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>40 GHz Measurements: Why now ?

Very high frequency instruments have existed for some time.

Emerging applications — increased need for instruments
40 Gb/s (40-50 Gb line rate) optical fiber transmission

60 GHz wireless LANs

rates and bandwidths will get still higher

Typical circuit / signal parameters

~40-60 GHz circuit bandwidths

40-50 GHz digital clock rates

~5-8 ps pulse rise times

~150 GHz transistor cutoff frequencies in medium-scale (2000-transistor) ICs

Instruments needed
sampling oscilloscopes (waveform measurements)
network analyzer (circuit response, transistor characterization)

Problems faced
sampling oscilloscope: timebase stability, connectors, cable loss calibration
network analyzer: cost-effective hardware, precise on-wafer calibration







High-Frequency Measurements: Network Analysis
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High-Frequency Measurements: Waveform Measurements

Circuit pulse response

Circuit or system modulation response

Functioning system

Measurements in 50 Ohm system
(Internal node testing not feasible)

Waveforms may be
repetitive / periodic
transient single-shot
random data (eyes)

Wideband Optical Transceiver

O/E, E/O interfaces
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microwave network analysis

Measurement of (linear / small signal) 2-port network parameters in the

frequency domain.

directional coupler

2-port
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Swept-frequency sources (Vgen1 and Vgen2 ) are alternately applied to

the 2-port input and output, and the incident and emanating waves
measured with directional couplers.

Calibration: amplitude/phase contributions of cabling (etc.) between the
instrument and the d.u.t. are corrected for by first measuring a series of

devices of known characteristics in place of the d.u.t. , either 5022 load,
open, short, and through line, or a series of through lines of differing

lengths ("LRL")




Block Diagram: microwave network analysis
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Sampling
Reducing the repetition frequency (bandwidth) of a signal
so that it can be measured with low-frequency instruments

A Strobe
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If the strobe signal has repetition frequency fp and the input signal has
repetition frequency nfg+Af, the sampled output will be at frequency Af.




Synthesizers as sampling scope timebase

/\/ synthesizer
driving DUT
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@ driving sampler
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driving display
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Demands that instruments can control signal stimulus
Extremely good timebase stability
Acceptable for eye patterns, hard for data patterns.




Common triggered-timebase sampling scope
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Good: trigger on aperiodic repetitive signal
Bad: no band limiting in triggering — trigger jitter




PLL as sampling scope timebase ?
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PLL is narrowband filter: noise suppression of trigger signal— less jitter
Challenge: maintaining LO frequency within acceptable design range
Alternatives:

A-2 frequency synthesis for frequency offset

Direct digital frequency synthesis timebase control




Cable losses with sampling scopes
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Present sampling oscilloscopes
do not provide calibration correction
of cable + connector losses

significant ambiguity in waveform
measurement, particularly for on-
wafer measurements*®

*skin losses of wafer probes are high
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Calibration in sampling oscilloscopes ?

Pulse response distortion due to cable loss is becoming major measurement limit.

Network analysis removes such artifacts by calibration

Can NWA calibration be extended to sampling oscilloscopes ?







Equivalence of sampling and harmonic mixing

spectrum of sampling pulse train
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Sampling circuits are one type of high-order harmonic mixer.
Sampling circuits used in oscilloscopes and network analyzers




Harmonic-mixing order in network analysis

Noise figure of Sampling Circuit
F = harmonic order of conversion (frequency domain description)

F = (time off / time on) (time domain description)

Sampling circuits with low high harmonic orders :
inexpensive hardware : LO at low frequency,low LO tuning

degraded dynamic range due to high noise figure

Network analysis with low harmonic orders
moderately expensive hardware : higher LO, more LO tuning
better noise figure

harmonic mixer may be diode pair or sampling bridge

Network analysis with fundamental mixing
expensive hardware

best dynamic range




Diode Sampling Bridges

Used in sampling oscilloscopes and network analyzers
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Schottky diodes are readily made with << 5 fF junction capacitance and » 2 THz R-C cutoff frequencies.
The primary bandwidth limitation of sampling circuits: duration of the strobe pulse used to gate the diodes.

