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We calculate the minimum feasible contact resistivity to n-type and p-type In0.53Ga0.47As, InAs,

GaAs, GaSb, InP, and InSb. The calculations consider image force lowering and assume either

parabolic or non-parabolic energy dispersion in the semiconductor; their results are compared with

recent experimental data. Among significant results, the measured contact resistivity to

n-In0.53Ga0.47As at a carrier concentration of 5� 1019 cm�3 is only 2.3:1 higher than that calculated

assuming a 0.2 eV barrier potential, and the measured contact resistivity is only 9.0:1 larger than the

Landauer quantum conductivity limit at this carrier concentration. These results indicate that, with

the surface preparation procedures presently employed, surface contamination does not markedly

increase the interface resistance, and that the transmission coefficient for carriers crossing the

interface exceeds 10%. VC 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4826205]

I. INTRODUCTION

The continued improvement of ohmic metal-

semiconductor contacts is critical both to the development of

nm transistors for VLSI and to the development of THz tran-

sistors for mm-wave wireless systems. In the extension by

scaling of III–V bipolar and field-effect transistor bandwidths

to 3–4 THz cutoff frequencies, ohmic contacts of below

�10�8 X� cm2 resistivity are required.1,2 In VLSI, as

MOSFET source and drain contact areas are reduced to

accommodate source-drain contact pitches of �50–100 nm,

contacts of similarly low resistivity are required to permit

high transistor on-state current. Ohmic contacts to group IV

(Si, Ge) and III–V compound semiconductors have been

extensively studied; results are summarized in Refs. 3 and 4.

The primary factors determining contact resistivity are carrier

concentration, semiconductor surface preparation and clean-

ing, and contact metal work function hence Schottky barrier

height.5–7 At a given carrier concentration in the semiconduc-

tor, there is lower limit below which the contact resistivity

cannot be reduced. This lower limit results from the finite

interface transmission probability, the finite carrier velocity,

and the finite number of states available for carrier transport

across the metal-semiconductor interface. Recently, Maassen

et al.8 calculated the intrinsic lower limit for contact resistivity

for InAs, In0.53Ga0.47As, GaSb, and Si using a full band ballis-

tic quantum transport approach. The authors found that, for a

given carrier concentration, the lower limit for the contact re-

sistivity is almost independent of the semiconductor.

Here, we present calculations of contact resistivities for

n-type and p-type In0.53Ga0.47As, InAs, GaAs, GaSb, InP,

and InSb. To compare these calculations to experimental

data, three cases are addressed. First, the contact resistivity is

calculated in the (typical) case where carriers must tunnel

through a Schottky barrier of significant thickness. To assess

the degree to which tunneling probability contributes to the

interface resistance, the contact resistivity is also calculated

for the case where this barrier is absent, i.e., with a step

change in the electron affinity between the metal and the

semiconductor. In this case, which we refer to as a step bar-

rier, although carriers need not tunnel through a barrier, the

interface transmission probability remains less than unity

because of the abrupt change at the interface of the carrier

potential energy and carrier effective mass. Finally, we cal-

culate the contact resistivity assuming unity for the interface

transmission probability, i.e., the resistivity in the quantum

conductivity limit.

By comparing experimental data to resistivities calcu-

lated including the finite Schottky barrier, we can estimate

the degree to which contact resistivity has been increased by

surface contamination or other imperfections at the interface.

By comparing the Landauer quantum conductivity limit to

the resistivities calculated including the finite Schottky bar-

rier, we can infer the contribution of the Schottky barrier

transmission probability to the contact resistance.

II. CURRENT DENSITY AND CONTACT RESISTIVITY
CALCULATIONS

We first present the method used to calculate the transmis-

sion probability and contact resistivity of a metal-semiconductor

interface assuming either parabolic or non-parabolic energy dis-

persion in the semiconductor.

