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The intrinsic lower limit of contact resistivity (qLL
c ) for InAs, In0:53Ga0:47As, GaSb, and Si is

calculated using a full band ballistic quantum transport approach. Surprisingly, our results show

that qLL
c is almost independent of the semiconductor. An analytical model, derived for 1D, 2D, and

3D, correctly reproduces the numerical results and explains why qLL
c is very similar in all cases.

Our analysis sets a minimal carrier density required to meet the International Technology Roadmap

for Semiconductors call for qc ¼ 10�9 X-cm2 by 2023. Comparison with experiments shows there

is room for improvement, which will come from optimizing interfacial properties. VC 2013
American Institute of Physics. [http://dx.doi.org/10.1063/1.4798238]

Achieving ultra-low contact resistivities for metal/semi-

conductor junctions represents a significant obstacle for the

scaling of nano-scale devices and the development of THz

bandwidth high-speed transistors.1 Much experimental effort

has been devoted to producing high quality material interfa-

ces, utilizing in-situ techniques for sample fabrication, with

the goal of reducing the specific contact resistivity (qc).2 The

International Technology Roadmap for Semiconductors

(ITRS) has called for a contact resistivity of 10�9 X-cm2 for

2023.3 This leads us to ask the following question: What is

the ultimate lower limit of Ohmic contact resistivity?

A recent theoretical study based on the parabolic

approximation and realistic band profiles demonstrated con-

tact resistivity values in excellent agreement with experi-

ment.4 This study also computed the case of perfect

reflection-less contacts, and found that this resistance was

within an order of magnitude of the lowest measured contact

resistivity to n-InGaAs. To achieve lower qc values, high

doping concentrations are required, which can push the

Fermi level far from the band edge where the electronic dis-

persion can be highly non-parabolic. In this work, we

address this important issue by calculating the theoretical

lower limit of contact resistivity (qLL
c ) for several semicon-

ductors by combining accurate full band electronic structure

calculations with the Landauer quantum transport formalism.

By naturally taking into account the role of valley degener-

acy, band anisotropy, higher energy bands, and the highly

non-parabolic shape of the bands, our results allow us to

quantitatively assess how much improvement in qc is possi-

ble given the present experimental values and verify the

validity of parabolic-based qc models. An analytical model,

applicable to 1D, 2D, and 3D structures, is found to

adequately reproduce the full band numerical results and is

utilized to provide an answer to what material properties are

desired to achieve the lowest possible qLL
c .

In this work, the intrinsic lower limit of metal/semicon-

ductor contact resistivity is calculated assuming that (i)

transport across the junction is ballistic, i.e., no scattering

and no Schottky barrier for carriers to tunnel through, and

that (ii) the metal is ideal meaning it contains more than

enough conducting channels to supply the semiconductor.

To compute qLL
c , we use the Landauer approach, which is

naturally suited to treat ballistic transport. The contact resis-

tivity (or inverse of the conductance per unit area), defined

in the limit of zero applied bias, can be expressed as5

1

qLL
c

¼ 4q2

h

ðþ1
�1

Mð�Þ � @f

@�

� �
d�; ½X�1�m�2�; (1)

where q is the electron charge, h is Planck’s constant, Mð�Þ is

the semiconductor distribution of modes (DOMs) or number

of conducting channels at energy �, and f is the Fermi-Dirac

distribution. The function ½�@f=@�� is centered at the Fermi

level EF and is strongly suppressed a few kBT away from EF,

where kB is Boltzmann’s constant and T is the temperature.

Thus, ðqLL
c Þ
�1

can be simply interpreted as the number of

“active” conducting channels times the quantum of conduct-

ance 2q2=h; an extra factor of two appears because half of the

resistance is associated with each of the two contacts.

In this study, we consider four of the most important

semiconductors for nano-scale and high-frequency electronic

devices: InAs, In0:53Ga0:47As, GaSb, and Si. The first three

are low-effective mass (m�) III-V semiconductors with a sin-

gle isotropic conduction band (CB) located at C, while Si

has a six-fold degenerate large m� anisotropic CB. By study-

ing these much different semiconductors, our goal is to

understand and identify characteristics that can lead to a

reduction in contact resistivity. Fig. 1 presents the calculated

band structures of InAs, In0:53Ga0:47As, GaSb, and Si using

tight-binding and first principles frameworks (details found

in figure caption). Most calculations of contact resistivity

assume a parabolic-type form for the electronic bands, how-

ever at high doping concentrations, EF may reside far from

the band edge where features can be highly non-parabolica)Electronic address: jmaassen@purdue.edu
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(as shown in Fig. 1) and higher energy bands may contribute

to transport.