Strobe pulses generated using either Silicon step-recovery diodes, NLTLs, or transistor limiting amplifiers




The Step Recovery Diode
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Under bias, carriers are stored in
the intrinsic region

Charge control model:

N+
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‘Diode current -
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INn microwave instruments
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Electrical Falltime Compression with SRD's
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Risetime / pulse width limits to SRDs

Depletion Capacitance
I=2Cqxp
Carrier Diffision Time
Time in which final carrier collapse arises in depletion region
Moll (1969) estimates this as 10 ps/micron of depletion width
Typical Performance
Best commonly - available devices are 20 - 30 ps

Commercial SRD Impulse Generator
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GaAs Schottky diode ICs for mm-wave Instruments
UCSB, Stanford, Hewlett-Packard 1985-1995

GaAs Nonlinear Transmission Line ICs:
0.5 ps pulse generators &
DC-725 GHz sampling circuits

Semiconductor Technology:

scaled THz Schottky varactor diodes
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NLTL technologies can cheaply address emerging needs for 100 GHz instruments.
Connector and timebase difficulties will dominate cost and accuracy




NLTL Structure and Equivalent Circuit
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Wavefront Cnmpressinn by NLTL
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SPICE Simulation of Shock Formation

Volts




Limits to NLTL Shock-Wave Transition Time

Periodic-Network (Bragg) Frequency
The periodic structure results in a sharp filter cutoff inversely proportional
to the diode spacing. Within lithographic limits, this can easily be 1-2 THz.

Diode Cutoff Frequency
The fundamental limit of the technology.
Falltime limited to

T, f =0.14ps* THz

c,diode

5 THz diode cutoff frequency: 0.28 ps Shock wave




Shorted-Line Differentiator for Impulse Generation

Symmetric Impulse Generation .4,
with CPW/CPS Balunileferentlatnr
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NLTL-strobed sampling circuit

sampled

CPW/CPS
balun/differentiator
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NLTL strobe pulse
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NLTL & Sampling Bridge, M. Case ~1992
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measurement of NLTL with NLTL-gated sampling IC
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Aggressive sampling IC design with
1 um diode geometries
low-loss elevated coplanar waveguide in the NLTLs
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measurement of NLTL with NLTL-gated sampling IC
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Very simple sampling IC design using 2-3 um process minimum feature size
Sampling bridge bandwidth is approximately 275 GHz
DC-110 GHz instruments can be realized using simple, low-cost ICs




Prospective for use of NLTLs in Instruments

NLTLs have been used commercially since early 1990's

HP/Agilent 50 GHz sampling oscilloscopes

Microwave transition analyzer

45 MHz -- 50 GHz 8510 network analyzer ?

Recent emergence of higher-frequency markets now driving instruments

Less Expensive 45 MHz -110 GHz network analysis

Present systems frequency-combine waveguide-banded systems.
These are accurate but expensive.

Reduced-cost instrument could use NLTL-driven sampler for down conversion
NLTL-based sampler can easily down convert DC-200 GHz
Use DC-10 GHz synthesized source for LO
Mixing harmonic order <11 in DC-110 GHz bandwidth: good dynamic range
main design challenge: LO drive interface to NLTL input

Wider-bandwidth sampling oscilloscopes
Present instruments are DC-65 GHz, some are NLTL-based.
It is easy to build NLTL-gated samplers far faster than this.
Practical limits to DC-110 GHz oscilloscope development are:
timebase stability (eliminating trigger jitter)
connector bandwidth limit (110 GHz connectors are fragile)
correction of connection (cable, wafer probe) frequency response by calibration.







O Wohlegemuth

"v Active Probes for On-wafer mm-wave network analysis
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dynamic range.

