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Abstract

Signal Processing/Hardware Co-Design for High-Speed

A/D Conversion and Millimeterwave Sensor Nets

Munkyo Seo

Signal processing (S/P) algorithms and hardware (H/W) implementations

have been regarded as separate disciplines, so they are typically designed sep-

arately. However, for many cutting-edge applications, co-design of signal process-

ing and hardware is the only option for attaining system-level goals regarding

speed, power consumption or complexity. This dissertation presents the outcome

of two research projects based on co-design approach: High-speed A/D conversion

system, and millimeter-wave sensor network.

First, the theory and experiment of time-interleaved A/D converters (TIADC),

enhanced by adaptive signal processing, is presented. TIADC can, in principle,

maximize speed-resolution product by using multiple parallel A/D converters.

However, H/W mismatches between TIADC channels seriously degrade TIADC

noise performance. It is shown that digital S/P can compensate for such H/W

errors with 20–50 dB improvements in SNR. Various scenarios are considered:

“blind” error estimation as well as “training-based” calibration, full-digital S/P

as well as mixed-domain S/P. Key enablers in S/P techniques are weighted least-

viii



squares (for training methods), parameterized filter bank (for modeling), and

cyclostationary spectral analysis (for blind methods).

Second, a new approach to a wireless sensor network (WSN) is demonstrated

by an experimental 60 GHz prototype, which can collect data from sensors and

identify their 3-D locations. The proposed approach draws upon an imaging

principle, interpreting sensors as a reflective information source, or a “pixel.” Key

motivation is to strip down the complexity of sensor H/W, as this favors very

large-scale networks. The system, instead, exploits millimeterwave frequencies

and S/P techniques to compensate for simplistic sensor H/W. The design of a

prototype collector and passive sensors are discussed. Results from indoor radio

experiments will be presented.

Professor Mark Rodwell

Dissertation Committee Chair
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Chapter 1

Introduction

This dissertation is the outcome of two research projects: high-resolution time-

interleaved A/D converter (TIADC) and millimeter-wave wireless sensor network

(WSN). The research goal was to identify and address key challenges in ultra

high-performance A/D converters and large-scale wireless sensor networks (WSN),

respectively. The nature of these research programs required simultaneous con-

sideration of hardware design and signal processing algorithms from the system

level viewpoint. In the first project, deterministic/statistical signal processing

techniques are used to compensate for hardware imperfections in TIADCs. In

the second project, centralization of sophisticated signal processing at collector

nodes, as well as the exploitation of millimeterwave frequencies, enables drastic

simplifications of sensor hardware.

1



Chapter 1. Introduction

For many cutting-edge applications, as these two projects illustrate, co-design

of signal processing and hardware is the only option for attaining system-level

goals regarding speed, power consumption or complexity [1].

This chapter provides a brief introduction for each project.

1.1 Time-Interleaved ADCs (TIADC)

Time-interleaved A/D conversion provides a scalable way of increasing sam-

pling rate. By using multiple parallel A/D converters (ADC), the overall sampling

rate is proportional to the number of ADC channels. TIADCs find their appli-

cations in high-speed communication, instrumentation, radar, etc. It has been

well known, however, that the spectral performance of TIADCs is seriously de-

graded by hardware mismatches between ADC channels. These mismatch errors

effectively modulate the input signal, creating a distortion (or aliasing, in the fre-

quency domain). Therefore, compensation of TIADC mismatches has been the

subject of much research.

Most previously known correction methods start with two simplifying assump-

tions. First, TIADC mismatches can be represented by a few parameters, i.e. gain,

sampling time and offset. Second, these mismatch parameters are a priori known

or can be measured with desired accuracy. While certainly restrictive, this sim-

2



Chapter 1. Introduction

plified approach has been successful for low to medium resolution applications

(e.g. SNR < 30–50 dB). While a growing number of applications require higher

level of performance (e.g. SNR > 70–80 dB), the traditional parametric approach

can not deliver the required level of mismatch suppression. The failure of tra-

ditional approaches for high-resolution applications is partly due to the starting

assumptions abovementioned, and partly due to the lack of clear understanding

of TIADC operation, and hence its modeling thereof.

The present thesis work takes generalized modeling approaches for significantly

higher TIADC performance. Each of TIADC channels are modeled as a general

linear time-invariant (LTI) system, and this forms a basis of accurate mismatch

correction.

First, a training-based estimation/correction method is developed based on the

generalized mismatch model. Signal processing techniques are tightly coupled to

TIADC model, and this approach resulted in record spur-free dynamic range per-

formance (SFDR) of 80–90 dB (actual measurement was limited by quantization

noise). While capable of meeting performance level of most high-end applica-

tions, training-signal based calibration methods are subject to detuning due to

temperature change, parts aging, etc. This requires periodic re-calibration.

The second contribution is the proposal and demonstration of “blind” mis-

match estimation/correction. In this correction method, we do not need to apply

3



Chapter 1. Introduction

a prior known calibration signal to the TIADC. Instead, mismatch estimation is

continuously, and adaptively carried out by only observing the TIADC output.

“Blind” mismatch correction can, therefore, eliminate the need of re-calibration,

which is a significant benefit for certain applications where TIADC cannot stop

A/D conversion just for calibration. The principle of the proposed blind method

makes extensive use of techniques from statistical signal processing.

Last, a novel mixed-domain approach to the TIADC mismatch correction is

proposed. In this method, mismatch errors are detected in the digital domain, but

their correction is partly done in the analog domain by directly tuning the sam-

pling clock. The proposed mixed-domain approach provides blind error correction

with minimal computational complexity.

1.2 Wireless Sensor Networks

Recently, there have been significant research and development efforts on sen-

sor networks. A sensor network is a collection of devices with limited sensing,

computation capability that collaborate to observe the environment in which they

are placed [2]. Many applications can benefit from such a sensor network: envi-

ronmental monitoring [3], geological studies [4], wildlife research, seismic activ-

ity detection [5], remote sensing, battle field surveillance, border policing, smart
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homes [6], etc. More exotic applications are also possible such as planetary explo-

ration, body-area network, etc.

Conventional wireless sensor networks rely on multi-hop based communica-

tion, where neighboring sensors communicate with each other, to reach the final

information collector [7, 8]. The information transfer tends to be robust in this

way, since the mesh-like network structure lends itself tolerant to individual sen-

sor failure. In most applications, a sensor node must provide its own location

information, as well as its sensing data. Pre-programming the sensor node with

a fixed ID code can be a simple localization method, but this is not applicable

to a mobile network, and also inconvenient for a large-scale network. A GPS re-

ceiver can provide precise location information. Various ranging techniques using

radio waves or acoustic waves can also be employed for self-consistent location

acquisition of a network of sensors [9].

The primary disadvantage of the conventional approach mentioned above is

that it does not easily scale into large-scale networks [10]. The information transfer

becomes inefficient as the network size grows, especially when the final collector

is far away (e.g. satellite). Ad-hoc networking with neighboring nodes needs a

certain protocol stack, as well as RF transceivers, and this increases the complexity

of sensor hardware. Location devices for each sensor also results in complex sensor

5



Chapter 1. Introduction

hardware. As the sensor hardware becomes more complex, its power consumption

will also increase, in general, reducing its battery life.

In this thesis, we propose a novel approach to the wireless sensor network,

in collaboration with Bharath Ananthasubramaniam and Professor Upamanyu

Madhow, ECE Department, UCSB. The key motivation is to drastically simplify

sensor hardware to retain minimal functionality. The system, instead, exploits

millimeterwave frequencies and signal processing techniques at the collector side

to compensate for simplistic sensor hardware. The proposed approach draws upon

an imaging principle, interpreting sensors as a reflective information source, or a

“pixel.” In the proposed architecture, sensor nodes need not communicate with

each other, and their location can be a priori unknown. The 60-GHz prototype

system consists of collector transceiver, mechanically steerable high-gain antenna,

signal-processing algorithms and passive sensors. Results from indoor radio ex-

periment are presented.
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Chapter 2

Mismatch Correction for
TIADCs: Training-based Method

In this chapter, a training-based calibration method for a TIADC is presented

with comprehensive mismatch modeling approach [11]. First, a generalized linear

model of TIADC is developed in Section 2.2. Next, an intuitive explanation of

aliasing-error generation is given in terms of sub-converter transfer functions in

Section 2.3. In Section 2.4, the characterization of sub-converter transfer func-

tions is discussed along with practical concerns. Section 2.5 presents a novel design

method of correction finite-impulse response (FIR) filters which, unlike the pre-

vious techniques, fully exploits the stopband structure of input analog circuitry.