Assuming conservation of carrier transverse momentum

and total energy, the net current density across a metal-

semiconductor junction is9

J ¼ 2q

ð2pÞ3
ðksx¼1

ksx¼�1

ðksy¼1

ksy¼�1

ðksz¼1

ksz¼0

vszðfs � fmÞTPdksxdksydksz; (1)

where z is the direction of current flow and the xy plane is the

plane parallel to the interface, vsz is the z component of the
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carrier group velocity in the semiconductor, fs ¼ 1=ð1þ
expðE� Ef sÞ=kTÞ and fm ¼ 1=ð1þ expðE� Ef mÞ=kTÞ are

the Fermi functions in the semiconductor and in the metal,

E ¼ Eðkx; ky; kzÞ is the total carrier energy, Ef s and Ef m are

the Fermi energies in the semiconductor and in the metal, k is

the Boltzmann’s constant, T is the temperature, TP ¼
TPðkx; ky; kzÞ is the interface transmission probability, (ksx, ksy,

ksz) are the carrier wave vectors in the semiconductor in the

(x, y, z) directions. Both kszðzÞ and vszðzÞ are functions of the

depth (z) within the semiconductor; within Eq. (1), the quanti-

ties ksz and vsz are the asymptotic values taken at a large

depth. To make analysis tractable, the free electron model and

an idealized parabolic energy dispersion were assumed for the

metal. The conduction band edge (Ecm) of the metal is taken,

at 0 eV, as the reference energy (Fig. 1). As indicated in Fig. 1,

q/R is the energy difference between the conduction band

edge of the semiconductor (Ecs) and the conduction band edge

of the metal (Ecm) i.e., q/R ¼ Ecs � Ecm. Also, q/B is the

intrinsic barrier height and q/Bn is the barrier height at thermal

equilibrium resulting due to image force lowering.

The contact resistivity, qc, is defined as the inverse of

the derivative of the current density by the voltage

V ¼ ðEf s � Ef mÞ=q, as the voltage approaches zero

1

qc

¼ dJ

dV

����
V¼0

:

Hence, the contact resistivity is

1

qc

¼ 2q2

ð2pÞ3kT

ðksx¼1

ksx¼�1

ðksy¼1

ksy¼�1

ðksz¼1

ksz¼0

�
vsz � exp

E�Ef s

kT

� �
1þ exp

E�Ef s

kT

� �� �2
TPdksxdksydksz: (2)

We now must consider separately the cases of parabolic and

non-parabolic energy dispersion in the semiconductor.

Case I: For a semiconductor with parabolic energy dis-

persion, the total carrier energy is given by

E ¼ q/R þ
�h2

2ms
ðksx

2 þ ksy
2 þ ksz

2Þ; (3)

where ms is the carrier effective mass in the semiconductor.

In this case, the carrier group velocity is

vsz ¼
1

�h

@E

@ksz
¼ �hksz

ms
; (4)

from which we find,

1

qc

¼ 2q2�h

ð2pÞ3mskT

ðkst¼1

kst¼�1

ðksz¼1

ksz¼0

ðh¼2p

h¼0

�
exp

E�Ef s

kT

� �
1þ exp

E�Ef s

kT

� �� �2
TPkstdkstkszdkszdh; (5)

where kst
2 ¼ ksx

2 þ ksy
2 and dksxdksy ¼ kstdkstdh. From

these, we find,

1

qc

¼ q2�h

2p2mskT

ðkst¼1

kst¼�1

ðksz¼1

ksz¼0

exp
E�Ef s

kT

� �
1þ exp

E�Ef s

kT

� �� �2
TPkstdkstkszdksz:

(6)

Case II: The prior analysis assumed parabolic energy disper-

sion in the semiconductor, i.e., a quadratic variation of

energy with momentum. The energy-momentum relationship

is better approximated by a fourth-order (non-parabolic) dis-

persion relationship10–12

ðE� q/RÞð1þ aðE� q/RÞÞ ¼
�h2

2ms
ðkst

2 þ ksz
2Þ; (7)

where a is the non-parabolicity factor. From this, we find,

E ¼ q/R þ
1

2a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2a�h2ðkst

2 þ ksz
2Þ

ms

s
� 1

0
@

1
A: (8)

The group velocity is then,

vsz ¼
1

�h

@E

@ksz
¼ �hksz

ms

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2a�h2ðkst

2þksz
2Þ

ms

q : (9)