The full electronic dispersion serves as the input for cal-

culating the DOM, which can be efficiently computed using

the so-called “band-counting” method.6 The number of con-

ducting channels per unit area, at a given energy �, is

expressed as

Mð�Þ ¼ 1

ð2pÞ2
ð

BZ

X
nþ

Hð�� �k?Þ dk?; ½m�2�; (2)

where Hð�� �k?Þ is the Heaviside step function, k? is the re-

ciprocal vector in the plane perpendicular to transport, and nþ

is the number of forward moving states with energy � and

wavenumber k?. The integrand of Eq. (2) is an integer corre-

sponding to the number of conducting channels, at a fixed �
and k?. For a non-parabolic Kane dispersion model,7

where �kð1þ a�kÞ ¼ �h2k2=2m�, the distribution of modes

(for a 3D material) can be written analytically as Mð�Þ
¼ m�DOM�ð1þ a�Þ=2p�h2,6 where a is the non-parabolicity pa-

rameter, m�DOM ¼
P

gv

ffiffiffiffiffiffiffiffiffiffiffi
mxmy
p

(transport along z-direction) is

the DOM effective mass, gv is the valley degeneracy, and � is

defined relative to the band edge. Thus, the number of con-

ducting channels scales linearly with energy for parabolic

bands (a¼ 0) and quadratically with energy for non-

parabolic bands (a 6¼0).

Fig. 2 presents the distribution of modes, Mð�Þ, for the

valence and conduction states of InAs, In0:53Ga0:47As, GaSb,

and Si. The p-type Mð�Þ is roughly the same for all semicon-

ductors, with Si showing slightly larger values due to its com-

paratively smaller split-off energy and larger m�. Significant

differences in Mð�Þ appear for the conduction states. Si and

GaSb have a much larger number of modes compared to InAs

and In0:53Ga0:47As. For energies less than 1 eV, InAs and

In0:53Ga0:47As have a single low m� band contributing to

Mð�Þ. According to the analytic expression shown above,

Mð�Þ will scale linearly with m�DOM, which is simply m� for an

isotropic band.14 For InAs and In0:53Ga0:47As;m� is 0.024 m0

and 0.042 m0, respectively, where m0 is the electron mass.

While for Si, the longitudinal and transverse effective masses

extracted from Fig. 1(d) are ml¼ 0.96 m0 and mt¼ 0.2 m0,

leading to a m�DOM value of 2.15 m0, considering a valley

degeneracy of six. The difference in m�DOM, for InAs and

In0:53Ga0:47As versus Si, is the source of the roughly factor of

102 difference in DOM.

To better illustrate why small effective mass bands lead

to a small DOM, in Figs. 2(c) and 2(d), we plot the k?-

resolved DOM, i.e., the integrand in Eq. (2), for the conduc-

tion bands of InAs and Si. Such plots provide information on

the projected iso-energy surface of the bands: a single small

sphere for InAs and six large ellipsoids for Si. For a given

energy, the InAs CB takes up only a small region in k-space,

compared to the six bands of Si, which once projected along

z and integrated leads to a small DOM. GaSb has a small

effective mass CB with a m� of 0.041 m0, however a second

large m� band appears at 0.1 eV, which dramatically

increases the DOM, as shown in the inset of Fig. 2(b). InAs

and In0:53Ga0:47As also have higher energy bands located at

1.17 eV and 0.98 eV above the band edge (according to

Fig. 1), respectively, which result in sharp increases in Mð�Þ.
In Figs. 3(a) and 3(b), contact resistivity qLL

c versus car-

rier concentration (n) is presented for p-type and n-type

InAs, In0:53Ga0:47As, GaSb, and Si. As the carrier concentra-

tion increases, the contact resistivity decreases. The roughly

linear trend on the log-log plot indicates that qLL
c is related to

n via a power-law, qLL
c / nx, with x � �2=3 extracted from

the slope. The main feature in Figs. 3(a) and 3(b) is that, for

a fixed carrier concentration, qLL
c is similar for all semicon-

ductors (i.e., within a factor of 2–3). This is an unexpected

result considering the very different DOM of each material,

particularly for the conduction states. Plotting qLL
c versus EF,

FIG. 1. Electronic band structure of InAs (a), In0:53Ga0:47As (b), GaSb

(c), and Si (d) along the high-symmetry points. (a)–(c) were calculated using a

sp3d5s* tight-binding model as implemented in NEMO5.8 (d) was obtained

from VASP,9 a density functional theory software package, using the general-

ized gradient approximation,10 the experimental lattice constant of Si (5.43 Å)

and applying the scissor technique to obtain the experimental band gap.