— less accurate than needed for
real instrument
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*»  Fraunhofer / UCSB 70-220 GHz Network Analyzer
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** Fraunhofer / UCSB 70-220 GHz Network Analyzer

Measurement of S, of a 900 um line. Measurement of S,, of a900 um line.
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Network analysis above 40 GHz: commercial tools

Agilent, Wiltron:

RF— 50 (65) GHz in coax, sampler-based Instruments

higher bands using waveguide and harmonic mixers

multiplexed together for single-sweep measurements
Oleson Microwave Labs.

frequency extenders for Agilent, Wiltron

140-220 GHz and 220-330 GHz
credits also to the JPL group (T. Gaier et al)

Probes
Probes with coaxial connectors
DC-110 GHz, GGB and Cascade Picoprobe Model 220 Microwave
Probe 11'
P

Waveguide coupled probes

to 110 GHz (Cascade)

to 220 GHz (GGB)

to 330 GHz (from GGB soon ?)

GGEHE INDUSTRIES, INC. + P.O.BOX 10858 = NAFPLES, FL 13941




On-wafer mm-wave Network Analysis at UCSB

Applications:
Measurements of transistor amplifiers to 220 GHz
Precise characterization of transistors (power gains, parameter extraction)

45 MHz-50 (40) GHz:
Agilent 8510 NWA, coaxial cables and probes

75-110 GHz:
Agilent 8510 NWA, waveguide, GGB waveguide-coupled probes

140-220 GHz:
Oleson frequency extenders, waveguide, GGB waveguide-coupled probes

Key features for good measurements
on-wafer LRL microstrip calibration standards with offset reference planes
waveguide instrument-probe connections: less loss, less phase drift.

higher band instruments use low-order mixers — better dynamic range




Loss of Coaxial Cable

| llllllll | lllllll‘ | IS I O I I

2d 1 mm cable:
14 dB/m at =
100 GHz cutoff -

10

3 mm cable:
3.1 dB/m at
33 GHz cutoff -

" 10 mm cable: i
0.7 dB/m at B
10 GHz cutoff

e
-
e
e
e
e
e
_ —
e
-
Ve
e -
_ —
_ —
— P —
— P —
e

] & =2.1 tan(d)=300" I

0_01 I I I T T T ‘ I I I T T 17T ‘ I I I T T T
1 10 100 1000
Frequency, GHz

Attenuation, dB/meter

Single - mode propagation requires f <c(2/me""” (Dimer + D e )_1

r

Skin loss ay,, O '/ D

Inner

M3, Lossayg, O f?




Why waveguide ?
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140-220 GHz On-Wafer Network Analysis

* HP8510C VNA,
Oleson Microwave Lab mm-wave
Extenders

* GGB Industries coplanar wafer
probes

sconnection via short length of WR-5
waveguide

UCSB 140-220 GHz VNA Measurement Set-up

* Internal bias Tee’s in probes for
biasing active devices

* 75-110 GHz set-up is similar




Insertion Loss of Measurement Set-up

dB(thru.S¢2,1))

Q
measurement includes:
— L 3’ of waveguide
connections
2 on-wafer probes,
Gt through microstrip line (460 um)
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Miguel Urteaga

Application: Characterizing mm-wave
bipolar transistors (HBTSs)

* Electron beam lithography used to define
submicron emitters and collectors

* Minimum feature sizes
= 0.2 um emitter stripe widths
= 0.3 um collector stripe widths

 Improved collector-to-emitter alignment
using local alignment marks

» Aggressive scaling of transistor
dimensions predicts progressive
improvement of f__.

As we scale HBT to <0.4 um,

f . KEeps increasing,

measurements become very difficult

Submicron Collector Stripes
(typical: 0.7 um collector)
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How do we measure f

max *

Maximum Available Gain

Simultaneously match input and
output of device

MAG =E—EI‘(K—\/K2—1)

S,
K = Rollet stability factor

Transistor must be unconditionally stable or MAG does not exist

Maximum Stable Gain

Stabilize transistor and simultaneously
match input and output of device
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To first order MSG does not
dependonf, orR,,
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Vgen network
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resistive
loss
(stabiliz-
ation)

1

load

For Hybrid- mtmodel, MSG rolls off at
10 dB/decade, MAG has no fixed slope

lossless

matching
network

CANNOT be used to accurately
extrapolate f
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Unilateral Power Gain

Mason’s Unilateral Power Gain

Use lossless reactive feedback to cancel
device feedback and stabilize the device,
then match input/output.