Finally, experimental results and conclusion are given in Section 2.6 and Section

2.7, respectively.
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2.1 Introduction

In order to increase the sampling rate of an analog-to-digital converter (ADC)

beyond a certain process technology limit, the use of a time-interleaved analog-

to-digital converter (TIADC) has been proposed [12–34]. A TIADC has a parallel

structure where a number of ADCs independently sample the input signal. The in-

put analog signal is successively sampled by each ADC in a cyclic manner, and the

digital output is similarly taken from each ADC to reconstruct the signal stream

in digital form. The overall sampling rate is, therefore, multiplied by the number

of ADCs. A TIADC finds its application in electronic systems such as radar,

direct digital receivers, base-station receivers, and high-speed instrumentation, as

well as opto-electric systems including photonic ADCs [15–18].

A TIADC performs high-throughput analog-to-digital (A/D) conversion with

no degradation in spectral purity if all ADCs have identical electrical character-

istics (e.g., gain, sampling time, input bandwidth, dc offset, etc.). In practice,

however, various electrical mismatches are inevitable, which periodically modu-

late the input signal. The array’s spurious-free dynamic range (SFDR) is then

reduced due to spurious sidebands generated by this modulation.

Therefore, to achieve the highest SFDR feasible, channel mismatches must be

eliminated or calibrated by using either analog circuitry [19, 20, 22–24] or digital
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signal processing [25–31]. Digital correction is preferred due to its reliability and

flexibility. Continued scaling of process technologies also make digital processing

increasingly inexpensive.

Traditionally, TIADC mismatch correction has been mostly attempted in terms

of several frequency-independent parameters such as gain, sampling time, and

offset mismatches. This parametric approach is easily implemented, and is ade-

quate for low-to-moderate resolutions. In high-resolution data conversion, how-

ever, spectral purity is easily compromised by even slight channel mismatches

because of the low quantization noise floor. For example, 80 dB of SFDR requires

approximately 0.01% of residual channel mismatches [18]. Parametric correction

is, in general, not able to achieve this level of mismatch correction over a wide

frequency range and, therefore, comprehensive (i.e., frequency dependent) mis-

match correction is necessary. Very high-speed time-interleaved A/D conversion

may also require comprehensive mismatch correction due to differences between

channels in the high-frequency transfer functions of the input analog circuitry.

The application of hybrid filter banks (HFBs) to TIADC has been proposed

to attenuate channel mismatches [32, 35–37]. In this architecture, a set of analog

filters split the input signal into separate frequency bands in either discrete [38] or

continuous [35,37,39] time. Outputs from sub-converters are combined through a

digital filter bank. Although the performance of HFB converters is less sensitive
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to mismatch errors than conventional TIADCs, the need of accurate analog filters

restricts their practical use.

Recently, an important observation has been made by Velazquez and Ve-

lazquez [36]: analog filters at the input are not necessary given a properly de-

signed digital filter bank. This suggests a practical way of mismatch correction

for high-performance TIADCs, i.e., comprehensive error correction only by dig-

ital post-processing. Commercial TIADC products, with 12-bit resolution and

400–500 Msamples/s (MSPS) conversion rate, are also developed based on his

approach [40,41].

In this chapter, a novel comprehensive mismatch correction method is pre-

sented, as well as its experimental verification, which, unlike the previous tech-

niques, fully exploits the stopband structure of input analog circuitry for more

efficient correction. In designing correction finite-impulse response (FIR) filters,

aliasing spurs due to the sub-converter mismatches are individually controlled

within the computational framework of the weighted least squares (WLS).

2.2 Linear Model of TIADC

Figure 2.1(a) shows a four-channel TIADC configuration. Each channel con-

verts analog input signal every 4Ts with an appropriate delay so that the aggregate
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sampling rate is fs (=1/Ts). The bandwidth of the input signal has to be smaller

than fs/2 to avoid aliasing. Although operation in any Nyquist-zone is possible as

long as the sample-and-hold (S/H) circuitry has sufficient bandwidth, we assume,

for simplicity, that the input signal is confined within the first Nyquist-zone, i.e.,

from dc to fs/2. It is noted that, for M -channel interleaved operation, the S/H

blocks must have M -times wider bandwidth than is required for single-channel

conversion at fs/M , i.e., their input bandwidth has to be equal to or greater than

fs/2. M -channel interleaved A/D conversion also requires the sampling clock to

have M -fold higher timing stability (i.e., lower phase noise).

The assumption of a bandlimited input simplifies notation by allowing discrete-

time representation of all signals including the ADC input. Although H(ej2πfTs)

is the conventional notation for a discrete-time frequency spectrum with period

fs, we instead use H(f) throughout the paper for readability. All S/H and ADC

blocks are assumed to be linear and have zero offset. Channel offset is indepen-

dently measured during calibration and is subsequently digitally subtracted from

each ADC output. Time-invariance (or shift-invariance) is assumed for all linear

systems. Assuming that the resolution of the individual ADC’s is high, we neglect

their quantization effects.

In Figure 2.1(a), two typical sources of mismatches are shown: Gk’s and ∆tk’s

for A/D conversion gain and systematic timing deviation from a nominal sampling
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point, respectively. As we will show later with experimental data, Gk and ∆tk are

not sufficient to describe all significant TIADC errors. For example, S/H blocks

may have different 3-dB bandwidth, and the adjacent channels may have unequal

crosstalk due to the integrated-circuit (IC) interconnect environment or due to

a finite S/H off-state isolation. Small variations will exist between channels in

their mid-band frequency response due to power supply and ground impedance

and standing waves on interconnects.

A TIADC system with all these linear imperfections can be conveniently mod-

eled with a set of equivalent channel-transfer-functions (CTF) followed by a mul-

tiplication by an impulse train, as can be seen in Figure 2.1(b),

pk(n) =
∞∑

m=−∞

δ (n− (mM + k)) , k = 0, 1, ...,M − 1

whose period is equal to M , the number of TIADC channels. δ(n) is the delta

function. With only gain and timing error, for example, a CTF will have the form

Hk(f) = Gke
−j2πf∆tk . A CTF may actually include any linear distortion per-

taining to each channel from S/H input to ADC output. It may also incorporate

preceding linear systems common to all channels (e.g., an anti-aliasing filter). It

is noted that CTF’s are not necessarily causal, especially when there is a sam-

pling time mismatch. This comes from the fact that a bandlimited signal at any

instance can be represented as a weighted sum of nominal sample values, both in

the past and future [42].
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2.3 Generation of Aliasing Error

Aliasing in the presence of individual gain, timing, and offset mismatches has

been extensively discussed in the literature [12,14,21,32–35,37]. This section gives

more general description in terms of CTF. The TIADC linear model in Figure

2.1(b) suggests each channel output is a filtered (by a CTF) and aliased (by an

impulse train) version of the input spectrum. It can be shown that the kth channel

output is written as

Yk(f) =
1

M

M−1∑

m=0

e−j2πk
m
MX

(
f − m

M
fs

)
Hk

(
f − m

M
fs

)
, k = 0, 1, ...,M − 1(2.1)

where X(f) is the Fourier transform of the input signal x(n), and Hk(f) is the

kth channel CTF. The first term with m = 0 corresponds to a desired signal

component, while terms with m = 1, 2, ...,M − 1 are frequency-shifted versions of

the input spectrum. When all channel outputs are combined to yield a TIADC

output Y (f), these frequency-translated versions of the input spectrum are can-

celled if all CTF’s are the same. In the presence of CTF mismatches, however,

cancellation is imperfect, producing aliasing error, as will be discussed next.
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The final output of the four-channel TIADC, Y (f) in Figure 2.1(b), is obtained

by summing all channel outputs

Y (f) =




c0(f)X(f)

+c1(f − 1
4
fs)X(f − 1

4
fs)

+c2(f − 2
4
fs)X(f − 2

4
fs)

+c3(f − 3
4
fs)X(f − 3

4
fs)




, (2.2)

where cm(f)’s are defined as

c0(f) = 1
4
(H0(f) +H1(f) +H2(f) +H3(f)) ,

c1(f) = 1
4
(H0(f) − jH1(f) −H2(f) + jH3(f)) ,

c2(f) = 1
4
(H0(f) −H1(f) +H2(f) −H3(f)) ,

c3(f) = 1
4
(H0(f) + jH1(f) −H2(f) − jH3(f)) .