FIG. 2. DOM for the valence (a) and conduction (b) states of InAs

In0:53Ga0:47As, GaSb, and Si. Energy is defined relative to the band edge.

The number of conducting channels (modes) was calculated using Eq. (2).

The inset of (b) shows the features of InAs and In0:53Ga0:47As near the con-

duction edge and how GaSb increases rapidly at 0.1 eV due to a higher

energy band with low m�. (c) and (d): k-resolved DOM for the conduction

band (0.1 eV) of InAs and Si. The shape of the plot indicates the projection

of the iso-energy surface of the bands along the z-direction.
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as shown in Figs. 3(c) and 3(d), confirms that semiconduc-

tors with a larger number of channels yield smaller qLL
c val-

ues (for fixed EF). The markers in Figs. 3(c) and 3(d),

corresponding to carrier concentrations of 1018, 1019, 1020,

and 1021 cm�3, indicate that it is the relationship between n
and EF, which leads to similar qLL

c values for fixed n. In order

to better understand the correspondence between qLL
c and n,

and why all the studied semiconductors have nearly the same

qLL
c , we will utilize an approximate analytical formula.

Lowering the contact resistivity requires high doping

levels, which means the semiconductors are degenerate. In

this case, one can safely evaluate qLL
c (Eq. (1)) and the carrier

concentration n ¼
Ðþ1
�1 Dð�Þf ð�� EFÞ d� in the T¼ 0 K

limit.14 Assuming a non-parabolic Kane model for the elec-

tronic dispersion in 3D, 2D, and 1D respectively, we find

qLL
c ¼

h

4q2

m3D
DOS

m3D
DOM

4

ð3
ffiffiffi
p
p

n3DÞ2=3
; ½X�m2�; (3)

qLL
c ¼

h

4q2

ffiffiffi
p
2

r ffiffiffiffiffiffiffiffiffiffiffiffi
m2D

DOS

m2D
DOM

s
1ffiffiffiffiffiffiffi
n2D
p ; ½X�m�; (4)

qLL
c ¼

h

4q2

1

gv
; ½X�; (5)

where m3D
DOS ¼ ½

P
gv

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mxmymz
p �2=3;m3D

DOM ¼
P

gv

ffiffiffiffiffiffiffiffiffiffiffi
mxmy
p

;

m2D
DOS ¼

P
gv

ffiffiffiffiffiffiffiffiffiffiffi
mymz
p

and m2D
DOM ¼ ½

P
gv

ffiffiffiffiffiffi
my
p �2 (assuming

transport along z and confinement along x for the 2D case).

The 3D and 2D carrier densities have units of m�3 and m�2,

respectively. Unless otherwise mentioned, we consider the

case of 3D. Equation (3) predicts that qLL
c should depend on

n to the power �2/3 in the degenerate limit, as is observed

with the numerical results. Note that the non-parabolicity pa-

rameter a does not appear in Eqs. (3)–(5), and that the ratio

m�DOS=m�DOM is one for isotropic bands. Equation (3) is plot-

ted in Figs. 3(a) and 3(b) as a thin yellow solid line, using

m�DOS=m�DOM ¼ 1, and is found to provide an excellent fit to

the numerical results considering this simple equation

depends only on fundamental constants. Thus, this model

explains why the curves in Figs. 3(a) and 3(b) nearly over-

lap: any decrease in qLL
c due to an increase in Mð�Þ is offset

by a small EF value relative to the band edge. Hence, a

good conductor (large m�DOM and m�DOS) has a small EF and a

poor conductor (small m�DOM and m�DOS) has a large EF, such

that both yield a very similar qLL
c . For Si, we have

m�DOS=m�DOM ¼ 0:52, which reduces qLL
c compared to iso-

tropic bands. As expected, comparing Si to InAs and

In0:53Ga0:47As, we observe roughly a factor of two difference

in qLL
c . Finally, we highlight that the analytical expressions

in Eqs. (3)–(5) predict that qLL
c will have a gradually weaker

dependence on carrier density, m�DOM and m�DOS as dimen-

sionality is reduced.

We may ask how does valley degeneracy, band anisot-

ropy, and higher energy bands affect the lower limit of qc

and why do such features, present in the full band calcula-

tions, do not induce significant differences in qLL
c from one

material to another. Assuming there are gv degenerate ellip-

soidal bands, Eq. (3) can be rewritten as

qLL
c ¼

h

4q2

1

g
1=3
v

mzffiffiffiffiffiffiffiffiffiffiffi
mxmy
p

 !1=3
4

ð3
ffiffiffi
p
p

nÞ2=3
; ½X�m2�: (6)

We note that the same result, within a factor of two, was

reported elsewhere.4 Equation (6) indicates that although the

lower limit of qc can be decreased with increasing band

degeneracy, this dependence is weak. For example, with

gv¼ 6, the contact resistivity is reduced by a factor of 1.82.

