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Abstract—A computationally efficient technique is introduced for the 
adaptive blind correction of M-channel time-interleaved analog-to-
digital converters (TIADC). Under wide-sense stationary (WSS) input 
assumption, gain and timing errors are estimated by monitoring the 
shift-dependence of TIADC output autocorrelation. Sampling time 
mismatches are directly compensated by adjusting individual clock 
timing offsets in analog domain. All other signal processing including 
blind parameter adaptation is done in digital domain. This mixed-
domain technique takes advantage of each domain to dramatically 
reduce computational requirement on the digital side. As a by-product, 
convergence is guaranteed under mild conditions with arbitrary 
number of channels. Minimum resolution and dynamic range of the 
sampling timing control circuitry are important, but other 
imperfections are not critical, due to the implicit feedback operation. 
Experimental demonstration is performed by a proof-of-concept, M=4 
400-MSPS real-time setup. After 300 iterations, mismatch spurs are 
suppressed by more than 40-dB, down to ~80dB below the signal at 
~171MHz. This is the first proposal and demonstration of low-
computation blind technique with guaranteed convergence. 

I. INTRODUCTION 
A time-interleaved analog-to-digital converter (TIADC) is a 

scalable architecture for high sampling rates. A number of sub-
converters cyclically sample the input signal, and multiple outputs 
are combined to yield a single digital stream. The collective 
sampling rate is therefore proportional to the number of channels. It 
has been well known, however, that the spectral performance of a 
TIADC is limited by aliasing spectra due to mismatches in sub-
converter gain, sampling time, etc [1], [11]. Currently known 
correction techniques can be categorized into training (foreground) 
[2], [11] and blind (background) methods [3]-[10], [12]-[13]. In this 
paper, we are interested in blind methods which are generally 
capable of uninterrupted operation and of tracking time-varying 
errors. There have been proposed a variety of blind methods with 
different accomplishments and limitations. Some perform error 
detection and correction entirely in digital domain [6]-[8], [12], 
while others use both analog and digital domain [3]-[5], [9]-[10].  

Previous mixed-domain methods typically involve special 
analog signal processing (e.g. adding a known signal to the input) to 
facilitate mismatch estimation, which may potentially compromise 
input signal integrity. Purely digital techniques keep the analog path 
intact, but the computational cost is generally high, partly due to 
long fractional-delay filters for timing correction (including the 
calculation of their coefficients) and partly due to the complexity of 
the iterative algorithm. For both classes of techniques, special 
assumptions (e.g. reduced input bandwidth, limited number of 
TIADC channels, wide-sense stationarity, etc) are necessary to 
make the problem of blind estimation solvable. 

We propose in this paper a new adaptive blind method under a 
wide-sense stationary (WSS) input assumption. This is along the 
same line as the authors’ prior work [12]-[13], but our main focus 
here is to significantly reduce the computational complexity to 
enable very low-cost, real-time operation. This requires redefinition 
of the problem from the beginning. Noting that the digital filter 
correction of timing errors is costly, we propose direct tuning of 
sampling clock timing, leaving input analog signal path untouched. 
Several benefits follow from this. First, fractional-delay filters as 
well as their coefficient calculation are no longer necessary. Second, 
sampling time correction is now ideal up to full Nyquist input 
bandwidth, which is not possible with finitely long fractional-delay 
filters. Third, and most importantly, convergence is guaranteed by a 
simple iteration rule when combined with the autocorrelation-based 
blind estimation method. All other signal processing is implemented 
in the digital domain after the analog-to-digital (A/D) conversion. 
No restriction is put on the number of TIADC channels or input 
signal bandwidth, as long as it satisfies Nyquist sampling criterion.  

II. SYSTEM CONFIGURATION 
Fig. 1 shows a block diagram of the M=4 TIADC structure with 

the proposed mismatch correction scheme. Each of four sub-
converters successively samples the analog input signal x(t) every 
4Ts such that the overall sampling rate is fs (=1/Ts). Listed below are 
pertinent assumptions and clarifications with references to Fig.1. 

 The input x(t) is bandlimited to ½fs, zero-mean and WSS. No 
further information about x(t) is known. 

