

A 180mW InP HBT Power Amplifier MMIC at 214 GHz

Thomas Reed CSICS 2013 Paper D.2 10/14/2013

InP HBT Power Amplifier MMICs at 220GHz

Abstract: Sub-THz systems designers have shown interest in the 220GHz, low-loss free-space propagation window for future synthetic aperture radars, scanners, and weapons systems. Multi-HBT power amplifier cells were designed to leverage strong RF power densities and high 220GHz available gain in the 250nm InP HBT technology. On-wafer power combiners were designed to double and quadruple output power at each stage of combining. For large output peripheries, multi-stage PAs were developed to drive the final stage fully into compression. A novel design approach is used to increase periphery within a single cell. Using this approach a record single-MMIC Pout of 180mW was demonstrated at 220GHz.

 Co-authors/Collaborators: Dr. Zach Griffith (Teledyne Scientific Co.), Prof. Mark Rodwell (UC Santa Barbara)

220GHz InP HBT PAs demonstrate >100mW

250nm InP HBT Technology Description

- DHBT InP/InGaAs/InP process with peak fT/fmax = 400/700GHz
- 4-finger HBT (24x0.25µm²) shows f_T/f_{MAX} = 333/533GHz at PA bias point.
- Au interconnects, SiNx MIM Caps, NiCr Thin Film Resistor
- Microstrip MET1 signal and MET4 ground

HBTs with 220GHz gain & versatile interconnects

PA Cell Topology

- Load line shown for 4x6um HBT.
 - $J_{max} = 12mA/um^2$
 - V_{be,on} = 0.85V
 - VB_{cbo} = 4.5V
 - $P_{max} = 15 mW/um^2$
 - V_{ce,hf} = 3V (low large-signal MAG)
- Cascode chosen for higher 220 available gain
- AC coupled cascode for CE/CB HBT grounding & higher gain
- Class A LL in high ss gain region

Conversion: Area to Linear current density $10mA/um^2 = 2.5mA/um = 2500mA/mm$

15dB MAG @ 220GHz, 1.125mW/um Loadline

Multi-PA Cell Layout Floorplanning

- To minimize 2:1 combiner size, the PA Cell height was $\lambda_g/8 \sim 100 \mu m$
- Given the DC routing needs of the PA Cell, the PA Cell is floorplanned.

FP adds top-level perspective to PA Cell design

Ideal Circuit Simulation/Component EM

- ADS Circuit Simulation
 - Cap and MLIN models for SiNx, 3 & 5um BCB MSUB
 - DC, S-parameters, Harmonic Balance (Load Line)
 - Individual Components -O Vc1 -O Vc2 Tune Cap, Res, TL, DCChokes Vb1 Heavy EM sim near HBT area MATCH Signal RF Port 2 MATCH 4x6um RF Port 1 Out In \/\/__O Ve2 **Ground Plane** G G **High Zo** Output В Tuning -Network Coarse tune at cell (circuit sim) and component (EM sim) Thomas Reed CSICS 2013 D.2 10/14/2013 6

ADS Momentum

Characterize the Environment

Range of Zo, R,C possible

Identify parasitics in Passives

PA Cell Large Multi-port EM simulation

Past 8-Cell 2-Stage PA Results (CSICS 2012)

Total MMIC Power

Depends on

- 1. Total HBT periphery (Periphery/PA Cell, Chip Size)
- 2. HBT matching network design (Load Power Target)
- 3. Losses due to power combining (Limit to Chip Size)

To increase power

- Increase HBT periphery per PA Cell (1, but requires a new 2)
- Combine more PA Cells (1, but requires a new 3)

PA Cell Design Methodology

- Considerations/Lessons:
 - 1. Longer HBT = low MAG* at 220GHz
 - 2. Larger multi-finger HBTs = low MAG at 220GHz
 - 3. Close HBTs under DC bias interact thermally.
 - 4. 5um of delay is significant
 - 5. 4-finger HBTs worked when spaced ~100um (CSICS, IMS)

*I'm using the term "MAG" as min(MAG,MSG)

Design as a 3-port network—using HBT Zout as port Zo Symmetric Tuning—achieve load target tuned to 500hms Near HBTs Spaced 40um center-to-center.