(2.3)

Equation (2.2) shows the TIADC output spectrum generally has both the desired

signal and a frequency-shifted aliasing component, each with a corresponding gain

defined in (2.3). Therefore, cm(f) is an effective conversion gain from an input

signal at f to a frequency-shifted output at f+(m/M)fs. Throughout this paper,

c0(f) will be referred to as signal conversion gain, while cm6=0(f) will be referred

to as noise conversion gain.

It is interesting to note from (2.3) that the set of conversion gain {c0(f), c1(f),

c2(f), c3(f)} can be regarded as a four-point discrete Fourier transform (DFT)

of the CTF sequence {H0(f), H1(f), H2(f), H3(f)}. If all CTFs are the same
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(i.e., no mismatch), then all DFT coefficients, except c0(f), cancel, resulting in

zero aliasing error. In this case, SFDR is, therefore, not limited by aliasing spurs.

With the presence of channel mismatches, however, cm6=0(f) is nonzero, in general,

and SFDR is limited by the aliasing spurs whose magnitude is proportional to the

corresponding noise conversion gain cm6=0(f). Figure 2.2 graphically illustrates

how CTF mismatch generates spurious signals on the TIADC output spectrum.

It is noted in Figure 2.2(b) that the positive and negative frequency compo-

nents of the input spectrum each experiences different conversion gains. For exam-

ple, assume a real-valued input sinusoid at fin, which has two complex exponen-

tials at frequencies fin and −fin (or, equivalently, fin+fs). The positive-frequency

tone at fin passes through the CTFs {H0(fin), H1(fin), H2(fin), H3(fin)}, and,

by DFT analysis, we obtain the conversion gain {c0(fin), c1(fin), c2(fin), c3(fin)}

with corresponding aliasing spurs at {fin, fin + 1
4
fs, fin + 2

4
fs, fin + 3

4
fs}. On

the other hand, the image tone at −fin experiences the channel gain {H0(−fin),

H1(−fin), H2(−fin), H3(−fin)}, which is equal to {H∗
0 (fin), H

∗
1 (fin), H

∗
2 (fin),

H∗
3 (fin)} where (·)∗ denotes the complex conjugate. According to the properties

of DFT [42], the resulting conversion gain is {c∗0(fin), c∗3(fin), c∗2(fin), c∗1(fin)} with

output spurs at {−fin, −fin + 1
4
fs, −fin + 2

4
fs, −fin + 3

4
fs}.
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In summary, for an M -channel TIADC, with a real-valued input sinusoid at

fin, spurious tones due to the CTF mismatch are generated at

fCTF mismatch = ±fin +
m

M
fs, m = 1, 2, ...,M − 1. (2.4)

On the other hand, the mismatch in channel dc offset produces error tones at the

frequencies [34]

foffset mismatch =
m

M
fs, m = 1, 2, ...,M − 1. (2.5)

It should be noted that offset mismatch does not modulate the input signal, but

always produces spurs at fixed frequencies.

2.4 Characterization of CTF

The CTF can be characterized at a single frequency by first applying a sinusoid

with known frequency at the TIADC input, and then measuring the individual

channel outputs. For a full characterization over a frequency range of interest,

either a series of single-frequency tests must be performed or a carefully designed

wide-band signal (e.g., a frequency-domain comb signal [35]) is required. The work

presented in this thesis is based on a series of single-frequency measurements.

Consider a single sinusoid excitation. If we consider only the signal part (i.e.,

the output spectral line at the input frequency) from each channel output given
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by (2.1), then Yk(f) = (1/M)X(f)Hk(f). Hence, knowledge of the magnitude

and phase of the input sinusoid allows unique determination of the value of the

CTF at the test frequency. In order to identify the signal part, frequency-shifted

spectra should not fall into the same frequency bin with the signal tone. It can be

shown from (2.4) and (2.5) that the input signal frequency should satisfy ftest 6=

(m/2M)fs and ftest 6= (m/M)fs, where m = 1, 2, ...,M − 1. These conditions can

be met by a careful selection of test frequencies. For example, setting ftest to an

integer multiple of (1/P )fs, and making 2M and P relatively prime (i.e., have 1

as the only common factor) guarantees the signal tone is not ruined by mismatch

spurs. In the case where the test signal generator has significant harmonic con-

tents, care has to be taken to avoid aliasing due to harmonics folded down to the

first Nyquist zone. In some cases, bandpass filtering of the signal generator may

provide enough attenuation. Alternatively, a certain set of calibration frequencies

may be discarded. On the other hand, uncorrelated noise, such as phase noise,

quantization noise, or wide-band white noise can be averaged out by taking a long

acquisition time on the channel outputs.

The set of test frequencies should span at least the frequency range of inter-

est (i.e., the passband of the input analog circuitry or the entire Nyquist zone

if all-pass). The frequencies should be dense enough to accurately characterize

channel mismatches. The value of CTF between measurement points, if needed in
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correction FIR filter design, may be estimated by interpolation [42]. It is noted,

however, there is no practical substitute for an initial pilot characterization with a

sufficiently large number of test frequencies. The number of test frequencies may

be kept minimal once CTFs have been accurately characterized. In practice, it is

convenient to normalize a CTF with respect to an appropriately chosen reference

(e.g., first-channel gain [35] or averaged CTF across channels). This is more prac-

tical than characterizing input sinusoids using an external amplitude and phase

reference. Linear gain and phase distortion information, which is common to all

channels in this case, may be lost during normalization. However, channel mis-

match information, which is crucial to the SFDR performance of TIADC and,

hence, also to the correction FIR filter design, is still preserved.

2.5 Design of Correction FIR Filters

Once CTFs are measured, digital filters can be designed to correct mismatch

errors. In Figure 2.3, a length-N FIR filter is cascaded for every channel, and

the filter outputs are then combined to form X̃(f), the error-corrected output.

Our goal is to make a faithfully reconstructed version of the input X(f) . For an

M -channel TIADC, X̃(f) can be written, similarly as in (2.2), as a weighted sum
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of frequency-shifted input signal spectrum

X̃(f) =
M−1∑

m=0

c̃m

(
f − m

M
fs

)
X
(
f − m

M
fs

)
. (2.6)

The conversion gain after correction, c̃m(f), is now a function of FIR filter

coefficients as follows:

c̃m(f) =
1

M

M−1∑

k=0

e−j2πk
m
MHk(f)Ĥk

(
f +

m

M
fs

)

=
1

M

M−1∑

k=0

N−1∑

n=0

e−j2πk
m
M e−j2πn(

f

fs
+ m

M )Hk(f)ĥk(n).

(2.7)

In (2.7), ĥk(n) and Ĥk(f) are the impulse and frequency response of the kth

channel length-N FIR filter, respectively. For perfect reconstruction of the input

signal, ĥk(n) needs to be designed so that c̃0(f) and c̃m6=0(f) are as close to an

ideal time-delay system and zero as possible, respectively. For aliasing-free re-
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construction, on the other hand, the only strict requirement is to make c̃m6=0(f)

zero across the entire frequency range. In this case, c̃0(f) may introduce addi-

tional linear distortion as well as time delay. Mismatch spurs are still suppressed,

however, and the spectral purity is not compromised by them. Therefore, both

reconstruction strategies are equally effective in achieving a high SFDR as long

as the linear distortion due to c̃0(f) is tolerable. In certain TIADC applications,

where subsequent digital filtering is provided, the residual linear distortion can be

further equalized.

There are MN unknown FIR filter coefficients, ĥk(n)’s, in (2.7), and these can

be uniquely determined given a proper number of desired values of c̃m(f). One

possible method is to solve the system of MN equations with an equal number of

unknowns by specifying the desired conversion gain for m = 0, 1, ...,M − 1 over

L discrete frequencies [35, 36, 39]. The proposed design approach based on WLS,

however, fully exploits the stopband structure, thus, providing greater flexibility

and a useful tradeoff in signal reconstruction.