 Sub-converters’ bit-resolution is high enough to ignore 
quantization effects. 

 Sub-converter offset mismatch is independently corrected 
(e.g., first estimate channel offset by averaging each channel 
output and subtracting it out). 

 The k-th sub-converter has intrinsic gain and sampling time 
error of (G*

k,∆t*
k), which is unknown.  

 The estimate of intrinsic gain and timing error is (G̃k,∆t̃k), 
which is updated every iteration by observing the final 
TIADC output z[n]. 

 Correction of intrinsic timing error, either complete or 
partial, is achieved by adjusting the timing offset of each 
channel’s sampling clock according to the estimate ∆t̃k. 

 Correction of intrinsic gain error is performed, either 
complete or partial, by directly dividing the sub-converter 
output by the gain estimate G̃k. 



 The residual mismatch error is, by definition, (G̃k-G*
k,∆t̃k-

∆t*
k), which is present at the final output z[n]. 

 Finally, the magnitude of intrinsic mismatches are small. The 
precise interpretation will be made clear in the context. 

 
The final per-channel output zk[n] is, therefore, a scaled, time-

shifted, and under-sampled version of x(t) given by 
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where M is the number of channels. The final reconstructed output 
z[n] is obtained by summing all zk[n]’s. It follows that zero residual 
error implies z[n]= x(nTs). Sub-converter digital output yk[n] is 
related to zk[n] by 

[ ] [ ].~ nzGny kkk =            (2) 

Note that zk[n]’s and yk[n]’s are both observable and carry the 
same information since G̃k’s are known to the algorithm. 

III. TIADC OUTPUT AUTOCORRELATION PROPERTIES 
Under the input WSS assumption, output autocorrelation plays 

the role of a mismatch indicator, which drives the iterative 
convergence process. Thus, the proposed technique can be best 
introduced by first examining the properties of output 
autocorrelation associated with intrinsic mismatches. 

Since the input x(t) is WSS, its autocorrelation is shift-
independent, and depends only on the time lag between two time 
points. Thus, the autocorrelation of x(t) is 

( ) ( ) ( )[ ] . allfor , txtxERx τττ +=  

If there are nonzero residual mismatches, the TIADC output 
z[n] no longer satisfies WSS properties and its autocorrelation is 
shift-dependent. Specifically, we focus on the subset of TIADC 
output autocorrelation with zero and unit lag, referenced to each 
channel as follows. 

[ ] [ ][ ],nzER kz,k
20 =            (3) 

[ ] [ ] ( ) [ ][ ].nznzER  M kkz,k 11 mod1 += +
          (4) 

These can be rewritten in terms of the input autocorrelation 
Rx(τ), by using (1), as follows. 
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where δ*
k and δ̃k is the intrinsic and estimated adjacent-channel 

timing offset between k-th and the next cyclic channel, respectively, 
defined by  
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The first-order approximation in (6) is valid as long as the 
adjacent-channel timing offset error |δ*

k−δ̃k| is small compared to Ts. 
Since the autocorrelation of bandlimited signals is smooth, its 
derivative in (6) is well-defined. We note that Rz,k[m]’s are available 
by measurement, but Rx(τ)’s and its derivative are unknown. The 
following key observations are made from (5) and (6). 

1) Residual gain mismatches affect both Rz,k[0] and Rz,k[1], but 
timing errors influence only Rz,k[1]. 

2) No residual mismatch condition: If there is no residual gain 
and timing mismatch, all output autocorrelations are the same, i.e. 
Rz,0[m]=Rz,1[m]=… Rz,M-1[m] for m=0 and 1. In other words, 
Rz,k[m]’s are equalized, and shift-independence has been attained. 

3) Equalized autocorrelation condition: If all Rz,k[0]’s and 
Rz,k[1]’s are made equal to some respective reference, gain estimates 
are equal to intrinsic ones up to a common scale factor, i.e. G̃0/G*

0= 
G̃1/G*

1=… G̃M-1/G*
M-1. Furthermore, timing estimates are also equal 

to intrinsic ones up to a common shift, i.e. ∆t̃0-∆t*0=∆t̃1-∆t*1=… 
∆t̃M-1-∆t*M-1. 
 

