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Abstract—We report experimental verification of the 
previously proposed blind method of correcting gain and 
timing mismatches for a two-channel time-interleaved analog-
to-digital converter (TIADC). The experimental setup allows 
for two different M=2 TIADC configurations with 14-bit 
resolution and 200-MHz overall sampling rates. Mismatch 
parameters are estimated by the blind algorithm with 
representative narrowband and wideband signals. The 
spurious-free dynamic range (SFDR) performance is then 
evaluated by using sinusoids. We discuss performance gain, as 
well as the limitations of the proposed blind algorithm when 
applied to real world analog-to-digital (A/D) converters. 

I. INTRODUCTION 
A time-interleaved analog-to-digital converter (TIADC) 

has a parallel structure where a number of sub-converters 
cyclically sample the input signal, and outputs are similarly 
taken to form a digital stream. The overall sampling rate 
linearly increases with the number of sub-converters, 
therefore a TIADC is well suited for high-speed analog-to-
digital (A/D) conversion systems [1], [2]. 

The spectral performance of a TIADC is limited by 
mismatches in electrical characteristics between sub-
converters. In practice, gain, sampling time and dc offset 
mismatches are usually dominant. Such mismatches create 
noise sidebands, decreasing signal-to-noise ratio and 
spurious-free dynamic range (SFDR) [1], [7]. Post-correction 
of mismatch errors by digital signal processing provides two 
options: training methods [7] and blind methods [3]-[6], [8]. 
Training methods are capable of correcting general linear 
mismatches, and therefore are suitable for high-resolution 
applications at the cost of special calibration hardware and 
system stoppage. Blind methods, on the other hand, allow 
continuous system operation and track slowly time-varying 
mismatches, with limitations such as compromised accuracy 
and potentially high computational cost. 

The authors have proposed a novel blind correction 
algorithm for gain and timing mismatches [8], which is more 
general than previous techniques, since, other than the input 

wide-sense stationarity (WSS) assumption, no special input 
distribution or sub-Nyquist bandwidth limitations are 
assumed. Gain and timing mismatches are handled in a 
unified framework of a parameterized filter bank. 
Uniqueness proof of the estimate was also given for the first 
time. This paper is an experimental continuation of the 
authors’ prior work toward making blind mismatch 
correction more practical. 

II. REVIEW OF THE PROPOSED BLIND CORRECTION 
ALGORITHM 

This section summarizes the previously proposed blind 
method [8]. A two-channel TIADC system is shown in Fig.1 
(a), where the analog input x(t) is assumed to satisfy Nyquist 
sampling criterion. The gain and timing mismatches for the  
first and second channel are (G0, ∆ t0) and (G1, ∆ t1), 
respectively. Fig.1 (b) is a channel-transfer-function (CTF) 
representation where Hi(ω)=Giexp(-jω∆ti). As shown by 
experimental data later, actual sample-and-hold circuits and 
A/D converters exhibit general linear gain-phase distortion 
as well as static gain and timing delay, which can be 
appropriately modeled by CTF’s. Normalization with respect 
to H0(ω) yields Fig.1 (c), which leaves only two relevant 
mismatch parameters, G≡G1/G0, and ∆t≡∆t1-∆t0 in the static 
gain and timing model. This normalization disregards linear 
filtering common to both channels, and serves as a logical 
starting point for blind correction. 

Assume x(t) has WSS property. Then, its autocorrelation 
Rx(t2,t1)≡E[x(t2)x(t1)] is shift-independent and depends only 
on the time lag such that Rx(t2,t1)=Rx(t2-t1). If (G,∆t)=(1,0), 
i.e. no mismatch, then y[n]=x(nTs) (disregarding common 
filtering) will also exhibit WSS property such that its 
autocorrelation Ry[n,m]≡E[y[n]y[m]] is shift-independent. If 
(G,∆t)≠(1,0), however, WSS property will be lost, and y[n] 
will exhibit wide-sense cyclo-stationarity (WSCS). Ry[n,m] 
will be then periodic with respect to shift, such that 
Ry[n,m]=Ry[n+2,m+2] and Ry[n,m] ≠ Ry[n+1,m+1] in 
general. 



