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Abstract—We demonstrate dual-gate AlGaN/GaN modula- In the Johnson limit [6], the product df,,.fr is less than
tion-doped field-effect transistors (MODFETs) with gate-lengths £ 4., /7, whereE,,,. andv,,; are the breakdown field and
of 0.16«.m and 0.35um for the first and second gates, respectively. the electron velocity. Increasdd,. is obtained at the expense

The dual-gate device exhibits a current-gain cut-off frequency - .
Jr > 60 GHz, and can simultaneously achieve a high breakdown of decreasedir, and high power levels are obtained at the

voltage of >-+100 V. In comparison to single-gate devices with €xpense of reduced amplifier bandwidth.
the same gate length 0.16:m, dual-gate FETs can significantly AlGaN/GaN dual-gate devices have the potential of simul-
increase breakdown voltages, largely increasing the maximum taneously realizing a highf; and a high breakdown voltage.
allowable drain bias for high power application. The continuous \1oreover. smaller feedback capacitance and higher output
wave (CW) output power is in excess of 3.5 W/mm at 8.2 GHz. . ' - o o
The corresponding large-signal gain is 12 dB and the power added mpeQance of dual-gate devices en.a.ble flexibility for CII’CU!I aF_"
efficiency is 45%. The dual-gate device with different gate lengths Plication of broadband power amplifiers. A dual-gate device is
shows the capability of providing simultaneous high cut-off electrically equivalentto a common-source (CS)/common-gate
frequencies, and high breakdown voltages for broadband power (CG) cascode pair, but occupies less die area. The current gain
amplifiers. of the dual-gate deviceé, (7 f) = (fr1/5/)(1 + jf/fra) L,
Index Terms—AlGaN/GaN, broadband power amplifiers, deviates from that of the CS devide,(jf) = (fr1/if).
dual-gate FETSs. only for f > frs, where fr; and fr» are the current gain
cutoff frequencies of the CS and CG devices ghds the
|. INTRODUCTION signal frequency. To provide substantial current gafip;

. must be several times of the signal frequerfcyin contrast,
HE 2-20 GH? PHASE.I.D array radgrs, how in deve fo avoid significant loss (i.e»10%) in ks, in the CG stage,
opment, require amplifiers operating over a decal

X . - . qtis sufficient to have of 1.5 f to 2 f. The breakdown
bandwidth while providing tens to hundreds of watts with hig oltage is however detgirpr%ined by the CG device. Therefore, in

power added efficiency. GaN/AlGaN-based devices exhihjt I- L . h .
large breakdown voltaged,.) that enable the use of highertH dual-gate device, it is advantageous to design the CS device

drain biases than typically used in other material systems\jlfv(i)th short L, hence high/z, and the CG device with long
generate larger amounts of powePow < V2 /SR.) for 9 hence lowerfr, bl_Jt improvedV,.. ngh bandw!dth and

) . Jom = Thr ; ._high power are thus simultaneously obtained. In this paper, we
h|gh power electronics. Extensive efforts toward improvin port AIGaN/GaN dual-gate MODFETSs with gate lengths of
microwave perfprmance of AlGaN/GaN modulatpn-dope .16,m and 0.35:m for the first and second gate, respectively.
field-effect transistors MODFETs have been made in the p tnigh fr > 60 GHz and a high breakdown voltage 100
years [1}-[3], focusing on extending output power and cut can be simultaneously achieved for AlGaN/GaN MODFETSs.
frequenciesfr. An output power density of 9.1 W/mm at 8.2

GHz has been demonstrated on SiC substrate [4] and a higher
fr > 110 GHz has also been achieved with a gate-length
L, < 0.1 pm [5].

In broadband common-source power amplifiers, the gainThe epilayers of Aj;GayN/GaN dual-gate devices were
bandwidth prod_uct is limited _to approximatef. Increased grown by metal organic chemical vapor deposition (MOCVD)
Jr can be obtained by reducing the gate length however, on g c-plane sapphire substrate. The material structure began
the breakdown voltagd’, will be significantly reduced. \with a 200 A thick GaN nucleation layer, followed by;an

thick insulating i—-GaN as a device buffer layer. Thg AGa, 7N
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Fig.1. (a) Schematic diagram of GaN/AlGaN dual-gate FETSs (b) Drain output 5 b 3
I-V characteristics of 0.16/35 x 150 ¢m dual-gate MODFET's with second 3 3
gate biased at-2 V. 0 e e -
1 10 100
lithography was performed with a JEOL JBX-5DII (U) elec- Frequency, GHz

