
at 2 GHz with an oscilloscope indicate strong dc-RF dispersiong,
in the HEMT I-V characteristics, possibly due to the presence
of traps in the materiall’p,,, increases andpss decreases (10]
when the device is operated at high frequencies. Also, leakage
prevented complete cut-off of the channel current at high draifu1]

voltages. 12

IV. CONCLUSION

The f.-doubler topology is an alternative to the distributed|13]
amplifiers in realizing wideband power amplifiers with better
efficiency in a smaller die area. An experimental circuit in
a GaAs MESFET technology offering 18-GHz and 12-V
breakdown has achieved 0.2 to 6-GHz bandwidii2-dB
gain, >23-dBm output power and 25% PAE. The bandwidth
is 33% of f, and the gain-bandwidth product &3 - f..
Similar circuits using GaN HEMTSs have yieldedl1-dB gain,
0.2 to 7.5-GHz bandwidth;-31.5-dBm output power, and up
to 15% PAE. Circuits fabricated on improved material with
reduced dc-RF dispersion have recently obtained up to 5-W
output power over a similar bandwidth, and will be reported
subsequently. Better physical layout of the flip-chip bonded
devices will reduc&’,; and increase bandwidth and efficiency
The efficiency at higher frequencies can be increased furtt
by using improved broadband output networks.

(14]

[15]
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