2.5.1 WLS Formulation

First, form a system of conversion gain equations, for both signal and noise,

by equating the right-hand side of (2.7) to a desired gain value over L discrete

frequencies. With the incorporation of equation-wise weighting, the entire system
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of equations can be written in a standard matrix-vector form

√
WAĤ =

√
WD, (2.8)

where each matrix or vector has a substructure as follows:

A =




a0,0 a0,1 · · · a0,M−1

a1,0 a1,1 a1,M−1

...
. . .

...

aM−1,0 aM−1,1 · · · aM−1,M−1




,

√
W =




√
w0,0 0 · · · 0

0
√

w1,1 0

...
. . .

...

0 0 · · · √
wM−1,M−1




,

Ĥ =

(
ĥ0 ĥ1 · · · ĥM−1

)T

,

D =

(
d0 0 · · · 0

)T

.

(2.9)
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where

√
wm = diag

(√
wm(f0)

√
wm(f1) · · ·

√
wm(fL−1)

)
,

[am,k]l,n =
1

M
e−j2πk

m
M e−j2πn(

f

fs
+ m

M )Hk(fl),

[
ĥk

]
n

= ĥk(n),

[d0]l = d(fl).

m, k = 0, 1, ...,M − 1 (M : the number of channels)

l = 0, 1, ..., L− 1 (L: the number of evaluation frequencies)

n = 0, 1, ..., N − 1 (N : FIR filter length)

In (2.8), A is an LM × NM ,
√

W is an LM × LM , Ĥ is an NM × 1 , and D

is an LM × 1 matrix or row vector. The weighting matrix is represented in a

square-root form for convenience. The desired conversion gain is specified by D

(specifically, d0 and 0 for signal and noise conversion gain, respectively). Each

conversion gain is evaluated at L discrete frequencies f0 from to fL−1 . The first L

equations in (2.8) define the signal conversion gain, and the remaining (M − 1)L

equations dictate the aliasing noise conversion gain. If L > N , which is true, in

general, (2.8) is an overdetermined system of equations, and the unique solution

in a least square sense is [43]

ĤWLS =
(
AHWA

)−1
AHWD, (2.10)

where (·)H denotes complex-conjugate transpose. It can be shown that ĤWLS

minimizes the weighted mean-squared error between the desired conversion gain
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D and actual conversion gain AĤWLS. If d0 and L test frequencies are chosen

such that complex-conjugate symmetry is obeyed, ĤWLS, obtained by (2.10)),

will be real valued. Otherwise, if we explicitly constrain Ĥ to be real valued,

the optimum solution is ĤWLS =
(
Re(AHWA)

)−1
Re
(
AHWD

)
. Two design

options are of interest: unweighted and weighted design.

2.5.2 Unweighted Filter Design

In unweighted design, the weighting matrix is an identity matrix so that no

equation in (2.8) is weighted heavier or lighter than others. The only parameter

that controls the quality of error correction is N , the FIR filter length. Due to

the Gibbs phenomenon [42,44], the conversion gains realized by the resulting FIR

filters usually have significant ripples. Ripples in signal conversion gain have a

minor effect on SFDR, but ripples in noise conversion gains directly reduce SFDR

by generating excessive aliasing spurs, as experimental results will later show.

Therefore, in order to remove such ripples, filter coefficients are multiplied by a

window function. Unweighted design is simple to use, but lacks flexibility. The

designed filter, if multiplied by a window, is not optimal in any sense.

25



Chapter 2. Mismatch Correction for TIADCs: Training-based Method

2.5.3 Weighted Filter Design

Weighted design provides more control over mismatch correction, and allows

full exploitation of “don’t care” frequency bands. In a classical FIR filter design,

a “don’t care” band (or “transition” band) refers to a frequency region where no

desired filtering response is specified [44]. For TIADC mismatch correction, there

is another useful observation: aliasing spurs are free to remain uncancelled within

“don’t care” bands. This additional benefit from “don’t care” bands has not been

exploited before to the authors’ knowledge. All these relaxed requirements are

taken into account by assigning zero or very small weights to the corresponding

gain equations in (2.8). The resulting set of equations achieves a smaller total

mean-squared error with the same number of FIR filter taps, yielding more satis-

factory error correction.

In general A/D conversion systems, a bandpass input signal conditioning cir-

cuit (e.g., a transformer) introduces both lower and upper cutoff frequencies (fL

and fH), and we naturally have two “don’t care” bands: one in a lower end (dc

to fL) and the other in a higher end (fH to fs/2). Even without bandpass in-

put circuitry, sampling time mismatches justify the use of a higher-end “don’t

care” band. In correcting timing mismatches by using FIR filters, there always

exists an upper end frequency band where the approximation error is relatively
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large [45]. Although this error can be made smaller by using more FIR filter taps,

the upper-end band can be advantageously considered a “don’t care” one as well.

One may also employ unequal weighting between signal and noise conversion

gain equations for a tradeoff between the degree of aliasing-spur cancellation and

the amount of residual linear gain-phase distortion. This realizes aliasing-free

reconstruction (instead of perfect reconstruction) in a controllable manner.

With the incorporation of all previous considerations, weighting factors can be

defined as (See Figure 2.4 for a four-channel example)

w0(f) =





δs, f ∈ {“don’t care” band}

Ws, otherwise

wm6=0(f) =





δn, f or f + (m/M)fs ∈ {“don’t care” band}

Wn, otherwise

(2.11)

where w0(f) and wm6=0(f) quantifies the individual contribution of signal and noise

conversion gain errors, respectively. It is understood that Ws ≫ δs and Wn ≫ δn.

Weighting strategies for TIADC correction are summarized as:

1. Signal and noise conversion gain may be arbitrarily defined within “don’t
care” bands.

2. Aliasing spurs may fall into and remain uncancelled within “don’t care”
bands.

3. The amount of residual linear distortion can be traded off with the degree
of aliasing-spur cancellation by adjusting Wn/Ws.
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Figure 2.4: Representative weighting scheme for a four-channel TIADC (i.e.,
illustration of (2.11) when M = 4). Input analog circuitry is assumed to have
a passband from fL to fH . Corresponding stopbands are designated as “don’t
care”, and hence have a very small weighting factor (δS or δN). Small-weight
regions around (1/4)fs correspond to input frequency bands where aliasing spurs
fall into “don’t care” bands.
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Applicability of each strategy may depend on the application. For example, 1)

assumes input signal within the “don’t care” bands is sufficiently weak or atten-

uated so that its aliasing spurs are negligible, and 2) and 3) implies subsequent

digital filtering is capable of removing aliasing spurs within “don’t care” bands or

of equalizing the linear gain-phase distortion common to all channels.

2.6 Experimental Results

To demonstrate the proposed calibration method, a four-channel TIADC pro-

totype was built, and the performance of mismatch correction was evaluated.

400 MSPS of aggregate sampling rate is achieved with 14-bit resolution by inter-

leaving four 14-bit 100 MSPS ADC chips [46]. Figure 2.5(a) shows the experimen-

tal configuration. The clock and input test signal are phase-locked to each other,

and appropriately filtered to reject harmonics and wide-band white noise. A dis-

tribution board consists of power splitters and delay lines to provide four-phase

100 MHz clocks (i.e., 0◦, 90◦, 180◦, and 270◦) and an equal phase input signal to

the four ADC boards. The digital output is captured by a logic analyzer, and cal-

ibration is done on MATLAB. All instruments are controlled by custom software

for automatic characterization.
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Figure 2.5: Experimnetal setup for a 14-bit 400 MSPS TIADC prototype

2.6.1 Data Acquisition and CTF Characterization

For performance evaluation of the proposed correction method, data is ac-

quired at 249 signal frequencies with (1/500)fs (=0.8 MHz) of spacing. The

TIADC is first calibrated using every fourth frequency for CTF characterization:

(1/125)fs, (2/125)fs, ..., (62/125)fs. This particular choice of characterization

frequencies systematically avoids aliasing due to mismatch spurs since 125 is rel-

atively prime with 2M(= 8) (Section 2.4). Although the signal generator’s fourth

harmonic falls into the same frequency bin as the fundamental tone at (25/125)fs

and (50/125)fs, the antialiasing filter (Figure 2.5(a)) attenuates the fourth har-

monic to a negligible level. Channel offset is estimated by averaging the measured
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ADC dc output voltage for each run across the whole range of characterization

frequencies.