Now, we cascade a correction filter, and the resulting 
system can be represented as a standard analysis-synthesis 
filter bank form in Fig.1 (d) [8]-[9]. The correction filter is 
parameterized by mismatch estimates (G̃, ∆ t̃) such that 
perfect reconstruction condition is met when the estimation 
is equal to the true ones, i.e., when (G̃,∆t̃)= (G,∆t) [8]. Let 
z[n] and Rz[n,m] be the synthesis filter bank output and its 
autocorrelation, respectively. We want to restore WSS 
property by adjusting (G̃,∆t̃). The following error measure 
quantifies how z[n] is close to being WSS.  
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When z[n] is perfectly WSS, J is identically zero, and the 
estimate is guaranteed to be equal to true parameters [8]. In 
practice, we iteratively adjust the estimation (G̃,∆t̃) to reach 
the minimum of J. In summary, we first empirically obtain 
Ry[0,u] and Ry[1,1+u] by observing the uncorrected TIADC 
output. Second, given the current parameter estimate, the 
correction filter is designed from perfect reconstruction 
condition [8]. Third, Rz[0,u] and Rz[1,1+u] is calculated from 
Ry[n,m] by applying double convolution with a correction 
filter. Finally, adjust (G̃,∆t̃) until finding the minimum of J 
defined in (1). 

III. EXPERIMENTAL RESULT 

A. System Setup and Input Signal Preparation 
The experimental setup is similar to the previous one [7], 

except for an arbitrary waveform generator (AWG520 from 
Sony/Tektronix) to create wideband signals. Clock and 
input signals are fed to four A/D boards (AD6645 from 
Analog Devices, Inc.), each having 14-bit resolution and 
100-Msamples/S (MSPS) of sampling rate. A logic 
analyzer captures the digital output, and correction is done 
on MATLABTM. The setup operates at 200-MSPS as a two-
channel TIADC by choosing either 1st- and 3rd-, or 2nd- and 
4th-channel, which will be referred to as “TIADC-13” and 
“TIADC-24,” respectively. 

Two kinds of input signals are considered for the purpose 
of blind estimation: (a) sinusoids from 1.6 to 99.2-MHz in 
1.6-MHz step, and (b) 80-MHz bandwidth signal randomly 
colored by 10-tap FIR filters, as representative narrowband 
and wideband signals, respectively. Wideband signals are 
prepared by first generating uncorrelated sequence of 
uniform-distributed samples, filtering sharply to define 
occupied bandwidth, and randomly coloring. 

B. Algorithm Implementation and Performance Evaluation 
Optimization of the error measure in (1) is done by 

calling a MATLAB built-in function, fminsearch, with all 
available data samples, rather than in adaptation with 
incremental samples [4]-[6]. This allows us to look at more 
fundamental behaviors without artifacts due to the 
adaptation. No local minimum was observed throughout 
optimization runs. Important parameters are L (=71), the 
number of correction filter taps, Nsample (=3 · 104 for 
sinusoids, and 106 otherwise), observation sample size, and 
Umax (=10), autocorrelation window in (1). Default values 
are shown in the parenthesis. 

For experimental study, comparing SFDR before and 
after blind correction is more practical performance 
evaluation than comparing the estimation of mismatch 
parameters with true ones, as in earlier simulation study [8]. 
Regardless of the input signal type for mismatch estimation, 
SFDR evaluation is performed using only sinusoidal signals 
due to the desirable frequency localization and high 
dynamic range property. Offset spur is not considered in 
measuring SFDR. For sinusoidal tests, harmonics up to 8th-
order (<-40dBc), from the signal generator, are also 
ignored. 

