

Solid-State Electronics 46 (2002) 1541-1544

SOLID-STATE ELECTRONICS

www.elsevier.com/locate/sse

InP/In_{0.53}Ga_{0.47}As/InP double heterojunction bipolar transistors on GaAs substrates using InP metamorphic buffer layer

Y.M. Kim*, M. Dahlstrom, S. Lee, M.J.W. Rodwell, A.C. Gossard

Department of Electrical and Computer Engineering, University of California, Santa Barbara, CA 93106, USA

Received 11 December 2001; accepted 17 January 2002

Abstract

InP/In_{0.53}Ga_{0.47}As/InP double heterojunction bipolar transistors were grown on GaAs substrates. A 92 GHz power-gain cutoff frequency f_{max} and a 165 GHz current-gain cutoff frequency f_{τ} were obtained, presently the highest reported values for metamorphic HBTs. The breakdown voltage BV_{CEO} was 5 V while the DC current-gain β was 27. In order to minimize the transistor operating junction temperature, high-thermal-conductivity InP metamorphic buffer layers were employed.

© 2002 Elsevier Science Ltd. All rights reserved.

Keywords: Metamorphic growth; Heterojunction bipolar transistor; Indium phosphide

1. Introduction

Double heterojunction bipolar transistors [1–3] (DHBTs) have applications in high-frequency communications and radar. HBTs using InGaAs or GaAsSb epitaxial base layers and InGaAs or InP epitaxial collector layers—lattice-matched to InP—currently exhibit significantly higher current-gain and power-gain cutoff frequencies than GaAs-based HBTs. However, InP substrates are expensive and are available only in smaller diameters than GaAs substrates are. Additionally, 100-mm-diameter InP substrates are fragile and are readily broken during semiconductor manufacturing. This has motivated the investigation of metamorphic growth of InP-based DHBTs on GaAs substrates [4]. To date, reported metamorphic growths have used AlGa-AsSb or InAlAs buffer layers, which have very low thermal conductivities, approximately 5–10 W K⁻¹ m⁻¹

2. Growth

InP/In $_{0.53}$ Ga $_{0.47}$ As/InP DHBTs were grown on a GaAs substrate using a Varian Gen II molecular beam epitaxy (MBE) system. After oxide desorption, 1000 Å

E-mail address: kymdow@ece.ucsb.edu (Y.M. Kim).

0038-1101/02/\$ - see front matter © 2002 Elsevier Science Ltd. All rights reserved. PII: S0038-1101(02)00102-8

as measured for layers grown in our laboratory. When the HBT is operated at high ($\sim 10^5 \text{ A/cm}^2$) bias current density, which is required for high-transistor bandwidth, such low-thermal-conductivity epitaxial layers beneath the transistor will increase the junction temperature substantially relative to that of an HBT grown on a lattice-matched InP substrate [5], with a consequent reduction in HBT reliability [6]. Here we report metamorphic InP-based HBTs with greatly improved performance. A 92 GHz power-gain cutoff frequency f_{max} and a 165 GHz current-gain cutoff frequency f_{τ} were obtained in a device with a 5 V common-emitter breakdown voltage BV_{CEO}. In order to minimize the transistor operating junction temperature, InP metamorphic buffer layer was employed. This has a measured thermal conductivity of 16.1 W K^{-1} m⁻¹.

^{*} Corresponding author. Tel.: +1-805-893-3543; fax: +1-413-

undoped GaAs buffer layer was grown at 600 °C, forming a smooth surface prior to metamorphic growth. The substrate temperature was then reduced to 480 °C and the 1.5 µm undoped InP metamorphic buffer layer was grown directly on the GaAs substrate. During buffer layer growth, the reflection high-energy electron diffraction (RHEED) pattern showed strong streaks, indicating two-dimensional growth, although the RHEED pattern intensity was slightly weaker than that observed during lattice-matched growth. The remaining HBT layers were then grown. Key features of the layer structure (Table 1) include an InP emitter, a 400-A-thick InGaAs base with 52 meV band gap grading for base transit time reduction, a 200-A InGaAs/InAlAs basecollector heterojunction grade, and a 1700-Å InP collector. The heterojunction between the In_{0.53}Ga_{0.47}As base and the InP collector is a 200-A-thick In_{0.53}Ga_{0.47}-As/In_{0.52}Al_{0.48}As chirped superlattice whose composition adjacent to the collector is In_{0.53}Ga_{0.26}Al_{0.21}As, chosen so as to eliminate discontinuities in the conduction-band energy at the interface. A similar superlattice grade is employed in the emitter-base junction. A 1.4×10^{12} cm⁻² N-type pulse-doped layer below the base-collector grade, which has a larger doping than that required to counteract the quasi-field associated with the grade, produces an accelerating field in the base-collector grade. A significant Be base dopant migration into the base-collector grade would produce an energy barrier in the conduction band, partially suppressing electron transport from base to collector, and thereby increasing the base transit time. For this reason, a 100 A undoped In_{0.53}Ga_{0.47}As setback layer was introduced between the base and the base-collector grade. The total collector-base depletion region thickness is therefore 2000 Å.

