In-situ Iridium Refractory Ohmic Contacts to p-InGaAs

Ashish Baraskar¹, Vibhor Jain¹, Mark A. Wistey³, Evan Lobisser¹, Brian J. Thibeault¹, Arthur C. Gossard^{1,2} and Mark J. W. Rodwell¹

¹ECE and ²Materials Departments, University of California, Santa Barbara, CA, USA ³Electrical Engineering, University of Notre Dame, IN, USA

Very low resistance metal-semiconductor contacts are crucial for the performance of transistors in THz bandwidths. The base and emitter contact resistivities (ρ_c) in heterojunction bipolar transistors (HBTs) must decrease in proportion to the inverse square of the transistor cutoff frequency [1, 2]. A ρ_c of less than 1×10^{-8} Ω -cm² is required for III-V HBTs and FETs for having simultaneous 1.5 THz f_t and f_{max} [1, 2]. Ohmic contacts to p-type In_{0.53}Ga_{0.47}As have been studied extensively because of its application as the base contacts in InP based HBTs. *Ex-situ* Pd/Ti/Pd/Au contacts have shown $\rho_c = 4\times10^{-8}$ Ω -cm² to p-In_{0.53}Ga_{0.47}As [3, 4], but penetrates into the semiconductor by combined chemical reaction and diffusion [5]. Low resistivity, thermally stable contacts having < 5 nm metal penetration depth are required for HBTs having < 20 nm thick base layers. Here we report $\rho_c = (5.8 \pm 4.8)\times10^{-9}$ Ω -cm² for in-situ, refractory Ir contacts to p-type In_{0.53}Ga_{0.47}As.

The semiconductor epilayers were grown by solid source MBE. A 100 nm undoped In_{0.52}Al_{0.48}As layer was grown on a semi-insulating InP (100) substrate, followed by 100 nm of carbon doped In_{0.53}Ga_{0.47}As, using CBr₄ as the dopant source. The In_{0.53}Ga_{0.47}As layer was grown at 350 °C substrate temperature and a 7:1 group V to group III ratio. Ir (20 nm) and Mo (20 nm) were deposited *in-situ* on half the wafer surface in an electron beam evaporator attached to the MBE chamber under ultra high vacuum (UHV). Hall measurements were done on the samples not coated with Ir/Mo. Samples coated with Ir/Mo were processed into transmission line model (TLM) structures for contact resistance measurement. Ti (20 nm)/Au (500 nm)/Ni (50 nm) contact pads were patterned on the samples using photolithography and lift-off after an e-beam deposition. Mo was then dry etched in an SF₆/Ar plasma using Ni as a mask. The TLM structures were then isolated using mesas formed by photolithography and a subsequent wet etching with 1:1:25:H₃PO₄:H₂O₂:DI water. Resistances were measured by four-point (Kelvin) probing. The processed samples were annealed under nitrogen atmosphere at 250 °C for 60 minutes, replicating the thermal cycle experienced by a base contact during transistor fabrication.

As determined through Hall measurements, the highest hole concentration (p) achieved was 2.2×10^{20} cm⁻³ exhibiting a mobility (μ) and sheet resistance (R_{sh}) of 29.9 cm²/Vs and 94 Ω , respectively. The ρ_c achieved for the sample with 2.2×10^{20} cm⁻³ holes was (5.8 ± 4.8)× 10^{-9} Ω -cm², which is the lowest reported to date for ohmic contacts to p-type InGaAs. The sheet resistivity determined from TLM measurements was 99 Ω , correlating closely to the sheet resistivity obtained with Hall measurements. The annealed samples show a ρ_c of (8.0 ± 5.6)× 10^{-9} Ω -cm², differing from the un-annealed samples by less than the margin of error in measurement.

Given the low ρ_c and demonstrated thermal stability, in-situ Ir is a strong candidate for base ohmic contacts in THz HBTs.

- 1. M. J. W. Rodwell, M. L. Le, B. Brar, IEEE Proceedings, Volume 96, Issue 2, Feb. 2008, pp 271 286.
- 2. M. J. W Rodwell et al., Proceedings, IEEE Compound Semiconductor Integrated Circuit Symposium, 2008.
- 3. Z. Griffith, M.J.W. Rodwell, M. Dahlström, X.-M. Fang, D. Lubyshev, Y. Wu, J.M. Fastenau and W.K. Liu, 2005 IEEE/OSA Conference on Indium Phosphide and Related Materials, May 8-12, Glasgow.
- 4. Vibhor Jain, Evan Lobisser, Ashish Baraskar, Brian J. Thibeault, Mark Rodwell, Z Griffith, M Urteaga, S. T. Bartsch, D. Loubychev, A. Snyder, Y. Wu, J. M. Fastenau, W.K. Liu, 2010 IEEE Device Research Conference, June 21-23, South Bend, IN.
- 5. E.F Chor, D. Zhang, H. Gong, W.K. Chong, S.Y. Ong, J. of App. Phys., 87, 5, 2437-2444 (2000).

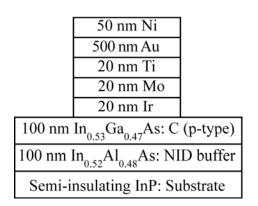


Fig 1: Cross-section schematic of the metal-semiconductor contact layer structure. Ir/Mo were deposited in an electron beam deposition system connected to MBE system under ultra high vacuum.

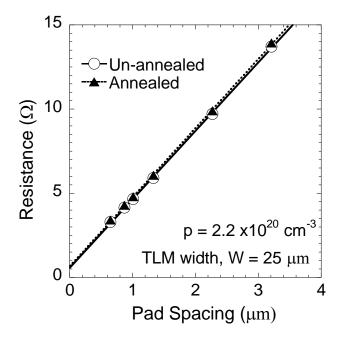


Fig 3: Measured TLM resistance as a function of pad spacing for un-annealed and annealed Ir contacts on p-InGaAs.

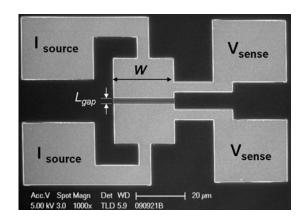


Fig 2: Scanning electron micrograph of the TLM pattern used for the contact resistivity (ρ_c) measurement. Separate pads were used for current biasing and voltage measurement.

Fig. 4: Variation of contact resistivity (ρ_c) with hole concentration. Inset: Exponential dependence of ρ_c on $(p)^{-1/2}$ indicating tunneling behavior of the contacts.