From this, we find the contact resistivity,

1

qc

¼ q2�h

2p2mskT

ðksx¼1

ksx¼�1

ðksy¼1

ksy¼�1

vszffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2a�h2ðkst

2þksz
2Þ

ms

q

�
exp

E�Ef s

kT

� �
1þ exp

E�Ef s

kT

� �� �2
TPkstdkstkszdksz: (10)

To evaluate these expressions to determine contact resistiv-

ity, the interface transmission probability must be calculated

as a function of (kx, ky, kz). This is shown next.

FIG. 1. Energy band diagram of the metal-semiconductor junction.
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A. Calculation of the barrier transmission probability
(TP )

In prior work,13 the Wentzel-Kramers-Brillouin (WKB)

approximation has been used to calculate the transmission

probability, TP, across the metal-semiconductor interface.

The WKB approximation breaks down at the regions close

to the maximum of the potential energy barrier. The WKB

approximation also neglects the quantum mechanical reflec-

tion arising from the abrupt change in electron affinity and

carrier effective mass at the interface, an effect which

becomes important for low-resistivity contacts having low

Schottky barrier energy and highly degenerate carrier con-

centration in the semiconductor. Here, we present a more

exact calculation of the transmission probability, a calcula-

tion which includes this interface reflection, and remains

valid for carrier incident energy above the peak of the poten-

tial barrier.

To calculate the transmission probability, the potential

energy is first calculated as a function of position. Image

force barrier lowering is included in the calculation, but

band gap narrowing due to highly degenerate carrier concen-

tration was neglected. This computed potential profile is then

approximated as a set of regions, each having a constant

field, using the following procedure. First, the position z ¼ i
of maximum field is identified (Fig. 2(a)), and the potential

is then approximated as linear (constant field), with the mod-

eled potential set equal to the exact computed potential at the

point z ¼ i. This constant field region extends over the inter-

val d1 < z < d2; outside this region, the potential is modeled

as constant potentials, either that of the barrier peak or that

of the bulk semiconductor.

The barrier is thus separated into four adjacent constant-

field regions. Within each region, Schrodinger’s equation is

solved using Airy functions. Within the region 0 < z < d1,

an infinitesimal potential gradient dq/Bn is introduced (Fig.

2(b)) to facilitate the use of Airy functions. The Airy func-

tion solutions are valid in all the energy ranges,14 i.e., q/R <
E <1 making the calculations less cumbersome. If a barrier

with constant potential energy was chosen for this region

(0 < z < d1), it would require solutions of Schrodinger equa-

tions for q/R < E < q/Bn, E ¼ q/Bn, and E > q/Bn making

the calculations tedious.

First, we calculate the transmission probability for a

semiconductor with parabolic energy dispersion. For the bar-

rier shown in Fig. 2(b), the potential energy for various

regions is approximated by

V1ðzÞ ¼ 0; z � 0; (11)

V2ðzÞ ¼ /m � d/Bn þ s1z; 0 � z � d1; (12)

V3ðzÞ ¼ /m þ
/m � /R

d2 � d1

d1 � s2z; d1 � z � d2; (13)

V4ðzÞ ¼ /R; z � d2; (14)

where /m ¼ /M þ /Bn, s1 ¼ d/Bn=d1, and s2 ¼ ð/m � /RÞ
ðd2 � d1Þ�1

.