U= ‘Y21 _le‘z
4(G11G22 _G21G12)

U is not changed by pad reactances

For Hybrid- mmodel,
U rolls off at 20 dB/decade

ALL Power Gains must be unity atf__.

shunt
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Accurate Transistor Measurements Are Not Easy

« Submicron HBTs have very low C_, (< 3 fF)

» Characterization requires accurate measure of
very small S12

» Standard 12-term VNA calibrations do not
correct S12 background error due to
probe-to-probe coupling

Solution

Embed transistors in sufficient length of
transmission line to reduce coupling

Transistor in Embedded in LRL Test Structure

1 Lol 1 b1l 1 111
~

~
~
~
N
~
~
~
Mason's

~
~
~
~
~
~
N
~ ~
~ ~
N Gain, U
~ 9
.
N
N ~
O N
o ~
D
O
NN ~
~
.~
~
~
~
~
~
-
~
~
~
~
~
.~ ~

T T lllllll T

Characteristics of Line Standards are well 10
controlled in transferred-substrate microstrip Frequency, GHz
wiring environment
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Place calibration reference planes at transistor
terminals
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Line-Reflect-Line Calibration
Standards easily realized on-wafer
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Does not require accurate characterization of
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Corrupted 75-110 GHz measurements due to
excessive probe-to-probe coupling




Line-reflect-line on-wafer cal. standards

L+1275 um-+Lo

e
L 560 yme—B )

75-110 GHz

-NE I‘— Lo+Lo—>I I

THROUGH

LINE I | | j

SHORT i% _i_—_Li

OPEN (reflect) m—— o ——

U ... ] o

] &«— Device under test

Note that calibration is to line Zo : line Zo is complex at lower frequencies, and must be determined




On-wafer transmission-line wiring environment: impact on LRL calibration

Thin-film microstrip

ih=5 um & =3.8

precise LRL calibration

microstrip

A

E =13

r

h=75 um

\4
]

might be OK: watch for substrate modes

h=500 tm

\l

problem with substrate modes
thin wafer ? absorber ?
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How good is the calibration ?

75-110 GHz calibration looks Great

S11 of short

(

S11 of through S11 of open

freq (75.00GHz to 110.0GHz)

Probe-Probe coupling
is better than —45 dB
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140-220 GHz calibration looks OK

AS11 of open

S11 of through About 0.1 dB / 3° error
About —40 dB \\

|

freq (140.0GHz to 220.0GHz)

0.30 I
0.25—

020 S21 of through line is
. off by less than 0.05 dB

0.10—

dB

0.05—

0.00—
-0.05—
-0.10—

-0.15 LIBLINLJNL I ILINLLL INLNLL LLL L L L NN L L L L L LI
140 150 160 170 180 190 200 210 220

freq, GHz




Miguel Urteaga

Measurement of Thru Line after Calibration

Magnitude S21 (dB) Phase S21 (degrees)
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Measurement of Line Standard after Calibration

Magnitude S21 (dB) Phase S21 (degrees)
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Measurement after Calibration

(<
N
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characterization results, DC-40 and W-band
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174 GHz Single-HBT Amplifier UCSB
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Poorer quality of an on-wafer LRL calibration using CPW
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High Frequency Instruments

Needs:
100 GHz sampling oscilloscopes for 40 Gb fiber transmission, ...
Accurate and affordable 60 GHz (100 GHz ?) network analyzers

Easy to Address:
sampling (harmonic down conversion) is easy and cheap over DC-200+ GHz
other problems are relevant

Sampling Oscilloscopes

timebase stability and flexibility in triggering: conflicting requirements !
better time bases: 3-synthesizer, PLL, or DDFS

choose timebase appropriate for application

cable losses are major source of error

network-analyzer-like calibration procedures should be developed

Network Analysis
combined accuracy, frequency coverage, and cost

good solution (?): moderate-order harmonic conversion with sampler for 40-110 GHz

better calibration methods needed for testing > 300 GHz f,and f__, transistors




