
.

A 180mW InP HBT 

Power Amplifier 

MMIC at 214 GHz

Thomas Reed

CSICS 2013 

Paper D.2

10/14/2013



InP HBT Power Amplifier MMICs at 220GHz  

� Abstract: Sub-THz systems designers have shown interest in the 
220GHz, low-loss free-space propagation window for future synthetic 
aperture radars, scanners, and weapons systems. Multi-HBT power 
amplifier cells were designed to leverage strong RF power densities and 
high 220GHz available gain in the 250nm InP HBT technology. On-wafer 
power combiners were designed to double and quadruple output power at 
each stage of combining. For large output peripheries, multi-stage PAs 
were developed to drive the final stage fully into compression. A novel 
design approach is used to increase periphery within a single cell. Using 
this approach a record single-MMIC Pout of 180mW was demonstrated at 
220GHz.

� Co-authors/Collaborators:  Dr. Zach Griffith (Teledyne Scientific Co.), 
Prof. Mark Rodwell (UC Santa Barbara)

220GHz InP HBT PAs demonstrate >100mW
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250nm InP HBT Technology Description

� DHBT InP/InGaAs/InP

process with peak 

fT/fmax = 400/700GHz

� 4-finger HBT 

(24x0.25µm2) shows 

fT/fMAX = 333/533GHz 

at PA bias point. 

� Au interconnects, SiNx

MIM Caps, NiCr Thin 

Film Resistor

� Microstrip MET1 signal 

and MET4 ground
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Figure courtesy Zach 

Griffith, Teledyne 

Scientific,

CSICS 2010

HBTs with 220GHz gain & versatile interconnects
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PA Cell Topology

� Load line shown for 4x6um 
HBT.
– Jmax = 12mA/um2

– Vbe,on = 0.85V

– VBcbo = 4.5V

– Pmax = 15mW/um2

– Vce,hf = 3V (low large-signal MAG) 

� Cascode chosen for higher 
220 available gain

� AC coupled cascode for 
CE/CB HBT grounding & 
higher gain

� Class A LL in high ss gain 
region
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� Given the DC routing needs 
of the PA Cell, the PA Cell is 
floorplanned.

Multi-PA Cell Layout Floorplanning

� To minimize 2:1 combiner 
size, the PA Cell height was 
λg/8 ~ 100µm
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Ideal Circuit Simulation/Component EM

� ADS Circuit Simulation

– Cap and MLIN models for 

SiNx, 3 & 5um BCB MSUB

– DC, S-parameters, Harmonic 
Balance (Load Line)

� ADS Momentum

– Characterize the Environment

� Range of Zo, R,C possible

� Identify parasitics in Passives

– Individual Components

� Tune Cap, Res, TL, DCChokes

� Heavy EM sim near HBT area

High Zo

MIM

Out

Ground Plane

Signal

In

G

E CB Output 
Tuning 
Network

G

Coarse tune at cell (circuit sim) and component (EM sim)
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PA Cell Large Multi-port EM simulation

� From High Zo

MIM

� To

PA Cell 26-port 
2.5-D EM Sim

Fine tune at MMIC (Circuit), Network (EM), & Cell (EM)

� From

� To

EM Component

Ideal
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Past 8-Cell 2-Stage PA Results (CSICS 2012)
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Total MMIC Power

� Depends on 
1. Total HBT periphery (Periphery/PA Cell, Chip Size)

2. HBT matching network design (Load Power Target)

3. Losses due to power combining (Limit to Chip Size)

� To increase power
– Increase HBT periphery per PA Cell (1, but requires a new 2)

– Combine more PA Cells (1, but requires a new 3)

Thomas Reed CSICS 2013 D.2 910/14/2013



PA Cell Design Methodology

� Considerations/Lessons:

1. Longer HBT = low MAG* at 
220GHz

2. Larger multi-finger HBTs = low 
MAG at 220GHz

3. Close HBTs under DC bias 
interact thermally. 

4. 5um of delay is significant

5. 4-finger HBTs worked when 
spaced ~100um (CSICS, IMS)

*I’m using the term “MAG” as min(MAG,MSG) 

Thomas Reed CSICS 2013 D.2 10

Design as a 3-port network—using HBT Zout as port Zo
Symmetric Tuning—achieve load target tuned to 50ohms
Near HBTs Spaced 40um center-to-center.