The wave functions required for calculating the trans-

mission probability, TP, are obtained by solving the

time-independent Schrodinger equation, ð�h2=2msÞð@2w=@z2Þ
þ ðEz � VðzÞÞw ¼ 0, for various constant-field regions of

Fig. 2(b). The eigenfunction solutions of this equation for

various regions are,

w1ðzÞ ¼ expðikmzzÞ þ R expð�ikmzzÞ; z � 0; (15)

w2ðzÞ ¼ CAi½q1ðqV2ðzÞ � EzÞ� þ DBi½q1ðqV2ðzÞ � EzÞ�;
0 � z � d1; (16)

w3ðzÞ ¼ FAi½q2ðqV3ðzÞ � EzÞ� þ GBi½q2ðqV3ðzÞ � EzÞ�;
d1 � z � d2; (17)

w4ðzÞ ¼ t expðikszzÞ; z � d2; (18)

where AiðzÞ and BiðzÞ are the Airy functions,15 R, C, D, F,

G, and t are complex constants, q1 ¼ ð2ms=�h2s2
1Þ

1=3
, and q2

¼ ð2ms=�h2s2
2Þ

1=3
.

FIG. 2. (a) Schematic of the theoretical and modeled potential energy bar-

rier. (b) Detailed schematic of the modeled potential energy barrier illustrat-

ing the approximation for the region 0 < z < d1.
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Because the total energy, E, and the transverse wave

vector kt (¼ kmt¼ kst) does not change as carriers cross the

interface,

E ¼ Emt þ Emz ¼ q/R þ Est þ Esz; (19)

where Emt ¼ �h2k2
t =2mm and Emz ¼ �h2k2

mz=2mm are the com-

ponents of the carrier kinetic energy in the metal associated

with motion parallel to and perpendicular to the metal-

semiconductor interface, and mm is the carrier effective mass

in the metal. Similarly, Est ¼ �h2kt
2=2ms and Esz ¼ �h2k2

sz=2ms

are the components of the kinetic energy of the carrier in

semiconductor parallel and perpendicular to the metal-

semiconductor interface. Note, again, that a parabolic energy

dispersion relationship is assumed for the metal.

From the continuity of wðzÞ and m�1@wðzÞ=@z (Ref. 16)

at the interfaces z ¼ 0, z ¼ d1, and z ¼ d2, six equations are

obtained from which the six unknown complex constants can

be determined. Hence,

t ¼ 2

a10ðA10 þ a1A10pÞ þ a11ðB10 þ a1B10pÞ
: (20)

The parameters a10; A10; a1; A10p; a11; B10; a1; B10p are

defined in Appendix A. The transmission probability is then

given by

TP ¼
ksz

kmz

mm

ms
jtj2: (21)

Transmission probability was also calculated for a step

barrier (Fig. 3). In this case, the electric field within the semi-

conductor is assumed to be zero. Although in this case, car-

riers crossing the interface must no longer tunnel through a

Schottky potential barrier (Fig. 2), we will find that the trans-

mission probability remains significantly below unity

because of the abrupt change in carrier effective mass and ki-

netic energy. Comparison of the Schottky barrier, step bar-

rier, and 100% transmission (quantum conductivity) cases

permits us to infer the relative contributions of barrier tun-

neling and of mass and energy changes to the resistance. The

interface transmission probability for this case, derived in

Appendix B, is

TP ¼
ksz

kmz

mm

ms

2kmz=mm

kmz=mm þ ksz=ms

����
����
2

: (22)

Next, we discuss the case for a semiconductor with non-

parabolic energy dispersion. As shown in Eqs. (16) and (17),

the kinetic energy associated with motion in the z direction

is required to calculate the transmission probability across

the tunnel barrier. For a semiconductor with non-parabolic

energy dispersion, the total energy is,10–12

E ¼ q/R þ
1

2a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2a�h2ðk2

t þ k2
szÞ

ms

s
� 1

0
@

1
A: (23)

Hence, for this case, we have calculated the interface trans-

mission coefficient only for the case of the step barrier. The

calculations are given in Appendix C; the transmission prob-

ability is

TP ¼
ksz

kmz

mm

m	s

2kmz=mm

kmz=mm þ ksz=msC

����
����
2

; (24)

where m	s is the energy dependent conductivity mass in a

non-parabolic semiconductor and is defined as,11,12

m	s ¼ msð1þ 2aðE� q/RÞÞ: (25)

