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Wireless above 100GHz

Wireless networks: exploding demand.

Immediate industry response: 5G.
28, 38, 57-71(WiGig), 71-86GHz
increased spectrum, extensive beamforming

Next generation (6G ??): above 100GHz..
greatly increased spectrum, massive spatial multiplexing

DOD applications: Imaging/sensing/radar, comms.
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Benefits of Short Wavelengths
Communications: Massive spatial multiplexing, massive # of parallel channels. Also, more spectrum!

Imaging: very fine angular resolution
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But:
High losses in foul or humid weather.
High 2/R2 path losses.
ICs: poorer PAs & LNAs.
Beams easily blocked.

100-340GHz wireless:
terabit capacity,
short range, 
highly intermittent
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140-340 GHz:
Applications
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140GHz massive MIMO hub demo

1 Tb/s spatially-multiplexed 140GHz base station 
128 users/face, 4 faces.  21 dBm PAs, F=8dB LNAs   
1024 total users @ 1 user/beam, 1,10 Gb/s/beam;
225, 100 m range in 50mm/hr rain with 20dB total margins

Handset: 
8 × 8 array
(9×9mm)
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220 GHz, 640 Gb/s MIMO Backhaul

8-element MIMO array
3.1 m baseline.
80Gb/s/subarray→ 640Gb/s total
4 × 4 sub-arrays → 8 degree beamsteering

Key link parameters
500 meters range in 50 mm/hr rain; 23 dB/km
24 dB total margins: 

packaging loss, obstruction, operating,
design, aging 

PAs: 24mW Pout (per élément)
LNAs: 6dB noise figure
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High-resolution imaging radar

Goal: MIMO Imaging Radar

Carrier Frequencies: 140, 210GHz
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ICs
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InP HBT to 670 GHz: DARPA TFAST and THz Programs
560 GHz 
fundamental
VCO

340 GHz 
dynamic 
frequency 
divider

Vout

VEE VBB

Vtune

Vout

VEE VBB

Vtune

620 GHz, 20 dB gain amplifier
M Seo, TSC
IMS 2013

also: 670GHz amplifier
J. Hacker ,  TSC
IMS 2013 (not shown)

M. Seo, TSC / UCSB

M. Seo, UCSB/TSC
IMS 2010

204 GHz static 
frequency divider
(ECL master-slave 
latch)

Z. Griffith, TSC / UCSB
CSIC 2010

300 GHz 
fundamental
PLL
M. Seo, TSC
IMS 2011

220 GHz 
180 mW
power 
amplifier 
T. Reed, UCSB
CSICS 2013

600 GHz 
Integrated
Transmitter
PLL + Mixer
M. Seo  TSC

Integrated 
300/350GHz 
Receivers:
LNA/Mixer/VCO

M. Seo  TSC

81 GHz 
470 mW
power 
amplifier 
H-C Park UCSB
IMS 2014
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140GHz CMOS ICs

Hub ICs for MIMO Array
Farid (Rodwell) UCSB

8-channel handset array ICs; transmitter and receiver
(Rebeiz group), UCSD
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Progress in IC Design: 140GHz InP PAs 

110mW power amplifier, 20.8% PAE
A. Ahmed, IMS 2020

190mW power amplifier
A. Ahmed, submitted.

Also: "A 130-GHz Power Amplifier in a 
250-nm InP Process with 32% PAE"
Kang Ning (Buckwalter group) 2020 RFIC symposium
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Packages / array modules
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The mm-wave module design problem

How to make the IC electronics fit ?
How to avoid catastrophic signal losses ?
How to remove the heat ?

Not all systems steer in two planes...
...some steer in only one.

Not all systems steer over 180 degrees...
...some steer a smaller angular range
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Concept: Tile for linear arrays

Terrestrial system: horizontal steering only→ linear array.
Space at edges of linear array: room for III-V PAs, LNAs.
Alternating-sides feed: 2mm pitch→ room for large GaN PAs.
Mounting directly on metal carrier→ heatsinking.
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Concept: module for small angular scanning

Terrestrial system: horizontal + vertical steering → rectangular array.
Limited angular steering range (installation)→ spacing >> /2
Endfire  / edge-card geometry: room for III-V PAs, LNAs.
Mounting directly on metal carrier→ heatsinking.

If Vivaldi's are replaced with dipoles, element spacing can be reduced to /2.
→ potential for wider angular scanning
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140GHz array module design
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Systems 
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Beamforming for massive spatial multiplexing 

Pure digital beamforming: 
dynamic range & phase noise requirements:  appear to be manageable 
Digital back-end processing requirements (die area, DC power): being investigated ?

Analog, hybrid beamforming: 
Do not appear to significantly improve dynamic range in massive MIMO.
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Progress in System Design

ADCs/DACs: only 3-4 bit ADC/DACs required (Madhow, Studer, Rodwell)

Linearity: Amplifier P1dB need be only 3dB above average power (Madhow).