The proof follows from (5)-(7) [14], but we reiterate the key 
assumption that the input x(t) is WSS and bandlimited to ½fs. If we 
disregard common scaling and time-shifting which is linear time-
invariant operation, 2) and 3) together establishes that the 
attainment of equalization, or equivalently shift-independence, of 
Rz,k[0]’s and Rz,k[1]’s is a necessary and sufficient condition for 
perfect mismatch correction.  

IV. ALGORITHM DESCRIPTION AND CONVERGENCE ANALYSIS 
In light of the previous discussion, we now develop an iterative 

algorithm to achieve the equalization of zero-lag (Rz,k[0]) and unit-
lag (Rz,k[1]) output autocorrelations. These correlations can be 
empirically obtained using (3) and (4) after replacing E[·] with 
time-averaging over N samples per channel (and per iteration), 
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For the sake of simplicity, we will maintain same notations for 
autocorrelations regardless of whether statistical expectation (e.g. 
(3) and (4)) or time-averaging (e.g. (8) and (9)) is associated. The 
context will make it clear which operation is assumed. 

A. Selection of Equalization Reference 
One of the sensible choices of equalization reference is the 

following average autocorrelations, 
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where Rz,ref[0] and Rz,ref[1] is the equalization reference for Rz,k[0]’s 
and Rz,k[1]’s, respectively. Note that (10) is actually the average 
autocorrelation measured at sub-converter output yk[n]’s, which is 
obtained from Rz,k[0]’s after moving the observation point using (2). 



For convenience, we ignore common time delay and assume the 
following in further discussions. 
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It can be shown that the equalization of Rz,k[0] to the reference 
(10) along with the above constraint leads to the steady-state gain 
estimate of G̃k=±G*

k for all k. Since the polarity of intrinsic gain is 
known in practice, we can consider G̃k=G*

k as the only pair of gain 
parameters which equalizes Rz,k[0]. The implicit normalization 
associated with (12) effectively amplifies the TIADC output by 
G*

RMS. This will be acceptable, however, in most practical cases, 
especially under small mismatch regime. With (12) assumed, 
equalization reference in (10) and (11) can be rewritten in terms of 
the TIADC input autocorrelation by using (5) and (6) as follows. 
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The relationship (14) is true only if there is no residual gain 
error. Note that (13) and (14) is useful for algorithm analysis, while 
(10) and (11) is for actual implementation. 

B. Gain and Timing Estimate Recursion 
Having defined Rz,ref[0] and Rz,ref[1], we will now set up 

iterative equalization process. Examination of (6) suggests that δ̃k is 
more convenient to update than ∆t̃k, since this decouples timing 
update for each channel. Once δ̃k’s are updated, ∆t̃k’s can be 
retrieved from (7), 

( ) ,~11~~ 2

0

1

0
∑∑

−

=

−

=

−−−=∆
M

m
m

k

n
nk mM

M
t δδ         (15)  

where the following is assumed to uniquely determine ∆t ̃k’s (δ̃k’s 
define only the timing offset error between adjacent converters, thus 
the common delay needs to be independently specified).  
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Starting from a set of initial guesses G̃k
(0)’s and δ̃k

(0)’s, 
estimation parameters are updated via the following recursion. 
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where G̃k
(n) and δ̃k

(n) is the estimate of k-th channel gain and 
adjacent-channel timing error at n-th iteration, respectively. The 
superscript with autocorrelations suggests that they are obtained 
from n-th batch of data, using (8) and (9). Once Rz,k[0]’s and 
Rz,k[1]’s are all equalized to a respective reference, the driving term 
in the parenthesis in (17) and (18) is zero, convergence being 
achieved. The stability and speed of convergence is controlled by βg 
and βt which will be referred to as convergence parameters. 
Convergence analysis will follow soon, but for the present 
discussion it suffices to assume βg and βt are sufficiently small. 

It can be proven that the gain update by (17) always decreases 
the magnitude of residual error [14]. For example, suppose 
Rz,k

(n)[0]-Rz,ref
(n)[0]>0 for some k and n. This implies k-th channel 

intrinsic gain is underestimated as seen by comparing (5) and (13). 