B. Landauer contact resistivity

In the general relationship of Eq. (10), the contact resis-

tivity is bounded below by the case of unity interface trans-

mission probability, i.e., TP¼ 1. In this case, the quantum

conductivity or Landauer limit,17 the contact resistivity for

an isotropic single-band-minimum semiconductor is

1

qc

¼ ðq2=�hÞð3=8pÞ2=3n2=3; (26)

where n is the carrier concentration. Equation (26) is the

Landauer limit for the C-valley-minimum III-V semiconduc-

tors. In contrast, for anisotropic semiconductors having g
band minima, with carrier concentrations nsi and x, y, and z
(transport) direction masses mxi, myi, mzi for the ith valley,

1

qc

¼ ðq2=�hÞð3=8pÞ2=3 �
Xg

i¼1
ðmximyi=m2

ziÞ
1=6n

2=3
si : (27)

For contacts to (100) Si, for four of the six filled D
conduction-band valleys, mx ¼ ml, my ¼ mt, and mz ¼ mt,

while for the remaining two D valleys, mx ¼ my ¼ mt and

mz ¼ ml, where mt and ml are the D valley transverse and

longitudinal effective masses. In this case, we find

q�1
c ¼ ðq2=�hÞð3=8pÞ2=3ðn=6Þ2=3ð4ðml=mtÞ1=6

þ 2ðmt=mlÞ1=3Þ; (28)

where n is the total carrier concentration.

III. EXPERIMENTAL DATA

The contact resistivities calculated by the methods

described above were compared to the experimental data for

contacts made to n-type and p-type In0.53Ga0.47As, InAs, GaAs,

GaSb, and InP. We had earlier reported ultra low contact resis-

tivities to n-InAs, n-In0.53Ga0.47As, and p-In0.53Ga0.47As.18–20

The contact resistivities were (0.6 6 0.4)� 10�8 X cm2,

(1.1 6 0.5)� 10�8 X cm2, and (0.6 6 0.5)� 10�8 X cm2 for

n-InAs, n-In0.53Ga0.47As, and p-In0.53Ga0.47As, respectively. In

addition to these data, the experimental contact resistivity dataFIG. 3. Schematic of a step barrier.
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for n-type and p-type InAs, In0.53Ga0.47As, GaAs, GaSb, and

InP were obtained from the literature.6,7,21–59 To best of our

knowledge, no experimental contact resistivity data has been

reported for contacts made to n-type and p-type InSb.

IV. RESULTS AND DISCUSSION

A. Effect of non-parabolicity, metal Fermi energy, and
carrier effective mass in the metal

In this section, we present the theoretical contact resis-

tivities calculated using the equations obtained in Sec. II.

The dependence of contact resistivity on three factors, non-

parabolicityðaÞ, metal Fermi energy ð/MÞ, and carrier effec-

tive mass in metal ðmmÞ is discussed. For brevity, only the

results obtained for n-type InAs are presented. The parame-

ters used for the calculations are listed in Table I.

Fig. 4 compares the calculated contact resistivities for

parabolic and non-parabolic energy dispersion for n-type

InAs. A step barrier (Fig. 3) and a metal Fermi energy

/M ¼ 11.4 eV (corresponding to molybdenum (Mo)62) were

assumed for the calculations. Resistivities lie slightly

above Landauer limits because of interface quantum reflec-

tivity; parabolic and non-parabolic bands show differing

ðEf s � EcÞ and hence differing interface reflectivity. Further,

at a given carrier concentration, Landauer contact resistiv-

ities are slightly lower in Si than in C-minima III-V semicon-

ductors because of anisotropy and because of the multiple

band minima.

To observe the effect of metal Fermi energy ð/MÞ on

contact resistivity, contact resistivities were calculated using

/M ¼ 5 eV and /M¼ 10 eV. The calculations were done for a

step barrier (Fig. 3) and for a finite tunnel barrier (Fig. 2),

assuming parabolic energy dispersion in the semiconductor.

The results for the contact resistivities obtained for the step

barrier are plotted in Fig. 5. It can be seen that the contact

resistivities obtained for /M¼ 5 eV lie below those obtained

for /M ¼ 10 eV. Recalling that we here approximate the

metal by the free-electron model, with the metal conduction-

band energy taken as the reference energy at 0 eV, changing

the metal Fermi energy corresponds to an assumed change in

the metal’s free electron concentration and changes the elec-

tron momentum (k-vector) at energies near the Fermi energy.