3. Fabrication and measurement

HBTs were fabricated in a triple-mesa process using optical projection lithography and selective wet chemical etching. Use of narrow emitter–base and collector–base junctions reduces both the base resistance and the collector–base capacitance [7]. While the emitter contact metal is 0.7 $\mu m \times 8 \mu m$, lateral undercutting during the HCl-based etch of the InP emitter forms an emitter–base junction whose dimensions are approximately 0.4 $\mu m \times 8 \mu m$. Collector–base capacitance is reduced by employing narrow base Ohmic contacts of 0.25 μm width on either side of the emitter stripe, producing a small 1.2 $\mu m \times 11 \mu m$ base–collector junction area. Polyimide is used both for passivation and for mesa planarization prior to interconnect deposition.

Fig. 1 shows the common-emitter characteristics. The measured peak small-signal DC current gain is approximately 27, while the common-emitter open-circuit breakdown voltage BV_{CEO} is 5 V at 2 mA bias. Fig. 2 shows the Gummel characteristics, again indicating $\beta \cong 23$ and a base ideality factor of 2.0. We observe a similar DC current gain and base ideality factor in lattice-matched InP/InGaAs/InP DHBTs with submicron emitter dimensions [8], effects we attribute to electron conduction on the exposed InGaAs base surface between the emitter heterojunction and the base Ohmic contact. I-V measurements of the collector-base junction (with open emitter) indicate 0.7 μ A collector-base leakage I_{cbo} at 0.3 V reverse bias on the collector-base junction.

Fig. 2 also shows Gummel characteristics measured on a large-area HBT ($60 \mu m \times 60 \mu m$ emitter-base and $100 \mu m \times 130 \mu m$ base-collector junctions) fabricated from the same epitaxial material. Despite the large col-

Table 1 Layer structure of the MBE-grown InP/In_{0.53}Ga_{0.47}As/InP metamorphic DHBT (GaAs (100) semi-insulating substrate)

Layer	Material	Doping	Thickness (Å)
Emitter cap	$In_{0.53}Ga_{0.47}As$	$2 \times 10^{19} \text{ cm}^{-3}$: Si	1000
Grade	$In_{0.53}Ga_{0.47}As$ to $In_{0.53}Ga_{0.26}Al_{0.21}As$	$2 \times 10^{19} \text{ cm}^{-3}$: Si	200
N ⁺ emitter	InP	$2 \times 10^{19} \text{ cm}^{-3}$: Si	900
N ⁻ emitter	InP	$3 \times 10^{18} \text{ cm}^{-3}$: Si	300
Emitter-base grade	$In_{0.53}Ga_{0.26}Al_{0.21}As$ to	$8 \times 10^{17} \text{ cm}^{-3}$: Si	233
_	$In_{0.455}Ga_{0.545}As$	$8 \times 10^{17} \text{ cm}^{-3}$: Be	67
Graded base	$In_{0.455}Ga_{0.545}As$ to $In_{0.53}Ga_{0.47}As$	$4 \times 10^{19} \text{ cm}^{-3}$: Be	400
Setback	$In_{0.53}Ga_{0.47}As$	Undoped	100
Base-collector grade	$In_{0.53}Ga_{0.47}As$ to $In_{0.53}Ga_{0.26}Al_{0.21}As$	$1 \times 10^{16} \text{ cm}^{-3}$: Si	200
Pulse doping	InP	$7 \times 10^{18} \text{ cm}^{-3}$: Si	20
Collector	InP	$2 \times 10^{16} \text{ cm}^{-3}$: Si	1700
Subcollector	$In_{0.53}Ga_{0.47}As$	$1 \times 10^{19} \text{ cm}^{-3}$: Si	250
Subcollector	InP	$2 \times 10^{19} \text{ cm}^{-3}$: Si	750
Buffer	InP	undoped	15 000

All graded layers are $In_{0.53}Ga_{0.47}As/In_{0.52}Al_{0.48}As$ digital alloy grades, except the base, which is an $In_xGa_{1-x}As$ linear compositional grade.

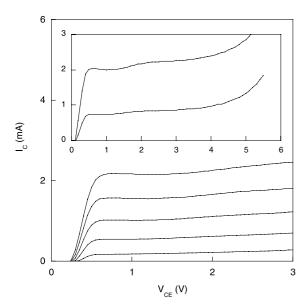


Fig. 1. Common-emitter DC characteristics of $0.4~\mu m \times 8~\mu m$ emitter device. The base current steps are $20~\mu A$. The plot inset, over an expanded voltage range and with $50~\mu A$ base current steps, shows a 5~V common-emitter breakdown voltage.