Moreover, Eq. (6) also demonstrates that band anisotropy

can lower qLL
c by decreasing mz (EF further from the band

edge) and increasing mx;y (larger number of conducting chan-

nels). Due to the effective mass power of 1/3, anisotropic

effects are also weak. Finally, we verify the role of higher

FIG. 3. Contact resistivity (qLL
c ) versus

carrier concentration for p-type and n-type

InAs, In0:53Ga0:47As, GaSb, and Si at

300 K. Markers are experimental data

points taken from (InAs),2 (InGaAs),11

(GaSb),12 and (Si).13 Thin yellow solid

line is the analytical expression with

m�DOS=m�DOM ¼ 1. (c)–(d): Contact resis-

tivity versus EF for p-type and n-type

InAs, In0:53Ga0:47As, GaSb, and Si. EF is

defined relative to the valence and con-

duction band edges. Markers indicate the

EF values for carrier concentrations of

1018 (circle), 1019 (square), 1020 (dia-

mond), and 1021 cm�3 (triangle). Dashed

horizontal line corresponds to qc ¼ 10�9

X-cm2 called by the ITRS for 2023.
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energy bands. As an example, we consider a single lower

energy (low m�) band with six degenerate higher energy

(large m�) bands. In this case, only a factor of 2 reduction in

qLL
c is observed (see supplemental material for more

details).14 Hence, valley degeneracy, band anisotropy, and

higher energy bands have only a modest impact on qLL
c , lead-

ing to a reduction of 2–3� under optimal conditions. This

explains why such effects do not induce significant differen-

ces in the numerically calculated qLL
c .

The markers in Figs. 3(a) and 3(b) show recent experi-

mental values. InAs is known to produce very low qc values,

due to Fermi level pinning in the CB,2 but our theoretical

calculations indicate that it is possible to decrease qc by

another order of magnitude before reaching its intrinsic

lower limit. Thus, there is room for improvement, which will

be achieved by optimizing the physical properties at the

metal/semiconductor interface to increase the transmission

probability. The ITRS calls for qc ¼ 10�9 X-cm2 for 2023

and is plotted as the dashed horizontal line in Figs. 3(a) and

3(b). Our simulations demonstrate that the ITRS value is

indeed possible, but sets a minimal carrier concentration

in the range of approximately 2� 1019 � 5� 1019cm�3

depending on the semiconductor. Although this may not

appear very restrictive, we note that this value represents the

ideal case of perfect electronic transmission across the inter-

face. In reality, higher carrier concentrations will be required

to minimize the thickness of tunneling barriers and this may

be a limitation for certain semiconductors, such as n-type

GaSb with concentrations reaching �2� 1019cm�3.

In this work, we have assumed a transmission Tð�Þ of

one, however experimentally Tð�Þ < 1 due to tunneling

through a Schottky barrier and other non-idealities. When

Tð�Þ 6¼ 1; qLL
c is calculated by introducing a factor Tð�Þ into

the integral of Eq. (1). Using measured contact resistivity

values, qexp
c , the energy-averaged transmission is easily

extracted using hTi ¼ qLL
c =q

exp
c , where qLL

c is simply calcu-

lated using Eq. (3). From the data shown in Figs. 3(a) and

3(b), we find hTi values in the range 1%–4% for

In0:53Ga0:47As and 10% for InAs. In practice, the properties

of the interface determine the specific contact resistivity not

the properties of the semiconductors alone.

In summary, the intrinsic lower limit for contact resistiv-

ity qLL
c was calculated for InAs, In0:53Ga0:47As, GaSb, and Si

using a full band ballistic quantum transport approach.

Surprisingly, all calculated qLL
c for fixed carrier density are

found to be within a factor of 2–3 of each other, with Si and

GaSb providing the smallest values. An analytical model,

which is found to provide a very good fit to the numerical

results, demonstrates that any reduction in qLL
c achieved by

increasing Mð�Þ is compensated by the fact that EF will re-

side closer to the band edge. We also find that the value of

qc ¼ 10�9 X-cm2 called by the ITRS for 2023 is in principle

possible, but sets a minimal carrier concentration ranging

from 2� 1019cm�3 to 5� 1019cm�3. In reality, concentra-

tions above this ideal value will be required. Experimentally,

it is the specific interfacial properties of the metal/semicon-

ductor junction, which determines how close qc gets to its

intrinsic lower limit. The contribution of this paper is to

show how much improvement is possible through optimiza-

tion of the metal/semiconductor interface.
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