Because of the wavefunction boundary conditions at the

metal-semiconductor interface, changes in the metal Fermi

energy, therefore, change the interface transmission coeffi-

cient. A similar trend was obtained for contact resistivities

calculated for the finite tunnel barrier (not shown here).

The variation of contact resistivities of n-InAs with car-

rier concentration for different mm is shown in Fig. 6. It can

be seen that, as mm increases, contact resistivity decreases.

This could be because of the difference in the transmission

probability for different carrier effective mass. To verify

TABLE I. Band parameters of various III-V compound semiconductors.60,61

Parameter InAs In0.53Ga0.47As GaAs InP GaSb InSb

Band gap energy ðeVÞ 0.36 0.74 1.42 1.344 0.726 0.17

Electron effective mass, ms=mo 0.023 0.041 0.063 0.08 0.041 0.014

Light hole effective mass, mlh=mo 0.026 0.052 0.082 0.12 0.05 0.015

Heavy hole effective mass, mhh=mo 0.41 0.45 0.51 0.6 0.4 0.43

Non-parabolicity, a ðeV�1Þ 2.73 1.24 0.64 0.67 1.36 5.72

FIG. 4. Variation of contact resistivity with carrier concentration for para-

bolic and non-parabolic energy dispersion for n-type InAs. Landauer contact

resistivity: for a single isotropic band and for (100) Si, and resistivity of

InAs contact with a step barrier.

FIG. 5. Variation of contact resistivity with carrier concentration for

/M ¼ 5 eV and /M ¼ 10 eV, for n-type InAs.

FIG. 6. Variation of contact resistivity with carrier concentration for various

metal carrier effective mass ðmmÞ for n-type InAs.
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this, TP was calculated across a step barrier for two different

mm, i.e., mm ¼ mo and mm ¼ 0:023mo (mo¼ 9.1� 10�31 kg).

The results are plotted in Fig. 7 which shows that TP

approaches unity at a lower energy for mm ¼ mo, as com-

pared to the case where mm ¼ 0:023mo.63 This difference in

behavior of TP with E could explain the higher contact resis-

tivity obtained for mm ¼ 0:023mo as compared to that

obtained for mm ¼ mo.

B. Effect of Schottky barrier height ð/BÞ

Contact resistivities were calculated for n-type and

p-type In0.53Ga0.47As, InAs, GaAs, GaSb, InP, and InSb for

different Schottky barrier heights, /B. As stated earlier, these

calculations were done assuming parabolic energy dispersion

in the semiconductors. For these calculations, mm ¼ mo and

FIG. 8. Calculated dependence (represented by lines) of contact resistivities (qc) on bulk carrier concentration and Schottky barrier height (/B) for n-type/p-

type In0.53Ga0.47As, InAs, GaAs, GaSb, InP, and InSb. Experimental data from Refs. 6, 7, 18–59 are also represented for comparison.

FIG. 7. Dependence of carrier transmission probability, TP, on metal carrier

effective mass ðmmÞ for n-type InAs.
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/M ¼ 11.4 eV (Fermi energy for Mo) were assumed. These

calculations include image force lowering of the Schottky

barrier at the metal semiconductor interface. The results are

plotted in Figs. 8(a) to 8(l). Since the effective barrier height

ð/BnÞ varies with the active carrier concentration due to

image force lowering, only the value of /B is indicated in

the figures. As expected, contact resistivities were found to

depend strongly on /B. Experimental contact resistivities

obtained from various references are also indicated in the fig-

ures. The contact resistivities obtained by in situ deposition

of refractory metal contacts on n-type and p-type

In0.53Ga0.47As, and n-type InAs18–20 are shown in Figs.