Figure 2.6(a) shows the average magnitude response of the measured CTFs

(the output power variation with frequency arising from the signal generator is

also lumped into the magnitude response). Figure 2.6(b) and Figure 2.6(c) show

the magnitude and phase response after normalization with respect to the aver-

age value across channels for each frequency, respectively. The relatively large

mismatch at very low frequencies is due to differences between the low-frequency

cutoffs of the ADC input transformers (which is approximately 2 MHz). The

phase response at midband frequencies approximates a straight line, which sug-

gests timing mismatch is dominant (approximately 1.3%, 0.6%, 0.4%, and 1.1%

of Ts). The input antialiasing filter has approximately 50 dB of attenuation near

200 MHz. Random measurement error is, thus, amplified around this frequency,

producing a large CTF mismatch near 200 MHz.

Figure 2.7 shows noise conversion gains, which are calculated from DFT analy-

sis of the normalized CTFs. Superposition of all three noise gains in a single deci-

bel plot (Figure 2.7(b)) allows the prediction of uncalibrated SFDR performance

to within the magnitude response of a normalization reference (i.e., average CTF

values). It is seen in Figure 2.7(a) and Figure 2.7(b) that c2(f) creates the domi-

nant aliasing spur (≃ -30 dB at high frequencies). c2(f) is the highest frequency
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Figure 2.6: Measured CTFs
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Figure 2.7: Measured noise conversion gains.
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component obtainable from four-point DFT, and its basis vector is an alternating

sequence {1,−1, 1,−1}. This specific mismatch pattern can be traced back to

the clock/signal distribution board where channel 1, 3 (two right ADC boards in

Figure 2.5(b)) and channel 2, 4 (two left ADC boards in Figure 2.5(b)) each have

identically shaped delay lines.

2.6.2 Mismatch Correction with Unweighted Filter Design

The previously estimated offset is subtracted from a corresponding channel

output before comprehensive mismatch correction. The FIR filter coefficients are

first obtained by the unweighted least squares method, and then multiplied by

a Hanning window to eliminate ripples in the frequency response. It has been

found experimentally that 18 bit is sufficient for coefficient quantization with a

reasonably small loss of performance (e.g., <1 dB SFDR loss). Figure 2.8(a)

and Figure 2.8(b) show the magnitude and phase response of the resulting 41-tap

FIR filters. Dotted and solid lines each represent the frequency response before

and after applying a Hanning window to the tap coefficients, respectively. It is

seen that significant passband ripples are present before windowing, but they are

smoothed out after windowing.

Figure 2.9 shows a typical output spectrum before and after mismatch cor-

rection. The CTF and offset mismatch spurs (marked as X and O, respectively)
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Figure 2.9: Typical TIADC output spectrum (DFT of 62,000 samples). Cor-
rection is done by 21-tap FIR filters (unweighted design). An input sinusoid is
applied at -1 dBFS and (70/500)fs which falls midway between two CTF char-
acterization frequencies. Note that the noise floor reflects the anti-aliasing filter
roll-off. The label ‘1’ designates a fundamental tone, ‘2’, ‘3’, , and ‘7’ harmonics
of the signal generator, ‘X’, ‘Y’, and ‘Z’ CTF mismatch spurs due to the funda-
mental, 2nd-, and 3rd-order harmonics, respectively, and the ‘O’ offset mismatch
spurs
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are typically suppressed to better than 80 dB below full scale (dBFS). Low-order

harmonics from the signal generator are seen to have a significant power level

since they are within the passband of the antialiasing filter. It is noted that the

signal generator harmonics, as well as a fundamental tone, generate corresponding

aliasing spurs. The signal labels, X, Y , and Z in Figure 2.9 represent mismatch

spurs at ±fin + (m/M)fs, ±2fin + (m/M)fs, and ±3fin + (m/M)fs, respectively.

Figure 2.10 shows the SFDR improvement over a full Nyquist zone by mis-

match correction before and after windowing of FIR filter coefficients. Signal

generator harmonics up to seventh order are neglected for all SFDR measure-

ments. The inferior SFDR characteristics seen in Figure 2.10(a) compared to

those of Figure 2.10(b) is a direct result of excessive ripples in realized noise con-

version gains, which are, in turn, due to the ripples in the frequency response of

the unwindowed FIR filters. For the remainder of this paper, windowing of tap

coefficients is assumed whenever an unweighted FIR design is discussed.

Before correction, the SFDR is limited by mismatch spurs over the entire

Nyquist zone. After correction, the percentage of bandwidth where mismatch

spurs determine SFDR is only 52%, 27%, and 22% for 21-, 41-, and 61-tap FIR

filters, respectively, if we disregard the upper and lower 20 MHz. For the rest of the

frequency region, SFDR is typically limited by nonharmonic spurs at fin± 10 MHz

or higher order (>seventh) harmonics, both coming from the signal generator.
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Figure 2.10: The effect of windowing on the performance of mismatch correction
(unweighted FIR design).
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The SFDR drop at both ends of the Nyquist zone originates from phase dis-

continuities near dc and 200 MHz as seen in Figure 2.6(c). These discontinuities

cannot be perfectly equalized by FIR filters and, therefore, approximation error

is inevitably introduced. Windowing of the filter coefficients spreads this error

in frequency [47] into a narrow frequency region if the FIR filter has many taps.

Therefore, a longer FIR filter provides error correction over a wider range of fre-

quencies. The sharp cutoff of antialiasing filter also contributes to a sudden SFDR

drop near 200 MHz by quickly attenuating signal power.

The drop in SFDR at low frequencies may be eliminated by making the CTF

phase continuous across dc (e.g., by using dc-coupled input analog circuitry or

by sharing a single ac-coupled circuitry for all channels). In contrast, the drop

in SFDR near fs/2 cannot be completely removed because of the inherent phase

discontinuity across the Nyquist frequency in the presence of timing mismatches.

Using longer FIR filters, however, extends effective mismatch correction to higher

frequencies.

Note the close agreement of uncalibrated SFDR between the measurement

(Figure 2.10) and prediction (Figure 2.7(b)).
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2.6.3 Unweighted Versus Weighted Filter Design

Figure 2.11 compares weighted and unweighted filter design. The FIR filters

have 21 taps in both cases. The unweighted FIR filter design is the same as

in Figure 2.10(b). For the weighted design, “don’t care” bands are set to the

upper and lower 7.6% of Nyquist zone, where systematic SFDR drop occurs. We

also choose Wn/Ws to be large in favor of strong cancellation of aliasing spurs

rather than perfectly flat gain and phase response. Resulting weighting factors

areWs = 1 andWn = 3·105. As seen in Figure 2.11(a), the weighted design enables

a wider frequency range of mismatch correction than the unweighted design with

an equal number of FIR filter taps. Spurious signals within the “don’t care” bands

are ignored in the SFDR calculation for the weighted design. This improvement

is obtained, however, by introducing some amount of linear gain-phase distortion

into the overall system transfer function from TIADC analog input to corrected

digital output. In Figure 2.11(b), the dotted curve is the system gain realized

with the unweighted FIR filter design, and is equal to the average CTF, which

serves as a reference for CTF normalization. It is seen that the system gain with

weighted filter design (solid line in Figure 2.11(b)) has additional linear distortion

(<2.5 dB) with respect to the reference. This distortion may be equalized by

subsequent digital filtering if needed.
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Figure 2.11: Comparison of unweighted and weighted FIR filter design (21-tap).
Shaded regions are “don’t care” bands for weighted design.
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Although sinusoids are used for the SFDR performance test, it is noted that the

proposed calibration method is equally effective with any bandlimited input signal,

as this can be represented as a sum of sinusoids within the Nyquist zone. The

TIADC system attains linear and time-invariant (LTI) property once mismatches

are corrected (this can be seen from (2.6) with c̃m6=0(f) = 0).