Phase noise: Requirements same as for SISO (Alon, Madhow, Niknejad, Rodwell)

Efficient digital beamforming: beamspace algorithm=complexity ~N× log(N) (Madhow)

Efficient digital beamforming: low-resolution matrix (Studer)

Efficient channel estimation : fast beamspace algorithm (Studer)

Efficiently addressing true-time-delay problem: "rainbow" FFT algorithm (Madhow)

Array-to-backplane interconnect power: low-power analog baseband 50W links (Rodwell)

Digital beamforming

In progress…

Propagation models and measurements: (Molisch)

Blockage probability, mesh networks, network protocols: (Rangan, Cabric)

MIMO system power analysis: (Rangan, Cabric, Buckwalter)
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Progress: All-Digital Beamformer
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• mmWave/THz channels are 
sparse in beamspace domain 

• Exploiting sparsity can 
significantly reduce 
baseband complexity

• Challenge: requires fast 
Fourier transforms (FFTs) at 
baseband sampling rates

BS antennas Area Power

64 9mm2 2W

128 32mm2 7W

256 122mm2 26W

Synthesis results for 28nm CMOS 

• Implementation examples
– 1 GHz bandwidth

– 10b FFTs generated with Spiral

• Specialized FFTs (radix-4, higher 
streaming width, etc.) will 
further reduce area and power!

Christoph Studer, Cornell



21

Transistors 
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Progress in mm-Wave Transistors 

THz InP HBTs:
SOA today: 130nm node, 1.1 THz fmax, 3.5 V breakdown
Efficient 100-650GHz power
more fmax: more efficient, higher frequencies
base regrowth: better contacts→ higher fmax.
status: working DC devices; moving to THz

0

3

6

9

12

15

0 0.5 1 1.5 2

I C
 (

m
A

)

V
CE

 (V)

THz InP HBTs:
SOA today: 1.5 THz fmax, ~1.1 V breakdown
Sensitive 100-650GHz low-noise amplifiers
more ft: lower noise, higher frequencies
high-K gate dielectric → higher ft.
status: process modules

InGaN and GaN HEMTs:
High power from 100-340GHz 
GaN: superior power density at all frequencies
UCSB/Mishra: InGaN for increased mobility
Cornell/Xing: AlN/GaN/AlN 
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N-polar GaN: Mishra, UCSB
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Wireless above 100 GHz

Massive capacities
large available bandwidths
massive spatial multiplexing in base stations and point-point links

Very short range: few 100 meters
short wavelength, high atmospheric losses.  Easily-blocked beams.

IC Technology
All-silicon for short ranges below 250 GHz.
III-V LNAs and PAs for longer-range links.  Just like cell phones today
III-V frequency extenders for 340GHz and beyond

The challenges
spatial multiplexing: computational complexity
packaging: fitting signal channels in very small areas 
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(backup files follow)
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Progress in System Design
ADC resolution:
N ADC bits, M antennas, K signals: SNR=6N+1.76+10.log10(M/K)

3 bits, (M/K)=2→ SNR=23 dB.   QPSK needs 9.8 dB.

Jammer tolerance:
Increase ADC resolution by 1 bit→ Pjammer,max = K.Psignal
Maximum jammer power = sum of all user's power.

Phase noise:
Phase error sf : SNR= -20.log10(sf)+10.log10(M/K), where
MIMO and SISO require similar L(f) .

Beamspace:
lower frequencies, many NLOS paths, complicated channel matrix: O(M3) to beamform
higher frequencies, few NLOS paths, simpler channel matrix: FFT,  O(M.logM) to beamform
fewer bits in signal; fewer bits in FFT coefficients.
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The mm-wave module design problem

How to make the IC electronics fit ?
100+ GHz arrays:  0/2 element spacing is very small. 
Antennas on or above IC → IC channel spacing = antenna spacing 
→ limited IC area to place circuits 

How to avoid catastrophic signal distribution losses ?
long-range, high-gain arrays: array size can be large. 
ICs beside array → very long wires between beam former and antenna 
→ potential for very high signal distribution losses

How to remove the heat ?
100+ GHz arrays: element spacing is very small. 
If antenna spacing = IC channel spacing, then power density is very large
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ComSenTer 
Center for Converged 
Communications & Sensing 
at THz.

Duration: 
5-years; 1/2018-12/2022.

Funding: 
about $32 million total.

Team: 
21 Professors, 
~65 Ph.D. students

Sponsors: 
SRC, DARPA

Focus:  
wireless systems, 
10-15 years out, 
100-340GHz
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100-340 GHz: challenges & solutions

Need mesh networks

Need large arrays 

High attenuation
in foul or humid
weather