8(a)–8(c), respectively. Even for contacts formed by in situ
techniques, where interfaces are expected to have an oxide/-

contaminant free metal-semiconductor interface, experimen-

tal resistivities of n-type contacts lie above theory given

generally reported values of barrier potential. Measured con-

tact resistivity to n-In0.53Ga0.47As at 5� 1019 cm�3 carrier

concentration is 2.3:1 higher than calculated assuming

/B¼ 0.2 eV, while measured contact resistivity to n-InAs at

1020 cm�3 carrier concentration is 1.9:1 higher than calcu-

lated assuming /B¼ 0 eV. In contrast, measured contact re-

sistivity to p-In0.53Ga0.47As at 2.2� 1020 cm�3 carrier

concentration correlates well with theory if /B¼ 0.6 eV is

assumed.

Calculations also show the degree to which the Schottky

barrier increases contact resistivity. Computed contact resis-

tivity for n-In0.53Ga0.47As at 5� 1019 cm�3 carrier concen-

tration and /B¼ 0.2 eV is only 3.9:1 larger than the

Landauer limit, while computed resistivity of n-InAs at

1020 cm�3 carrier concentration and /B¼ 0 eV is only 3.6:1

larger than Landauer limit. For p-In0.53Ga0.47As at

2.2� 1020 cm�3 carrier concentration and /B¼ 0.6 eV, com-

puted resistivity lies 13:1 above the Landauer limit; the tun-

neling probability remains low.

It must be noted that the experimental data include con-

tact resistivities obtained for alloyed and non-alloyed con-

tacts. In addition, the data points are plotted with respect to

the bulk carrier concentration. Depending on the contact

metal used, the carrier concentration near the contact region

might differ from bulk carrier concentration. For example,

Chen et al.33 reported qc¼ 5� 10�7 X cm2 and

3.8� 10�7 X cm2 for Ge/Pd/Au and Ni/Ge/Au contacts,

respectively, to n-GaAs (Fig. 8(e)). The carrier concentration

in n-GaAs was 2.2� 1018 cm�3. They attributed the low qc

to the increased carrier concentration at the surface due to

Ge diffusion in GaAs. Similarly, as shown in Fig. 8(j),

Malina et al.57 obtained extremely low contact resistivities

for p-InP. Here,57 Au-Be was used for contacting the semi-

conductor and qc¼ 2� 10�8 X cm2 was obtained after

annealing, for a carrier concentration of (3–4)� 1018 cm�3.

The low qc could be a result of increased carrier concentra-

tion at the interface due to Be dopant diffusion in InP.

V. CONCLUSIONS

We have computed the contact resistivity as a function

of both carrier concentration and Schottky barrier potential

for contacts to n-type and p-type In0.53Ga0.47As, InAs, GaAs,

GaSb, InP, and InSb. Resistivities calculated for a finite tun-

nel barrier are compared to the case of 100% interface trans-

mission probability, i.e., the quantum conductivity limit.

These results are compared to experimentally measured con-

tact resistivities, including the data for contacts using refrac-

tory contact metals deposited in situ on the semiconductor

surface immediately after semiconductor growth and without

breaking vacuum. Such in situ refractory contacts avoid both

significant metal penetration into the semiconductor and sig-

nificant interface contamination via exposure to the

atmosphere.

Experimentally measured contact resistivities for

heavily doped n-type In0.53Ga0.47As and n-type InAs lie

within �4:1 of the calculated resistivities, while measured

contact resistivities for heavily doped p-type In0.53Ga0.47As

agree with theory to within experimental variation.

Particularly for the case of n-type In0.53Ga0.47As and InAs

at carrier concentrations between 5� 1019 cm�3 and

1020 cm�3, where the Schottky barriers energies (�0.2 eV)

and Schottky barriers widths (�0.5–1.5 nm) are both small,

the interface transmission probability is high, with com-

puted contact resistivities lying within a factor of four of

the quantum transport limit. In this limit, contact resistivity

is only further improved by increased carrier concentration,

with resistivity varying as the inverse of the (2/3)rd power

of carrier concentration. For p-type In0.53Ga0.47As, even at

a carrier concentration of 1020 cm�3, the barrier tunneling

probability remains low, and increased carrier concentra-

tion should result in further rapid decreases in contact resis-

tivity. Such low-resistance contacts have important

applications in both high-frequency (THz) III-V transistors

and in nm-contact-pitch transistors in VLSI.
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APPENDIX A: PARAMETERS USED FOR THE
CALCULATION OF TRANSMISSION PROBABILITY
FOR SEMICONDUCTOR WITH PARABOLIC ENERGY
DISPERSION