tron beam_ system. Both T-shaped gates with 0.16 e_md 01§5’ 3. Comparison of RF performance between single and dual gates devices
pm footprints separated by 0.8m were produced with a fabricated on the same wafer: (&)1, (b) Sz, (€) S1z, and (d) .. The
PMMA/P(MMA-MAA)/PMMA tri-layer resist to reduce the single-gate device was biaseddps = +12V andVes = -3V, and
resistance of submicrometer gates. Ni/Au/Ni (200 A/370@e d“a"gf‘ztevdevcﬁe was Opgrsted with bias voltage¥@fs = +2V,

: / =+ andVg = — A
A/300 A) were then evaporated as gate metals. The gate of o

CG device was connected to the source of the CS device usj
MIM capacitors with 1600 A Si@, providing RF grounding, 5.'96/0.35um dual-gate FETs had larger breakdown voltages of

over+100 V. The reason for the increased breakdown voltage

and then a thick Ni/Au layer~4500 A) was evaporated on theis the drain voltage is supported by the longer gate, which has

t(:p O.f tthhe SiQ capamto;s ?S the jec'ond gate pard:e.aTthe fmg lnigher breakdown voltage because of electric field alleviation
step in the process was to form a device mesa wigiTeactive as discussed in [7]. Since the drain voltage swing of CS device

'tﬁn beam etCh'S?r'] The flrstdgat? was separatefd byﬁﬂ‘;om_ is limited to the pinch-off voltage of CG device, leakage associ-
e source, and the second gate wastlaway from the drain .ated with large drain voltage excursions in short-channel devices

contact. A schematic diagram of the finished dual-gate dev'|Cseeliminated. Therefore, the maximum allowable drain bias is

is shown in Fig. 1(a). increased for high frequency and high power amplifiers.

DC to 40 GHz device S-parameters were measured/atsa
of +13.5V, Ips of 240 mA/mm, and &/;25 of +2 V. Both

The common source dc characteristics of the dual-gate d&s and CG devices, we biased in the saturation region. Fig. 3
vice with the second gate biasedi& V are shown in Fig. 1(b). shows théw»; and unilateral power gain (UPG) of dual-gate de-
The saturation currenfpss, is about 0.8 A/mm and pinch-off vices. The dual-gate device exhibjts > 65 GHz andf,.x >
voltage is—6 V. The peak value of extrinsic transconductancé&0 GHz. Since the current gain of dual-gate devices follows
gm, IS about 220 mS/mm atgos of +2 V. The average values ho1 (jf) = (fr1/5f)(1+5f/ fr2)~t, hai of the dual-gate FETs
of contact resistance and sheet resistance ae-o@n and 500 is within roughly 10 to 20% of that of the single-gate device at
/0O, respectively. As seen in Fig. 2, the breakdown voltagéise frequencies measured. Fig. 4 shows a comparison of RF per-
of 0.16 um single-gate FETs were less tha®0 V, which is formance between single-gate and dual-gate devices. Due to the
typical of such short-channel GaN/AIGaN MODFETSs [8]. The@resence of the second gate, the dual-gate device substantially

I1l. DEVICE CHARACTERISTICS AND DISCUSSION
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substrate at 8.2 GHz. Fig. 5 shows the power performance of
dual-gate devices biased al/g@s of +20 V, with the second
gate bias voltage of-2 V. The drain current at peak output
power was 48 mA (320 mA/mm). The output power density is
higher than 3.5 W/mm. The small-signal gain, power-added ef-
ficiency (PAE), and large-signal gain are 21.5 dB, 45% and 12
dB, respectively. Unfortunately, the higher breakdown voltage
afforded by this scheme could not be effectively utilized because
of substrate heating effects beyond a biag-@6 V.

IV. CONCLUSIONS

In conclusion, we have demonstrated dual-gate AlGaN/GaN
MODFETSs with T-shaped gates of 0.16 and 03B footprints
on a c-plane sapphire substrate. A CW output power in excess
of 3.5 W/mm was achieved at 8.2 GHz, with power-added effi-
ciency >45%. The dual-gate device shows a capability of pro-
viding the desired characteristics of a higgh(>60 GHz), while
still maintaining a large breakdown-{-100 V) for broadband
power amplifiers.
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