2.6.4 Frequency-Dependent Versus Frequency-Independent

Correction

In this section, traditional frequency-independent calibration is compared with

the proposed correction method. From the measured CTFs in Figure 2.6, a

best-fit static gain and timing error (Gk and ∆tk in Figure 2.1(a)) are individ-

ually extracted for each channel. The upper and lower 20 MHz are not consid-

ered during the extraction for a better fit within the passband (20–180 MHz).

A new set of CTFs are generated by directly calibrating out the errors, i.e.,

H ′
k(f) = Hk(f)/Gke

−j2πf∆tk . The magnitude of aliasing spurs are predicted from

noise conversion gains, which are obtained by DFT analysis, as discussed in Sec-

tion 2.3. The resulting SFDR is shown as a solid curve in Figure 2.12, and is

typically 10–25 dB worse than the one attained with the comprehensive correc-

tion in Figure 2.10 and Figure 2.11. Also shown in Figure 2.12 are the maximum
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Figure 2.12: Performance comparison between parametric (i.e. frequency-
independent) and comprehensive (i.e. frequency-dependent) mismatch correction.
Dotted and dash-dot line each represents the limiting SFDR after frequency-
independent correction considering only gain and phase mismatch, respectively.

SFDR achievable after frequency-independent correction, limited by the residual

gain (or phase) mismatch assuming no phase (or gain) mismatch.

2.6.5 System Drift

The TIADC prototype system was put into 4 h of continuous operation after

a 1.5 h warm-up period. Data was acquired every half hour. Correction FIR

filters were designed using the first acquisition data, and SFDR performance was

evaluated for every subsequent data. Calibration accuracy (∼80 dB of SFDR) was

maintained up to the third acquisition (1 h operation). The loss of SFDR after

4 h was approximately 10–15 dB. We expect that the drift rate may be much less
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with a monolithic implementation, where thermal gradients and PC-boards and

cable phase shifts are minimized.

2.7 Conclusions

Digital correction of frequency-dependent mismatch error is essential for high-

resolution and high-speed TIADCs. In this chapter, a general linear correction

method is proposed and demonstrated, which is additionally capable of exploiting

stopband structure. Although linearity is assumed, actual ADCs may exhibit

significant nonlinearity. For example, it has been found experimentally that the

CTF is a weak function of input signal amplitude. For a high-resolution converter,

even a slight calibration detuning may result in a significant loss of SFDR. Further

research will be required to address secondary effects not considered in this chapter

such as nonlinearity, temperature effect, aging, component drift, etc.
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Chapter 3

Mismatch Correction for
TIADCs: Blind Method

The previous chapter discussed about a training-based method for TIADC

mismatch correction. Training-based calibration method, in general, provides su-

perior accuracy due to the dedicated characterization setup. However, it is not a

suitable correction method when mismatches are time varying, or when the sys-

tem interruption is not allowed, for example. Under these special circumstances,

we have to find another way of mismatch correction with the system continuously

working on data conversion. A blind method serves this need in that no special

calibration signal or system stoppage is required [48–51], and therefore comple-

ments the training-based calibration methods. A new blind method is proposed

in this chapter, based on wide-sense stationary (WSS) assumption. The proposed

method is more comprehensive than previous efforts since we do not rely on spe-

cial distribution or bandwidth restriction of the input signal, other than WSS
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property and Nyquist sampling criterion. It is also novel that gain and sampling

time mismatches are incorporated within a common framework of parameterized

filter banks. Based on the cyclic spectral density representation of wide-sense cy-

clostationary (WSCS) signals, a proof is given that the proposed algorithm always

achieves mismatch correction for a two-channel TIADC.

Section 3.1 gives background and system model based on the parameterized

filter bank. Characterization of WSCS processes is discussed in Section 3.2. The

proposed algorithm is described along with the sufficiency check in Section 3.3.

Simulation and experimental results are presented in Section 3.4 and Section 3.5,

respectively.
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3.1 Background and System Model

Figure 3.1(a) shows a two-channel TIADC system. Individual A/D converters

have 2Ts of conversion time so that the aggregate sampling rate is fs (=1/Ts).

Each channel has respective gain, Gi, and timing error, ∆ti. In practice, sub-

converters will also have different dc offsets, but we assume they are independently

compensated. The input x(t) is assumed bandlimited from dc to fs/2. Figure

3.1(b) is an equivalent system where quantization effects are ignored. A simple

transform yields a normalized system in Figure 3.1(c). If we regard x′(t) as the new

TIADC input, then the upper channel becomes error-free, and it is immediately

seen that only relative errors, i.e. G∗ ≡ G1/G0,∆t
∗ ≡ ∆t1 − ∆t0, are relevant.

This normalization is justified when raw mismatches are relatively small, or when

we are not interested in the change of the output signal in absolute timing and

magnitude. Whenever G∗ 6= 1 or ∆t∗ 6= 0, the TIADC effectively modulates the

input. Modulation sidebands (i.e., “aliasing spurs”) are then produced at the

output, limiting the maximum signal-to-noise plus distortion ratio (SNDR) and

spurious-free dynamic range (SFDR) achievable.

Once mismatches are estimated or measured, a reconstruction system can be

cascaded (Figure 3.1(d)) for mismatch correction so that the aliasing spurs no

longer limit the spectral performance. In standard offline calibration methods [11],
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a known input signal is applied, and observing the output enables us to charac-

terize channel mismatches. Our objective is, however, to estimate and correct the

mismatches without explicit (in a deterministic sense) knowledge of the input .

First, note the key fact that a TIADC system is linear time-invariant (LTI) if

and only if it is aliasing-free, and linear periodically time-varying (LPTV) other-

wise [52]. Thus, an equivalent statement of our goal is, to design the reconstruction

system so that the overall TIADC system regains LTI property, without explicitly

knowing the input. It is also known that, for every WSS input, an LTI and LPTV

system yields a WSS and WSCS output, respectively. This is basic motivation for

the proposed blind correction method which can be stated as follows: assuming

x(t) is a zero-mean WSS random process, design reconstruction filters so that the

output z(n) also becomes WSS. It is emphasized that the sufficiency of this input-

output pairwise WSS condition remains to be proven. Equivalently, it is needed

to check if this pairwise WSS condition guarantees that the entire TIADC system

is LTI. This check is practically important due to the undesirable possibility of

false correction, i.e., both input and output are WSS, but with nonzero residual

mismatches.
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Figure 3.3: Filter bank model of a M = 2 TIADC.

3.1.1 Parameterized Filter Bank Model

There can be several realizations of the reconstruction system in Figure 3.1(d)

[48–51, 53]. Although their signal processing is all equivalent, i.e., mismatch cor-

rection, it is noted that gain and timing mismatches traditionally have been indi-

vidually equalized. The present thesis proposes to employ a parameterized filter

bank for unified treatment of gain and timing errors. The filter bank representa-

tion also provides convenient framework for the sufficiency check of the pairwise

WSS condition, as will be seen in later section.

A filter bank consists of analysis filters and synthesis filters as in Figure 3.2,

and is a useful tool for general multi-rate digital signal processing applications [52].
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Similarities between Figure 3.2 and Figure 3.1(d) are readily seen. A TIADC with

correction filters can be interpreted as a filter bank as shown in Figure 3.3 with

the choice of an analysis bank, H0(jω) = 1 and H1(jω) = G∗e−jω(∆t∗−Ts), for

|ω| < ωs/2 = π/Ts (Undersampling switches in Figure 3.1(d) is equivalent to the

cascade of two-fold decimator and interpolator in Figure 3.2).

The alias component (AC) matrix for the analysis and synthesis bank is then

defined by [52]

HAC(ω) =




H0(ω) H1(ω)

H0(ω − ωs/2) −H1(ω − ωs/2)




=




1 G∗e−jω(∆t∗−Ts)

1 −G∗e−j(ω−ωs)(∆t∗−Ts)


 , (0 ≤ ω < ωs/2)

FAC(ejω) =




F0(e
jω) F1(e

jω)

F0(e
j(ω−ωs/2)) −F1(e

j(ω−ωs/2))


 .