C. Measured Channel-Transfer-Function 
Fig. 2 shows normalized CTF’s, characterized by a 

training method [7], for TIADC-13 and TIADC-24. It is 
seen that, except at low frequencies below 20-MHz, the 
CTF can be approximately described by a static gain time 
delay model, (G, ∆t), which is roughly (1.002, 0.005Ts), and 
(0.99, 0.002Ts) for TIADC-13 and TIADC-24, respectively. 
The large deviation below 20-MHz is due to the cut-off 
mismatches of input transformers on A/D boards. Full 
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Figure 1. A M=2 TIADC system: (a) actual system, (b) general CTF
representation, (c) after normalization, and (d) with correction filters. 



correction of these frequency-dependent mismatches will 
require training methods [7]. 

D. Blind Correction With Sinusoidal Inputs 
A series of data acquisition is performed with sinusoidal 

inputs varying its frequency from 1.6-MHz to 99.2-MHz 
with 1.6-MHz step. As a first test, three sets of correction 
filter coefficients are obtained by the proposed blind 
method with the input sinusoid at 4.8, 38.4, and 76.8-MHz. 
SFDR performance is then evaluated across the full Nyquist 
zone for each correction filter. Fig.3 shows typical output 
spectrum, and Fig.4 summarizes SFDR performance for 
each correction filter. 

It is seen that the improvement in SFDR is at its peak 
(20~40dB) around the calibration frequencies, but is 
decreasing as the frequency moves away. In particular, the 
correction filter obtained with 4.8MHz input provides ~20 
dB gain at the calibration center (the solid line with leftmost 
peak in both plots in Fig. 4), but the SFDR quickly drops 
below the uncorrected one as we go away from the 
correction frequency. We note here two important 
properties of the blind correction algorithm. First, the blind 
algorithm only “sees” the CTF at those frequencies where 
the TIADC input has nonzero power. In other words, the 
TIADC output does not have any information about the 
unexcited mode of the A/D converter frequency response. 
Second, the blind algorithm seeks to find the best estimate 
(G̃,∆t̃) which can compensate for the excited mode of the 
actual CTF. Assume a single-tone input at ω0, and the CTF 
at this frequency H(j ω 0). Then, the blind algorithm 

concludes parameter search with the equivalent gain and 
time delay as follows. 
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If the actual CTF is exactly represented by static gain and 
time delay over the entire Nyquist zone, then the estimation 
(2) will provide full-band correction. If, however, the CTF 
deviates from (G, ∆t) model, then (2) will provide only 
narrowband mismatch correction at ω 0, and at other 
frequencies, the mismatch may or may not be corrected. In 
Fig. 2, it is seen that the behavior of CTF at 4.8 MHz is not 
consistent with (G, ∆t) model. The mismatch parameters 
estimated at this frequency, therefore, do not accurately 
model the overall frequency-domain behavior, thus failing 
in providing wideband correction as seen in Fig. 4. 

As a second narrowband test, noting that the correction is 
still locally valid around the calibration frequency, we now 
recalculate the correction filter for every SFDR evaluation 
frequency, and the result is shown in Fig. 5. For reference, 
off-line calibration result [7] is also shown as a dotted-line, 
which overlaps over substantial frequency regions. In both 
cases, mismatch spurs are suppressed enough so that SFDR 
is mostly limited by other spurs unrelated to channel 
mismatches, thus the similar SFDR results between the off-
line and blind method (In an off-line method, however, the 
full-band correction is achieved by a single set of filter 
coefficients). In Fig. 5, sudden SFDR drop around 50-MHz 
is due to the artificial, unreal mismatch induced by the input 
signal, not actual channel mismatches. A single period of a 
50-MHz sinusoid is exactly equal to 4Ts, such that in the 
worst case, the first and second A/D converter may only 

Frequency (MHz)

M
ag

ni
tu

de
Ph

as
e 

(ra
d)

