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Abstract

We report submicron transferred-substrate AllnAs/GalnAs
heterojunction bipolar transistors. Devices with 0.4 um
emitter and 0.4 pm collector widths have 17.5 dB unilateral
gain at 110 GHz. Extrapolating at -20 dB/decade, the power
gain cut-off frequency fi,, is 820 GHz. The high f,,,, results
from the scaling of HBT junction widths, from elimination of
collector series resistance through the use of a Schottky
collector contact, and from partial screening of the collector-
base capacitance by the collector space charge.

Introduction

Very wide bandwidth heterojunction bipolar transistors
(HBTs) [1], {2] will enable microwave analog-digital
converters, microwave direct digital frequency synthesis,
fiber-optic transmission at >40 Gb/s, and wireless data
networks at frequencies above 100 GHz. Such ICs will
demand very high transistor current gain cutoff frequency f;
and power gain cutoff frequency f,,x. While vertical scaling
of the device increases f, , lateral scaling is also necessary to
simultaneously obtain low values of base-collector
capacitance Cg, and base resistance Ry, contributing to high

values of .~ ‘/ S 18R, C ., (Coi is the fraction of C,

charged through the base resistance Ryy). The transferred-
substrate technology [3], allows both lateral and vertical
scaling of the HBT dimensions. We had earlier reported
transferred-substrate HBTs with 0.8 um collector junction
width and > 400 GHz f,,, [3]. Here we report submicron
devices fabricated using electron-beam lithography with
estimated 820 GHz f,,,, the highest reported for any
transistor.

Device Design and Fabrication

The MBE epitaxial layer structure used in this work is
identical to [3], except that the base is 40 nm thick, is Be-

doped at 5x 10" cm™® and uses 50 meV base bandgap
grading, introduced by varying the Ga:In ratio. The
fabrication process is similar to that described in [3]. Emitter
contact metal is defined by E-beam lithography at 0.5 um
linewidth, which produces 0.4 pm wide base/emitter junction
after the dry/wet etch process. Collector metal, with a “T"

cross-section, is defined by E-beam lithography at 0.5 pm
contact width (figure 1a). An isotropic collector recess etch to
0.05 pm depth forms collector-base junctions with a tapered
profile, reducing C, while maintaining latitude for emitter-
collector misalignment. After etching collector junction width
is 0.4 pm. A device schematic cross-section is shown in
figure 1b.
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Fig. 1. (a) 0.4 um Schottky collector stripe. (b) Schematic
cross-section of transferred-substrate HBT.

Results

The devices were characterized by HP8510 on-wafer network
analysis from O to 50 GHz and 75-110 GHz using (GGB Inc.)
waveguide-coupled microwave wafer probes. To avoid
measurement errors (in S;,, hence U ) arising from
microwave probe-probe coupling, the HBTs are separated
from the probe pads by 230-um-length on-wafer microstrip
lines. On wafer calibration standards were used to de-embed



the transistor S-parameters. The standard Line-reflect-line
(LRL) technique was used. Biasing at V., = 1.2 volts and I, =
5.0 mA, devices with 0.4 pm emitter and 0.4 um collector
widths obtained 3.2 dB current gain and 17.5 dB unilateral
power gain at 110 GHz (figure 2). Extrapolating at -20
dB/decade, the current gain cut-off frequency f, is 162 GHz
and the power gain cut-off frequency f;, is a record 820
GHz. The common-emitter (figure 2) and common-base (not
shown) maximum stable gains are 12.2 dB and 16.0 dB at
110 GHz.
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Fig. 2. Common-emitter RF characteristics of device with a
0.4 x 6 um’ emitter and a 0.4 x 10 umz collector, biased at
Vee=12Vand L =5 mA.

Figure 3 shows a small-signal hybrid-rt model for a device
with 2 0.4 x 6 um® emitter and 2 0.4 x 10 pm? collector
biased at I, = 5 mA and V. = 1.2 V. The forward time delay
(T = T, + Tc), the base emitter depletion capacitance, the base
collector output resistance and the base collector capacitance
were extracted form the s-parameters of the device measured
as a function of the bias.
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Fig. 3. Device equivalent circuit model at V., = 1.2 Vand I, =
5 mA.

The rest of the component’s values shown in Figure 3, were
calculated form the physical dimensions of the device and
process parameters (e.g. sheet resistance). The value of Cyy,; =
0.4 fF was determined by fitting to the measured unilateral

gain. This value is smaller than the intrinsic dielectric
capacitance (eAg/T, = 0.88 {fF, T, the collector thickness) due
to the differential space-charge effect [5], [6], [7]. The C;
cancellation can be evaluated experimentally by measuring
the change of f; with V. using C; =€Ag/T, —Ig Xt GV,
[5]. The measured f; vs. V.. indicates dt./d0V,, ~ 0.1
ps/Volt, predicting C,,; ~ 0.38 fF at L. = 5 mA. The extracted
value of Cp; (0.4 fF) is 2.2:1 smaller than the expected zero-
current capacitance (€Ag/T, = 0.88 {F).

Comparing the present results with those reported in [3], the
high ..« value results from scaling of HBT junction widths
and from partial screening of the collector-base capacitance
by the collector space charge.

Conclusions

We have demonstrated submicron transferred-substrate
heterojunction bipolar transistors. Devices with 0.4 x 6 um?
emitters and 0.4 x 10 um? collectors obtained an extapolated
f. of 162 GHz and f,,, of 820 GHz. With further scaling,
HBTs with > 1000 GHz f,,,, should be feasible, pemitting ICs
operating above 300 GHz.
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