10/14/2013



PA MMIC Design Methodology

� Final Stage PA cells 
have 2x HBT periphery 
(compare CSICS 2012) 

� PA Cells combined 
16x on the output (8x 
combiner CSICS 2012)

� Lower-loss interstage
DC Block designed

� New 4:1 combiner

A top-level schematic of the SSPA MMIC.
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220GHz Measurement

� Small Signal Measurement
– VNA with 140-220 and 206-340 

GHz frequency extender heads

– LRRM Probe-tip Calibration

� Power Sweep Measurement
– 220 GHz frequency multiplier 

chains and sub-mm wave power 
meter

– Insertion Loss Calibration

– Forced Air cooling  

VDI

Source

To

Meter

Calibration data validates amplifier data
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4C8C16C PA (Baseline Design 2x)

10/14/2013 Thomas Reed CSICS 2013 D.2 13

� 25dB S21 Gain at 220GHz

� 164mW at 208 & 214GHz

� 0.427W/mm

DC power: 6.7W
Physical Size: 
2.5x2.1mm2



8C16Cx PA

10/14/2013 Thomas Reed CSICS 2013 D.2 14

� 144mW @ 214GHz Cooled

� 14.9dB S21 gain at 220GHz

� 0.374 W/mm 

� Forced Air increase POUT 10-40%

S21

S11 S22

DC power: 5.5W
Physical Size: 
1.4x1.4mm2



32Cx 3-Stage PA S-parameters

10/14/2013 Thomas Reed CSICS 2013 D.2 15

� S-parameters of the 3-stage, 8C16C32Cx SSPA. Gain at 
214 and 220GHz is 22dB. 3dB bandwidth extends up to 
230GHz. Measured with Forced Air Cooling

DC power: 12W
Physical Size: 2.5x2.2mm2

0.768mm emitter periphery

Micrograph of an 8C16Cx32Cx



8C16C32Cx & 8C16Cx32Cx Power

10/14/2013 Thomas Reed CSICS 2013 D.2 16

� 8C16C32Cx 
POUT,SAT=180mW @214GHz

� 8C16Cx32Cx 
POUT,SAT=161mW @214GHz

� Results measured with 
Cooled forced air



Recapitulation

� First pass design success on InP Tapeouts

� Design method focuses on EM modeling of at component, 
network, and Cell level.

� Design method shows multiport output matching network

� 250nm InP HBT demonstrates a high power density 
technology at 220GHz with versatile backend interconnect 
stack

� A high power SSPA MMICs designed for 220GHz was 
demonstrated to show a compressed power level of 180mW 
at 214 GHz. 

220GHz design methods demonstrate 180mW MMIC

Thomas Reed CSICS 2013 D.2 1710/14/2013



BACK UP SLIDES
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Table of 220 GHz Power Results

Thomas Reed CSICS 2013 D.2 19

A Table of Recent PA Results near 220 GHz.

* Modules incur additional RF transition loss.

** HBT power density is typically reported per unit HBT area whereas for

HEMTs, linear power density is typically reported.

10/14/2013



Timeline of 220 GHz InP HBT PA results

1

2

3

4-Cell PA, 24um/Cell
0.7x0.7mm2

PDC=1.15 W
(Reported CSICS 2011)

8-Cell, 2-Stage, 24um/Cell
2.4x1.2mm2

PDC=4.5W
(Reported CSICS 2012)

16-Cell, 3-Stage, 48um/Cell
2.5x2.2mm2

(Reported CSICS 2013)

4-Cell PA, 24um/Cell
S21 @220 GHz = 10.1 dB 
Pout ≈ 48mW 

@ 210-220GHz

8-Cell, 2-Stage, 24um/Cell
S21 @220 GHz = 14.8dB
Pout = 90mW @ 220 GHz
Pout > 65mW for 210-225 
GHz

16-Cell, 3-Stage, 48um/Cell
Pout=180mW @ 214GHz
w/ Forced Air Cooling
Thinning/heat removal?

1

2

3

High power densities demonstrated with InP HBT MMICs

Thomas Reed CSICS 2013 D.2 2010/14/2013
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� DARPA MTO for funding this work under the Hi-FIVE program
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mm-Wave Wireless Systems

� Free-Space Propagation Loss Minimum ~2.5dB/km @ 220GHz

� Avg. LNA result 8-11dB NF near 220GHz…

� Example: 1GHz BW system, clear day, 20dB antennas, 300m range, 
3dB SNR (modulation scheme) requires 0.83W of Pout
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220GHz is a local minima, but >1 Watt is desired

Thomas Reed CSICS 2013 D.2 2210/14/2013