Frequency (MHz)

0 50 100
1

1.005

1.01

1.015

0 50 100
-0.01

0

0.01

0.02

0 50 100
0.95

1

1.05

0 50 100
0

0.01

0.02

0.03

TIADC-24

TIADC-24

TIADC-13

TIADC-13

 

Figure 2. Normalized CTF’s for TIADC-13 (left) and TIADC-24 (right). 
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Figure 3. Typical output spectrum before (left), and after (right) blind
correction with an input sinusoid at 30.4MHz. The gain and timing
mismatch spurs are marked as ‘X’, and offset spur as ‘O’. Harmonics from
signal generators also shown as numbers. 
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Figure 4. Blind correction result with sinusoidal inputs for TIADC-13 
(left) and TIADC-24 (right). Dotted lines represent uncorrected SFDR, and 
solid lines corrected SFDR with filters obtained from 4.8, 38.4, and 76.8 
MHz input, where the SFDR peak corresponds to the input frequency. 
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Figure 5. Blind correction result with sinusoidal inputs. Correction filters 
are re-calculated at every SFDR evaluation frequency. 



catch peaks and zero-crossings, or vice versa, of a sinusoid, 
respectively. This signal-induced mismatch is 
indistinguishable from actual channel mismatches with the 
present method. Put in another way, input WSS assumption 
is not valid in this case and we need either much longer 
observation or randomization techniques. 

Fig. 4 and 5 are representative demonstrations of the 
blind method assuming narrowband WSS signals. In reality, 
the center frequency of the input may be time-varying and 
the correction filter will also be updated at a certain rate. 
Fig. 4 shows the expected SFDR performance after a 
sudden change in input frequency before filter coefficients 
are updated. Fig. 5, on the other hand, exemplifies the 
opposite scenario where the input frequency changes more 
slowly than the coefficient update rate. 

E. Blind Correction With 80-MHz Bandwidth Signals 
Six 80-MHz bandwidth signals are applied for the 

purpose of mismatch estimation. The SFDR performance is 
evaluated by using sinusoids and summarized in Fig. 6. The 
blind algorithm now “sees” the CTF over a wider range of 
frequencies than the narroband input case, and therefore the 
estimated parameters provide a better fit to the entire 
frequency response. The SFDR improvement is more evenly 
distributed, but still depends on the input power distribution. 
For example, one of the test inputs happens to have ~15dB 
higher power level around 50-MHz. When applied to 
TIADC13, its corrected SFDR is seen to be lower than the 
uncorrected one, below 30-MHz. 

F. The Effects of Observation Sample Size 
The estimation error of the proposed blind method is 

critically related to the autocorrelation estimation accuracy 
as seen in (1). Assuming a WSS source, it can be shown that 
the variance of non-WSS noise of autocorrelation estimation, 
due to the finite observation, is inversely proportional to 
Nsample

2 and Nsample, for asymptotically narrowband and 
wideband signals, respectively. Further analysis is beyond 
the scope of this paper and instead we summarize 
representative experimental results in Fig. 7.  

 

IV. CONCLUSION 
We have discussed experimental verification of the blind 

method for TIADC mismatch correction. Under the present 
experimental condition, mismatch modeling error is limiting 
broadband correction. The finite observation sample size also 
limits the SFDR performance with wideband signals. Further 
studies are currently under way to achieve a more 
satisfactory broadband correction. Modification of the 
current algorithm for real-time operation will also be 
explored.  
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Figure 6. Blind correction result with six dc-to-80-MHz wideband inputs. 
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Figure 7. The effects of observation sample size (TIADC-13): (a) 
sinusoidal inputs with self-obtained correction filters at every SFDR 
evaluation frequency. Nsample=103, 3 · 103, 104, and 3 · 104. (b) 80-MHz 
bandwidth input with Nsample=3·104, 105, 3·105, and 106. 