We can verify that the recursion (17) will correctly increase the 
current gain estimate. 

Similar proof can be given regarding the timing estimate 
recursion (18) under gain-matched condition [14]. In this case, 
however, we must know the sign of dRx/dτ to correctly decide 
whether to increase or decrease the current timing estimate. This 
can be seen by comparing (6) and (14) with perfect gain matching. 
If no such sign information is available, then we should rely on 
empirical methods such as finite-difference methods or general 
search algorithm [8], [12]-[13]. It turns out that if x(t) is bandlimited 
to ½fs, dRx/dτ is always negative [14]. This property let us make 
parameter adjustment with a priori known direction of decreasing 
error. Therefore, every recursion by (18) is guaranteed to decrease 
the magnitude of residual timing error, enabling simpler and more 
efficient minimization than general empirical methods. This benefit 
directly comes from the deliberate combination of techniques, i.e. 
error detection by looking at output autocorrelation and timing 
correction by adjusting sampling clock in analog domain, which is 
among the contributions of the present paper. 

C. Convergence Analysis 
Let γk

(n)≡G̃k
(n)-G*

k and εk
(n)≡δ̃k

(n)-δ*
k be the n-th iteration 

residual gain and adjacent timing offset error for k-th channel, 
respectively. We can show that under small mismatch condition γk

(n) 
and εk

(n) follows a geometric series [14], 
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where perfect gain-matching is assumed in (20). For monotonous 
(as opposed to oscillatory) convergence, βg and βt must lie in the 
following range. 
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which implies that sufficiently small values of βg and βt will 
guarantee convergence. Also can be inferred is that large values of 
βg and βt will accelerate convergence as long as (21) and (22) are 
satisfied. This will, however, necessarily amplify noise in the 
driving term (the one in the parenthesis in (17) and (18)), making 
the steady-state estimate noisy. With same βg and βt, on the other 
hand, the gain and timing estimate will generally converge faster 
with higher input power and fast-changing input signal, respectively, 
since the geometric ratio in (19) and (20) becomes smaller. 

D. Other Considerations 
Previous analysis assumed perfect gain match when discussing 

timing estimate convergence for simplicity. Equation (6) suggests, 
however, that any nonzero residual gain error biases timing error 
estimation. It can be shown that timing convergence is still achieved, 
since gain estimate will independently converge anyway. The 
caveat is that there may be an unacceptable overshoot or undershoot 
in timing estimate trajectories, causing dynamic range problems in 
actual timing control circuitry. One practical remedy, effective with 



slowly time-varying mismatches, would be to initiate separate 
cycles of gain or timing convergence such that residual gain error is 
sufficiently small whenever a new cycle for timing correction starts. 

There are many factors which will make the parameter estimate 
noisy: A/D quantization noise, clock random jitter, autocorrelation 
estimation error due to finite observation, sampling clock 
quantization error, etc. Using small values of βg and βt or increasing 
batch size N generally decreases the contribution of these noises. 
However, sampling clock quantization error can only be reduced by 
increasing its resolution (or special techniques such as dithering 
may help). The minimum resolution of tunable sampling-time offset 
should be smaller than the allowed residual mismatch level. For 
example, 80-dB of spurious-free dynamic range requires ~0.0001Ts 
of timing control resolution. The proposed algorithm is tolerant to 
other timing imperfections such as change of slope or shift of the 
curve, because these can be absorbed into βt and ∆t*k. Feedback 
action will track such variations if they are slower than the 
adaptation. As a final remark, we note that the recursion rule can be 
further simplified or more sophisticated. See e.g. [15]. 

V. EXPERIMENTAL RESULT 
A proof-of-concept real-time demonstration has been done with 

a 4-channel experimental setup. Four 14-bit 100-MSPS 
commercial chips (AD6645 from Analog Devices, Inc.) are used 
to obtain 400-MSPS of aggregate sampling rate. An analog input 
signal is evenly distributed to each converter after anti-aliasing 
filtering. Fig.2 shows the four-phase sampling clock circuitry with 
voltage-controlled delay lines. Each tunable delay line consists of 
a single T-section (matched to 50-ohm) with reverse-biased 
varactor diodes (MV104 from ON Semiconductor). The delay line 
provides ~0.25Ts of delay tuning range across 0~3V tuning 
voltage (Ts=2.5nsec). Sensitivity at the center is ~0.06Ts/V.  