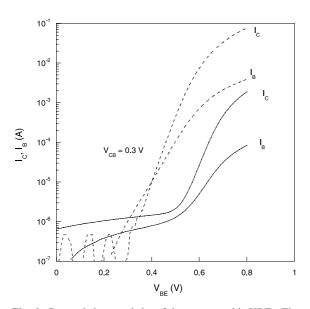


Fig. 2. Gummel characteristics of the metamorphic HBTs. The solid lines are the data for a metamorphic HBT with a 0.4 $\mu m \times 8~\mu m$ emitter–base junction and a 1.2 $\mu m \times 11~\mu m$ base–collector junction, while the dotted lines are for a metamorphic HBT with a 60 $\mu m \times 60~\mu m$ emitter–base junction and a 100 $\mu m \times 130~\mu m$ base–collector junction.

lector-base junction area, the Gummel characteristics indicate that $I_{\rm cbo}$ of the large-area HBT is below 0.5 μ A. If associated with defects arising from metamorphic

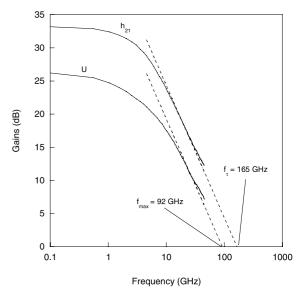


Fig. 3. Measured short-circuit current gain h_{21} and Mason unilateral power-gain U vs. frequency for an HBT with a $0.4 \ \mu m \times 8 \ \mu m$ emitter—base junction and a $1.2 \ \mu m \times 11 \ \mu m$ base—collector junction ($I_{\rm C}=7.0 \ mA$ and $V_{\rm CE}=1.5 \ V$).

growth, the observed collector-base leakage current would be proportional to the collector-base junction area. Given the low $I_{\rm cbo}$ associated with the large-area HBT, the data suggests that $I_{\rm cbo}$ of the small-area HBT most probably results from inadequate collector-base junction surface passivation.

Fig. 3 shows the current gain (h_{21}) and unilateral power-gain (U) of the small-area HBT, computed from the measured 0.045–45 GHz S-parameters. A 165 GHz f_{τ} and a 92 GHz f_{max} were measured at ($I_C = 7.0$ mA (3.3 × 10⁵ A/cm²) and $V_{CE} = 1.5$ V, as determined by a –20 dB/decade extrapolation. These are the highest values reported for metamorphic HBTs.

Acknowledgements

This work was supported by the ONR under grant number N00014-01-1-0065.

References

- Asbeck P, Chang F, Wang K-C, Sullivan G, Cheung D. GaAs-based heterojunction bipolar transistors for very high performance electronic circuits. IEEE Proc 1993;81(12): 1709–26.
- [2] Matsuoka Y, Yamahata S, Kurishima K, Ito H. Ultrahighspeed InP/InGaAs double-heterostructure bipolar transistors and analysis of their operation. Jpn J Appl Phys 1996;35:5646–54.

- [3] Oka T, Hirata K, Ouchi K, Uchiyama H, Mochizuki K, Nakamura T. Small-scale InGaP/GaAs HBTs with WSi/Ti base electrode and buried SiO₂. IEEE Trans Electron Dev 1998;45(11):2276–82.
- [4] Zheng HQ, Radhakrishnan K, Wang H, Yuan KH, Yoon SF, Ng GI. Metamorphic InP/InGaAs double-heterojunction bipolar transistors on GaAs grown by molecular-beam epitaxy. Appl Phys Lett 2000;77(6):869–71.
- [5] Chau H-F, Liu W, Beam III EA. InP-based HBTs and their perspective for microwave applications. Conference Proceedings. Seventh International Conference on Indium Phosphide and Related Materials Hokkaido, Japan, 9–13 May, 1995.
- [6] Kiziloglu K, Thomas III S, Williams F, Paine BM. Reliability and failure criteria for AlInAs/GaInAs/InP

- HBTs. International Conference on Indium Phosphide and Related Materials Williamsburg, VA, USA, 14–18 May, 2000.
- [7] Sokolich MM, Docter DP, Brown YK, Kramer AR, Jensen JF, Stanchina WE, Thomas III S, Fields CH, Ahmari DA, Lui M, Martinez R, Duvall JA. A low power 52.9 GHz static divider implemented in a manufacturable 180 GHz AlInAs/InGaAs HBT IC technology. Technical Digest, IEEE Gallium Arsenide Integrated Circuit Symposium, Atlanta, GA, USA, 1–4 November, 1998.
- [8] Lee S, Kim HJ, Urteaga M, Krishnan S, Wei Y, Dahlström M, Rodwell M. Transferred-substrate InP/InGaAs/InP double heterojunction bipolar transistors with f_{max} = 425 GHz. 2001 IEEE GaAs IC Symposium, Baltimore, Maryland, 21–24 October, 2001.