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Abstract

InP/Ing 53Gag 47As/InP double heterojunction bipolar transistors were grown on GaAs substrates. A 92 GHz power-
gain cutoff frequency fn.x and a 165 GHz current-gain cutoff frequency f; were obtained, presently the highest reported
values for metamorphic HBTs. The breakdown voltage BVcgo was 5 V while the DC current-gain ff was 27. In order to
minimize the transistor operating junction temperature, high-thermal-conductivity InP metamorphic buffer layers were

employed.
© 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Double heterojunction bipolar transistors [1-3]
(DHBTSs) have applications in high-frequency commu-
nications and radar. HBTs using InGaAs or GaAsSb
epitaxial base layers and InGaAs or InP epitaxial col-
lector layers—Ilattice-matched to InP—currently exhibit
significantly higher current-gain and power-gain cutoff
frequencies than GaAs-based HBTs. However, InP
substrates are expensive and are available only in
smaller diameters than GaAs substrates are. Addition-
ally, 100-mm-diameter InP substrates are fragile and are
readily broken during semiconductor manufacturing.
This has motivated the investigation of metamorphic
growth of InP-based DHBTSs on GaAs substrates [4]. To
date, reported metamorphic growths have used AlGa-
AsSb or InAlAs buffer layers, which have very low
thermal conductivities, approximately 5-10 WK~'m™!

* Corresponding author. Tel.: +1-805-893-3543; fax: +1-413-
208-9864.
E-mail address: kymdow@ece.ucsb.edu (Y.M. Kim).

as measured for layers grown in our laboratory. When
the HBT is operated at high (~10° A/cm?) bias current
density, which is required for high-transistor bandwidth,
such low-thermal-conductivity epitaxial layers beneath
the transistor will increase the junction temperature
substantially relative to that of an HBT grown on a
lattice-matched InP substrate [5], with a consequent
reduction in HBT reliability [6]. Here we report meta-
morphic InP-based HBTs with greatly improved per-
formance. A 92 GHz power-gain cutoff frequency fimax
and a 165 GHz current-gain cutoff frequency f, were
obtained in a device with a 5 V common-emitter break-
down voltage BVcgo. In order to minimize the transistor
operating junction temperature, InP metamorphic buffer
layer was employed. This has a measured thermal con-
ductivity of 16.1 WK"'m™".

2. Growth

InP/Ing 53Gag47As/InP DHBTs were grown on a
GaAs substrate using a Varian Gen II molecular beam
epitaxy (MBE) system. After oxide desorption, 1000 A
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undoped GaAs buffer layer was grown at 600 °C,
forming a smooth surface prior to metamorphic growth.
The substrate temperature was then reduced to 480 °C
and the 1.5 pm undoped InP metamorphic buffer layer
was grown directly on the GaAs substrate. During buffer
layer growth, the reflection high-energy electron dif-
fraction (RHEED) pattern showed strong streaks, in-
dicating two-dimensional growth, although the RHEED
pattern intensity was slightly weaker than that observed
during lattice-matched growth. The remaining HBT
layers were then grown. Key features of the layer
structure (Table 1) include an InP emitter, a 400-A-thick
InGaAs base with 52 meV band gap grading for base
transit time reduction, a 200-A InGaAs/InAlAs base—
collector heterojunction grade, and a 1700-A InP col-
lector. The heterojunction between the Ings;GagasAs
base and the InP collector is a 200-A-thick Ing 53Gag.47-
As/Ing 5pAlj43As chirped superlattice whose composition
adjacent to the collector is Ing 53Gag26Alg21 As, chosen so
as to eliminate discontinuities in the conduction-band
energy at the interface. A similar superlattice grade is
employed in the emitter-base junction. A 1.4 x 10'?
cm 2 N-type pulse-doped layer below the base—collector
grade, which has a larger doping than that required to
counteract the quasi-field associated with the grade,
produces an accelerating field in the base—collector
grade. A significant Be base dopant migration into
the base—collector grade would produce an energy bar-
rier in the conduction band, partially suppressing elec-
tron transport from base to collector, and thereboy
increasing the base transit time. For this reason, a 100 A
undoped Ings3Gags7As setback layer was introduced
between the base and the base—collector grade. The total
collector-base depletion region thickness is therefore
2000 A.

