New Communication Paradigms for Very Large Scale Sensor networks:

Virtual Radar Imaging and Distributed Beamforming

B. Ananthasubramaniam, R. Mudumbai, U. Madhow, J. Hespanha, M. Rodwell Department of Electrical and Computer Engineering, University of California, Santa Barbara, CA 93106 Email: {bharath, raghu, madhow, hespanha, rodwell}@ece.ucsb.edu

Why Imaging Sensor Nets??? Simplicity – bare-minimum functionality and protocols ■ Cost – simplicity → lower cost per sensor

- Localization obtained at no additional cost
- Scalability 'pixel' functionality invariant of scale
- Applicability Collector far removed from sensors

Large Scale **Sensor networks**

Imaging Sensor net

- Interpret sensors as 'pixels'
- Radar Imaging Techniques

Distributed Beamforming

- sensors form virtual antenna array
- adjust Tx phase to beamform

Dumb sensors act as 'pixels'

- **Key Features**
- Electronically reflect and modulate collector's beacon
- Collector "images" sensor locations and demodulates data

Implementation Considerations

- Spatial Resolution → High Carrier Frequency
- Ultra-simple sensor functionality low-cost ASIC
- Collector Software/DSP

Link Budget Analysis

P_{transmit} = 80 microwatt G_{Transmit} = 0dB G_{Receive} = 25dB $f_{carrier} = 1 \text{ GHz}$, Bandwidth of s(t) = 15 MHz

Max. range = 2200m, $P_{rec}/P_{tran} = -75dB = > P_{r} = 2.4 \text{ pW}$

Rx NF = 3dB $SNR_{out} = 11dB$

Analytical Model for convergence

Design SNR = 3dB/sensor/snapshot

Energy consumed per sensor per flyby = 4nJ

There is 7 dB margin to work with!

Distributed Beamforming with SNR feedback

- **Distributed Algorithm** 1. Sensors start with arbitrary phase
- 2. Sensors add random phase perturbation, transmit
- Receiver broadcasts SNR feedback IF SNR has increased

Sensors make perturbation permanent

OTHERWISE

Perturbation is discarded

4. Sensors repeat 2-3 until convergence

•y[n] = received signal strength

 $\bullet \Phi_i$ is phase is sensor i

 $y[n+1] = \left| \sum_{i} e^{j(\mathbf{f}_i + \mathbf{d}_i)} \right|$

- x1 and x2 are Gaussian by CLT
- variances s₁, s₂ are related as:

$$\mathbf{s}_1^2 + \mathbf{s}_2^2 = N \sin^2 \mathbf{d}$$

All we need is an estimate of \mathbf{s}_1 as a function of y

assuming uniformly distributed Φ_i works well!!!