A logic analyzer first captures a single batch (N=4096) of digital 
output from each channel. The built-in computer then performs 
gain correction, autocorrelation estimation ((8), (9), (10) and (11)), 
and parameter recursion ((17) and (18)) followed by actual timing 
retrieval (15) (see also Fig.1). Updated timing estimate is latched 
into an external 10-bit D/A converter (LTC1660 from Linear 
Technology), which tunes delay lines. This completes a single 
iteration. Update speed of the current setup is ~1 sec/iteration and 
limited by logic analyzer arming and acquisition. 

Fig.3 compares the TIADC output spectrum before and after 
applying the proposed algorithm with a 171.567MHz sinusoidal 
input. After 300 iterations, mismatch spurs marked with ‘X’ has 
been suppressed by more than 40dB. Offset spurs and signal 
harmonics are also shown. Fig.4 shows convergence plots of gain 
and timing estimate with βg=0.2 and βt≈0.25. For comparison, 
predicted learning curves by (19) and (20) are superimposed as 
dotted lines. Close agreement between real and predicted estimate 
is observed. Small discrepancy in timing convergence plot is due 
to the departure of the timing control curve from a straight line. 
Fig.5 and Fig.6 show equalization process of output 
autocorrelations. Equalization is achieved after 150 iterations. 
Finally, Fig.7 summarizes the improvement of signal-to-mismatch 
spur ratio as iteration proceeds. The steady-state residual errors 
can be further decreased, for example by increasing batch size N 
or improving timing control resolution. Wideband signals with up 
to ~0.4fs of bandwidth has also been tested and similar results 
were observed, in which case autocorrelation measurement error 
mostly dominates the steady-state error. 

VI. CONCLUSION 
We have presented a new adaptive technique of blindly 

correcting M-channel TIADC mismatches with experimental results. 
The analog-domain correction of timing mismatches, combined 
with autocorrelation-based error detection, dramatically reduces 
computational complexity while guaranteeing convergence. 
Specifically, empirical calculation of 2M output autocorrelation 
coefficients per iteration is practically all that is necessary. 
Iterative process enables tracking of time-varying mismatches as 
well as timing control imperfection. Fundamental assumption is that 
the input is WSS and bandlimited. More extensive discussion and 
analysis will be given in later publication [14]. 
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Figure 1. A M=4 TIADC system with the proposed mismatch correction 
scheme. 
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Figure 2. Experimental four-phase clock generator with voltage-
controlled delay lines using varactors. 6-dB attenuators prevent cross-line 
tuning by minimizing the input impedance variation of delay line across 
tuning ranges.  
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Figure 3. Measured TIADC output (z[n]) spectrum before (left) and after 
300 iterations (right). Input is a sinusoid at 171.567MHz which is marked 
with ‘1’. Gain and sampling time mismatch spurs are labelled with ‘X’. ‘O’ 
represents offset spurs. Signal harmonics have labels ‘2’,’3’,…, ‘5’. 
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Figure 4. Convergence plot of gain (left) and timing (right) estimate with 
channel numbers shown. Solid lines represent measurement. Dotted lines 
denote predicted curves by (19) and (20) using intrinsic gain errors [0.9986 
1.0043 1.0004 0.9968] and timing errors [0.0120Ts 0.0123Ts -0.0046Ts -
0.0198Ts] at 171.567MHz characterized by a training method [13]. 
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Figure 5. Equalization plot of measured Rz,k[0]’s (left) and Rz,k[1]’s (right). 
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Figure 6. Output autocorrelation variance across channels. Equalization is 
achieved after ~150 iterations. 
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Figure 7. Measured carrier-to-spur ratio. Only gain and timing mismatch 
spurs (marked as ‘X’ in Fig. 3) are considered. On achieving convergence, 
mismatch spurs are suppressed by ~50dB down to ~80dB below carrier. 