(3.1)

3.1.2 Correction Filter Calculation

It can be shown that the perfect reconstruction condition for this two-channel

filter bank, in terms of AC matrices, is given by

HAC(ω)FT
AC(ejω) = 2I. (3.2)
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It follows that

FAC(ejω, G,∆t) = 2H−T
AC(ω,G,∆t), (3.3)

where I is a 2 × 2 identity matrix. The dependence of HAC and FAC on mis-

match parameters is explicitly shown for clarity. The first row of FAC, i.e. [F0(e
jω)

F1(e
jω)], completely specifies the reconstruction system required for gain and tim-

ing mismatch correction. The true mismatch parameters (G∗, ∆t∗) are unknown

a priori, and therefore we instead rely on their estimates, (G̃, ∆t̃), to calculate

the reconstruction filters by (3.3).

3.2 Characterization of Cyclostationary Process

The characterization of WSCS processes is central to the proposed blind es-

timation method, and is briefly reviewed in this section following the convention

in the literature [54,55]. The autocorrelation function of a real-valued zero-mean

random process y[n] is given by

Ry[n, n
′] = E[x[n]x[n′]] for all n and n′.

If x[n] is WSS, its autocorrelation function, by definition, only depends on a time

lag, such that

Ry[u] = Ry[n+ u, n] for all n and u. (3.4)
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Note again that the output of an LTI system (e.g., mismatch corrected TIADC),

with a WSS input, is always WSS. On the other hand, the output autocorrelation

out of an LPTV system (e.g., mismatch uncorrected TIADC) features periodic

shift-dependence, such that

Ry[n+M,n′ +M ] = Ry[n, n
′] for all n and n′. (3.5)

Equation (3.5) defines WSCS random processes with period M . Since Rx[n+u, n]

is periodic with respect to n, its Fourier series coefficient can be obtained by

Rα
x [u] =

1

M

M−1∑

k=0

Rx[k + u, k]e−j2παk, (3.6)

where α ∈ {0, 1/M, ..., (M − 1)/M} has a physical interpretation of frequency.

Each coefficient is a function of the time lag u, which suggests we can define a

spectral density for each Rα
x [u] as follows.

Sαx (ω) =
∞∑

u=−∞

Rα
x [u]e

−jωu. (3.7)

Rα
x [u] and Sαx (ω) are called the cyclic correlation function and cyclic spectral

density of x[n], respectively, and either one for all α completely characterizes a

WSCS process. In the special case when x[n] is WSS, only R0
x[u] and S0

x(ω) are

nonzero, and they reduce to the conventional autocorrelation function and spectral

density for a WSS process.

For the M = 2 filter bank in Figure 3.2, cyclic spectral density matrices for

the input x[n] and output z[n] is defined as follows [55], where x[n] is assumed
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WSS.

Sx(ω) =




S0
x(ω) 0

0 S0
x(ω − ωs/2)


 ,

Sz(ω) =




S0
z (ω) S

1
2
z (ω)

S
1
2
z (ω − ωs/2) S0

z (ω − ωs/2)


 .

(3.8)

It is noted these matrices becomes diagonal for a WSS signal. Sz(ω) can be written

as a function the input cyclic spectral density Sx(ω) and AC matrices, as follows.

Sz(ω) =
1

4

(
FACHT

AC

)
SX(ω)

(
FACHT

AC

)H
, (3.9)

where the frequency and mismatch parameter dependency of AC matrices is omit-

ted for simplicity. (·)∗ and (·)H denote complex conjugate and complex conjugate

transpose, respectively.

Cyclic correlation funcions or cyclic spectral densities provide a convenient

measure of how a given signal is close to being WSS or WSCS, which is exploited

by the proposed algorithm described next.

3.3 Algorithm Description and Sufficiency Check

Referring to Figure 3.1(d), let x(t) be the TIADC output, assumed WSS, and

z[n] be the output of the reconstruction system designed by (3.3) with mismatch

estimates (G̃,∆t̃). Let’s define the following error measure to quantify how z[n]
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is close to being WSS.

J =
Umax∑

u=0

∑

α 6=0

(
Rα
y (u)

)2
, (3.10)

where Umax is the maximum time lag to consider. Then, the best estimates

(G̃opt, ∆̃topt) can be obtained by minimizing the error measure J .

(G̃opt,∆t̃opt) = arg min
(G,∆t)

J (3.11)

When (G̃opt,∆t̃opt) is equal to the true mismatches (G∗,∆t∗), which is the desired

case, z[n] becomes WSS, and J is identically zero.

Now, consider this question: Is there any other (G̃opt,∆t̃opt) 6= (G∗,∆t∗) which

will also yield zero error measure? First, assume J is zero, i.e., pairwise WSS

condition, with both Sx(ω) and Sz(ω) being a diagonal matrix. For simplicity, let

HAC∗ = HAC(ω,G∗,∆t∗) and H̃AC = HAC(ω, G̃,∆t̃). With the parameterized

reconstruction filter bank FAC = 2H̃−T
AC, (3.9) can be rewritten as

H̃T
ACSz(ω)H̃∗

AC∗ = HT
ACSx(ω)H∗

AC∗. (|ω| < ωs/2)

This, in turn, can be cast into the form,

C(ω)s(ω) = 0, (3.12)

where C(ω) is a 4× 4 coefficient matrix. s(ω) is a non-negative vector, consisting

of input and output power spectral densities,

s(ω) =
[
S0
x(ω) S0

x(ω − ωs/2) S0
y(ω) S0

y(ω − ωs/2)
]T
.
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Note the implicit constraint from physical reasoning: elements of s(ω) are non-

negative, and at least one of them is nonzero (i.e. positive) at some frequency.

Any combination of
(
G̃opt,∆t̃opt

)
and (G∗,∆t∗) will result in the pairwise WSS

condition, as long as it supports a nontrivial null space vector of C(ω) with the

above constraint. It can further be shown that, the only possible combination is

G̃ = ±G∗, and ∆t̃ = ∆t∗, provided |∆t|, |∆t̃| < Ts. Under the small-mismatch

regime, which is usually met in practice, sign ambiguity in gain is easily resolved,

and timing mismatches are also smaller than the sampling interval Ts. This proves

that the accomplishment of pairwise WSS condition is indeed sufficient for mis-

match correction, and therefore we are assured that there is no false correction

for a two-channel TIADC.

The rank of C(ω) in (3.12) is two, and its null space is spanned by any s(ω)

satisfying S0
z (ω) = S0

x(ω), and S0
z (ω − ωs/2) = S0

x(ω − ωs/2). This is a direct

result of the perfect reconstruction property by a parameterized filter bank

3.4 Simulation Results

This section presents simulation results to demonstrate the proposed correc-

tion method. The following example signals are considered as a representative

narrowband and wideband input.
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� SINE: Single sinusoid at frequency 0.15ωs.

� WIDE: Uniform i.i.d samples filtered by h=[0.925 −0.277 −0.185 0.185],

and further bandlimited to 0.45ωs by a 5th-order Butterworth filter.

The impulse response of a raised-cosine filter with 10% excessive bandwidth, af-

ter shifted by ∆t∗ = 0.041Ts, multiplied by G∗ = 0.917, and sampled at every

Ts, serves as a normalized mismatch response for M = 2 TIADC in Figure 3.1.

Then, 10-bit quantization is applied throughout the simulation. The reconstruc-

tion system consists of two 51-tap FIR filters designed by a conventional frequency-

sampling method, and parameterized by (G̃,∆t̃).

Empirical autocorrelation function for a raw (uncorrected) TIADC output

is first estimated by time averaging. Then, the autocorrelation function, after

reconstruction filters, is obtained by double-sided convolution, from which Rα
z [u]

follows. For the calculation of the error measure in (3.10), the maximum time lag

Umax = 10 for all cases. The number of samples used for correlation estimation is

N .

First, the error measure (3.10) is examined on a (G̃,∆t̃) space as shown in

Figure 3.4. The actual shape of error surface depends on the input signal, but a

well-defined global minimum at G∗ = 0.917 and ∆t∗/Ts = 0.041 is clearly seen in

both cases.
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Figure 3.4: Calculated error surface (3.10) with N = 104.

Next, Monte Carlo run is performed varying the sample size N from 102 to

106 (30 simulations for each sample size). Mismatch parameters are uniformly

distributed within ±10% and ±5% for G∗ and ∆t∗/Ts, respectively. After the

blind mismatch correction, the standard deviation of residual mismatches, G∗/G̃

and
(
∆t∗ − ∆t̃

)
/Ts, are recorded. Figure 3.5(a) and Figure 3.5(b) shows the stan-

dard deviation of gain and sampling time mismatches, respectively. Correction

accuracy is seen to improve as the length of observation increases. The estimation

accuracy for SINE input is mainly limited by the reconstruction filter for this

simulation, which explains the flattening of the deviation curve around N = 105.