A10 ¼ Ai½q1ð/m � d/Bn � EzÞ�; dA10=dz ¼ A10p;

B10 ¼ Bi½q1ð/m � d/Bn � EzÞ�; dB10=dz ¼ B10p;

A11 ¼ Ai½q1ð/m � EzÞ�; dA11=dz ¼ A11p;

B11 ¼ Bi½q1ð/m � EzÞ�; dB11=dz ¼ B11p;

A21 ¼ Ai½q2ð/m � EzÞ�; dA21=dz ¼ A21p;

B21 ¼ Bi½q2ð/m � EzÞ�; dB21=dz ¼ B21p;

A22 ¼ Ai½q2ð/R � EzÞ�; dA22=dz ¼ A22p;

B22 ¼ Bi½q2ð/R � EzÞ�; dB22=dz ¼ B22p;
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a1 ¼ �
immq1s1

mskmz
;

a2 ¼ �
q2s2

q1s1

;

a3 ¼ �
iksz

q2s2

;

a4 ¼ ða2A21pA11 � A21A11pÞ=W;

a5 ¼ ða2B21pA11 � B21A11pÞ=W;

a6 ¼ ðA21B11p � a2A21pB11Þ=W;

a7 ¼ ðB21B11p � a2B21pB11Þ=W;

a8 ¼ �expðikszd2ÞðA22p � a3A22Þ=W;

a9 ¼ expðikszd2ÞðB22p � a3B22Þ=W;

a10 ¼ ða6a9 þ a7a8Þ;

a11 ¼ ða4a9 þ a5a8Þ;

W¼Wronskian of Airy functions15¼AijBijp � BijAijp ¼ 1=p;
i; j ¼ 1; 2.

APPENDIX B: TRANSMISSION PROBABILITY FOR A
STEP BARRIER (PARABOLIC ENERGY DISPERSION)

w1ðzÞ ¼ expðikmzzÞ þ A expð�ikmzzÞ; z � 0;

w2ðzÞ ¼ B expðikszzÞ; z � d:

At z ¼ 0,

w1ð0Þ ¼ w2ð0Þ;

1

mm

dw1ð0Þ
dz

¼ 1

ms

dw2ð0Þ
dz

;

which yields,

B ¼ 2kmz=mm

kmz=mm þ ksz=ms
;

where

ksz ¼
2msEsz

�h2

� �1=2

;

kmz ¼
2mmðE� Estðms=mmÞÞ

�h2

� �1=2

:

The transmission probability is then given by,

TP ¼
ksz

kmz

mm

ms

2kmz=mm

kmz=mm þ ksz=ms

����
����
2

:

APPENDIX C: TRANSMISSION PROBABILITY FOR A
STEP BARRIER (NON-PARABOLIC ENERGY
DISPERSION)

w1ðzÞ ¼ expðikmzzÞ þ A expð�ikmzzÞ; z � 0;

w2ðzÞ ¼ B expðikszzÞ; z � d:

At z ¼ 0,

w1ð0Þ ¼ w2ð0Þ;

1

mm

dw1ð0Þ
dz

¼ 1

m	s

dw2ð0Þ
dz

;

which yields,

B ¼ 2kmz=mm

kmz=mm þ ksz=m	s
;

where

ksz ¼
2msEsz

�h2

� �1=2

;

kmz ¼
2mm

�h2
q/R þ

1

2a
m	s
ms
� 1

� �
� �h2k2

st

2ms

 ! !1=2

:

The transmission probability is then given by,

TP ¼
ksz

kmz

mm

m	s

2kmz=mm

kmz=mm þ ksz=m	s

����
����
2
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