PA MMIC Design Methodology

- Final Stage PA cells have 2x HBT periphery (compare CSICS 2012)
- PA Cells combined
 16x on the output (8x
 combiner CSICS 2012)
- Lower-loss interstage DC Block designed
- New 4:1 combiner

A top-level schematic of the SSPA MMIC.

220GHz Measurement

- Small Signal Measurement
 - VNA with 140-220 and 206-340
 GHz frequency extender heads
 - LRRM Probe-tip Calibration
- Power Sweep Measurement
 - 220 GHz frequency multiplier chains and sub-mm wave power meter
 - Insertion Loss Calibration
 - Forced Air cooling

Calibration data validates amplifier data

4C8C16C PA (Baseline Design 2x)

- 25dB S21 Gain at 220GHz
- 164mW at 208 & 214GHz
- 0.427W/mm

DC power: 6.7W Physical Size: 2.5x2.1mm²

8C16Cx PA

DC power: 5.5W Physical Size: 1.4x1.4mm²

- 144mW @ 214GHz Cooled
- 14.9dB S21 gain at 220GHz
- 0.374 W/mm
- Forced Air increase P_{OUT} 10-40%

32Cx 3-Stage PA S-parameters

 S-parameters of the 3-stage, 8C16C32Cx SSPA. Gain at 214 and 220GHz is 22dB. 3dB bandwidth extends up to 230GHz. Measured with Forced Air Cooling

0.768mm emitter periphery

DC power: 12W Physical Size: 2.5x2.2mm²

Micrograph of an 8C16Cx32Cx

Recapitulation

- First pass design success on InP Tapeouts
- Design method focuses on EM modeling of at component, network, and Cell level.
- Design method shows multiport output matching network
- 250nm InP HBT demonstrates a high power density technology at 220GHz with versatile backend interconnect stack
- A high power SSPA MMICs designed for 220GHz was demonstrated to show a compressed power level of 180mW at 214 GHz.

220GHz design methods demonstrate 180mW MMIC

BACK UP SLIDES

Table of 220 GHz Power Results

Operating					
Frequenc	MMIC or		Output	Output Power Density (RF	
у	Module*	Technology	Power	Pout/Device Perihpery)**	Reference
220 GHz	MMIC	250nm InP HBT	49mW	2.03 (mW/μm²)	Reed et al., CSICS 2011 [3]
210 GHz	1 MMIC Module	sub-50nm InP HEMT	75 mW	78 (mW/mm)*	Radisic et al., CSICS 2011 [6]
220 GHz	MMIC	250nm InP HBT	90 mW	1.88(mW/μm²)	Reed et al., CSICS 2012 [1]
210 GHz	4 MMIC Module	sub-50nm InP HEMT	185 mW	48 (mW/mm)*	Radisic et al., JSSC 2012 [9]
220 GHz	MMIC	250nm InP HBT	60 mW	2.50 (mW/μm²)	Griffith et al., IMS 2013 [4]
214GHz	MMIC	250nm InP HBT	180mW	0.94(mW/µm²)	[This Work]

A Table of Recent PA Results near 220 GHz.

* Modules incur additional RF transition loss.

** HBT power density is typically reported per unit HBT area whereas for HEMTs, linear power density is typically reported.

Timeline of 220 GHz InP HBT PA results

High power densities demonstrated with InP HBT MMICs

Thanks

- UCSB and Teledyne Scientific
- Mark Rodwell (UCSB), Zach Griffith(TSC)
- Rodwell Group Members
 - Hyunchul Park, Saeid Daneshgar, Vibhor Jain, and many others.
- DARPA MTO for funding this work under the Hi-FIVE program

mm-Wave Wireless Systems

- Free-Space Propagation Loss Minimum ~2.5dB/km @ 220GHz
- Avg. LNA result 8-11dB NF near 220GHz...
- Example: 1GHz BW system, clear day, 20dB antennas, 300m range, 3dB SNR (modulation scheme) requires 0.83W of Pout

220GHz is a local minima, but >1 Watt is desired