3. Fabrication and measurement

HBTSs were fabricated in a triple-mesa process using
optical projection lithography and selective wet chemical
etching. Use of narrow emitter—base and collector—base
junctions reduces both the base resistance and the col-
lector-base capacitance [7]. While the emitter contact
metal is 0.7 um x 8 um, lateral undercutting during the
HCl-based etch of the InP emitter forms an emitter—
base junction whose dimensions are approximately
0.4 pm x 8 pm. Collector-base capacitance is reduced
by employing narrow base Ohmic contacts of 0.25 pm
width on either side of the emitter stripe, producing a
small 1.2 pm x 11 pm base—collector junction area.
Polyimide is used both for passivation and for mesa
planarization prior to interconnect deposition.

Fig. 1 shows the common-emitter characteristics.
The measured peak small-signal DC current gain is ap-
proximately 27, while the common-emitter open-circuit
breakdown voltage BVcgo is 5 V at 2 mA bias. Fig. 2
shows the Gummel characteristics, again indicating
f =23 and a base ideality factor of 2.0. We observe a
similar DC current gain and base ideality factor in lat-
tice-matched InP/InGaAs/InP DHBTs with submicron
emitter dimensions [8], effects we attribute to electron
conduction on the exposed InGaAs base surface be-
tween the emitter heterojunction and the base Ohmic
contact. -V measurements of the collector—base junc-
tion (with open emitter) indicate 0.7 pA collector-base
leakage I, at 0.3 V reverse bias on the collector—base
junction.

Fig. 2 also shows Gummel characteristics measured
on a large-area HBT (60 um x 60 um emitter—base and
100 pm x 130 pm base—collector junctions) fabricated
from the same epitaxial material. Despite the large col-

Table 1

Layer structure of the MBE-grown InP/In 5;Gag47As/InP metamorphic DHBT (GaAs (1 00) semi-insulating substrate)
Layer Material Doping Thickness (A)
Emitter cap Ing s3GagarAs 2 x 10" em~3: Si 1000
Grade Il’lo_53Gao_47AS to IHO_53G30_26A1()_2]AS 2 X 10]9 Cm732 Si 200
N+ emitter InP 2 x 10" cm™3: Si 900
N~ emitter InP 3 x 10" em™3: Si 300
Emitter—base grade Ing 53GagsAlgo As to 8 x 10" em~3: Si 233

Ir10_455Ga0_545As 8 x 10]7 Cm732 Be 67

Graded base Ing.4ssGag sasAs to Ings3GagarAs 4 % 10" cm™: Be 400
Setback Ing53Gag47As Undoped 100
Base—collector grade Ing 53Gag7As to Ings3Gagr6Alp2 As 1 x 10" ecm—3: Si 200
Pulse doping InP 7 x 10" em~3: Si 20
Collector InP 2 x 10'° cm~3: Si 1700
Subcollector Ing s3Gag 47 As 1 x 10" cm™3: Si 250
Subcollector InP 2 x 10" cm~3: Si 750
Buffer InP undoped 15000

All graded layers are Ings3Gag47As/Ing s;Alg43As digital alloy grades, except the base, which is an In,Ga,_,As linear compositional

grade.
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Fig. 1. Common-emitter DC characteristics of 0.4 pym x 8 pm
emitter device. The base current steps are 20 pA. The plot inset,
over an expanded voltage range and with 50 pA base current
steps, shows a 5 V common-emitter breakdown voltage.
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Fig. 2. Gummel characteristics of the metamorphic HBTs. The
solid lines are the data for a metamorphic HBT with a
0.4 pm x 8 um emitter—base junction and a 1.2 pm x 11 um
base—collector junction, while the dotted lines are for a meta-
morphic HBT with a 60 pm x 60 pm emitter—base junction and
a 100 pm x 130 um base—collector junction.

lector—base junction area, the Gummel characteristics
indicate that Iy, of the large-area HBT is below 0.5 pA.
If associated with defects arising from metamorphic
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Fig. 3. Measured short-circuit current gain 4, and Mason
unilateral power-gain U vs. frequency for an HBT with a
0.4 um x 8 um emitter—base junction and a 1.2 ym x 11 pm
base—collector junction (Ic = 7.0 mA and Vg = 1.5 V).

growth, the observed collector-base leakage current
would be proportional to the collector-base junction
area. Given the low I, associated with the large-area
HBT, the data suggests that I, of the small-area HBT
most probably results from inadequate collector-base
junction surface passivation.

Fig. 3 shows the current gain (4,;) and unilateral
power-gain (U) of the small-area HBT, computed from
the measured 0.045-45 GHz S-parameters. A 165 GHz
f. and a 92 GHz f,,,x were measured at (Ic = 7.0 mA
(3.3 x 10° A/em?) and Veg = 1.5V, as determined by a
—20 dB/decade extrapolation. These are the highest
values reported for metamorphic HBTs.
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