The residual error, however, can be further reduced by using longer FIR filters

(i.e. >51 taps). In contrast, for WIDE input, the estimation error of sample au-

tocorrelation function is seen to dominate residual mismatches. Richer spectrum
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Figure 3.5: Monte Carlo simulation result for aM = 2 TIADC. Dotted and solid
lines denote standard deviation before and after blind correction, respectively.
Residual mismatches after correction are marked with a circle and square for
WIDE and SINE input, respectively.
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of WIDE input than SINE renders its performance more sensitive to observation

sample size.

At N = 105, residual mismatches are suppressed by 20 dB and 50 dB with

WIDE and SINE input, respectively. This will directly translate to the increase

in SFDR or SNDR by the same amount under mismatch dominant regime.

3.5 Experimental Results

In this section, experimental results are presented to demonstrate the proposed

blind method. Various input signals are applied to a prototype M = 2 TIADC,

and the proposed blind correction method is evaluated for each input signals.

Performance improvement, as well as limitations, will be discussed.

3.5.1 Setup

Experimental results on this section is based on the experimental TIADC

prototype in Figure 2.5. In order to generate wideband signals, an arbitrary

waveform generator (AWG520 from Sony/Tektronix) is employed. Clock and

input signals are fed to four A/D boards (AD6645 from Analog Devices, Inc.),

each having 14-bit resolution and 100-Msamples/S (MSPS) of sampling rate. A

logic analyzer captures the digital output, and mismatch correction is carried out
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on MATLAB. The setup in Figure 2.5 has four channels overall (M = 4), but can

be configured as a M = 2 TIADC as well by pairing channel-1 with channel-3,

or channel-2 with channel-4. Each pairing will be referred to as TIADC-13 and

TIADC-24.

The overall experiment consists of two phases: Estimation Phase and Evalu-

ation Phase. The purpose of Estimation Phase is to obtain the best estimate of

static gain and timing delay, given test input signals. Correction filter coefficients

can then be calculated based on these estimates. In Evaluation Phase, we perform

a series of single-tone SFDR tests over entire the first Nyquist Zone to see how well

the mismatch correction suppresses aliasing error. Since we are only interested

in the suppression of gain-timing mismatch, offset spurs and harmonics from the

signal generator is disregarded in measuring SFDR.

1. Estimation phase

(a) Apply test input signal (Section 3.5.2)

(b) Find the best parameter estimate by (3.10) and (3.11).

(c) Calculate correction filter coefficients by (3.3).

2. Evaluation phase

(a) Apply a series of single-tones covering an entire Nyquist zone (dc–fs/2).

(b) Measure SFDR for each evaluation frequency.

Optimization of the error measure in (3.10) is carried out by calling a MAT-

LAB built-in function, fminsearch, with all available data samples, rather than in
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adaptation with incremental samples [49–51]. This allows us to look at more fun-

damental behaviors without artifacts due to the adaptation. No local minimum

was observed throughout optimization runs. Important parameters are L(=71),

the number of correction filter taps, N(=3 · 104 for sinusoids, and 106 otherwise),

observation sample size, and Umax (=10), autocorrelation window in (3.10). De-

fault values are shown in the parenthesis.

3.5.2 Test Input Signals for Blind Estimation

Blind estimation methods observe only the TIADC output without a prior

knowledge to the input signal. Their performance is, therefore, expected to vary

with one input signal to another. There are in general an infinite number of input

signals that could possibly be applied to a TIADC, but exhaustive input test is

obviously not possible. In this work, two presentative classes of input signals are

considered for Estimation Phase.

� Narrowband signals: Sinusoids from 1.6–99.2 MHz in steps of 1.6 MHz.

� Wideband signals: dc–80 MHz(=0.4fs) bandwidth signals with six different

spectrum shaping (Figure 3.6).

Wideband signals are prepared by generating an i.i.d sequence of uniform-

distributed samples, filtering sharply to define the occupied bandwidth(=0.4fs),
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Figure 3.6: Spectra of six 80 MHz bandwidth test signals for blind mismatch
estimation).

and spectrum-shaping by six different 10-tap FIR filters with arbitrary coefficients.

See Figure 3.6 for their measured spectra.

3.5.3 Measured Channel-Transfer-Function

Figure 3.7 shows measured (and normalized) CTF’s for TIADC-13 and TIADC-

24 characterized by a training method in Chapter 2. In this figure, it is seen that,

except at low frequencies below 20 MHz, the CTF can be approximately described

by a static gain time delay model, (G,∆t), which is roughly (1.002, 0.005Ts), and

(0.99, 0.002Ts) for TIADC-13 and TIADC-24, respectively. Large deviations from

gain-timing model, below 20 MHz, is due to the mismatch in input transformer

cut-off frequencies on ADC boards.
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Figure 3.7: Measured channel-transfer-functions (CTF) for TIADC-13 ((a),(b))
and TIADC-24 ((c),(d)).

The parametric blind method proposed in this chapter will remove such static

gain and time delay mismatches. There will remain, however, residual mismatch

responses which cannot be entirely removed by gain-timing correction alone, lim-

iting the performance of gain-timing error correction. This modeling error is a

fundamental drawback of gain-timing correction approaches, and will be further

investigated in the next section. In general, full correction of frequency-dependent
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Figure 3.8: Typical output spectrum (a) before, and (b) after blind correction.
The input is a single tone at 30.4 MHz. The gain and timing mismatch spurs are
marked as ‘X’, and offset spur as ‘O’. Harmonics from the signal generator are
marked with numbers.

mismatches will require either training methods in Chapter 2 or generalized blind

correction methods in Chapter 4.

3.5.4 Blind Correction with Sinusoidal Inputs

In this section, the proposed blind method is demonstrated with narrowband

input signals. First, in the Estimation Phase, a single tone at a certain input

frequency is applied for blind estimation (Section 3.5.1). Then, The Evaluation

Phase performs a single-tone SFDR test. Figure 3.8 shows typical TIADC output

spectrum before and after blind correction. It is seen that the mismatch spur is

suppressed by 30 dB after blind correction.
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Figure 3.9: Measured full-band SFDR characteristic (TIADC-13) after blind
mismatch estimation with a 38.4 MHz single-tone.

Figure 3.8 proves that the blind method effectively removes channel mis-

matches at the estimation (i.e. calibration) frequency. Will the error correction

still be good at all other frequencies? Figure 3.9 shows SFDR test results across

the entire Nyquist zone. Calibration frequency is 38.4 MHz for the Estimation

Phase. It is seen that SFDR is improved over the entire Nyquist zone by up to

30 dB. Specifically, the improvement in SFDR is at its peak (> 80 dB) around

the calibration frequency 38.4 MHz. As we move away from the calibration fre-

quency, the SFDR starts to drop. Note here two important properties of the blind

correction method based on gain-timing model.
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Figure 3.10: Comparison of the true mismatch response (dot) and gain-timing
model (solid line). Gain and time-delay parameters were obtained with a single-
tone input at 38.4 MHz. Therefore, the gain-timing model provides near perfect
magnitude/phase match to the true mismatch response at 38.4 MHz. The global
fit is not as good.

1. The blind algorithm only sees the CTF at those frequencies where the

TIADC input has nonzero power. In other words, the TIADC output does

not have any information about the unexcited mode of the A/D converter

frequency response.

2. The blind algorithm seeks to find the best estimate (G,∆t) which can com-

pensate for the excited mode of the actual mismatch response. Assume a

single-tone input at ωin, and the CTF at this frequency H(jωin). Then, the

blind algorithm will conclude parameter search with the following equivalent

gain and time delay.

Geq = |H(jωin)| ,

∆teq =
∠H(jωin)

ωin

(3.13)
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Therefore, if the actual CTF is exactly represented by static gain and time

delay over the entire Nyquist zone, then the estimates (3.13) will provide perfect

mismatch correction over the full Nyquist zone. If, however, the CTF deviates

from (G,∆t) model, then (3.13) will provide only narrowband mismatch correction

at ωin. At other frequencies, the mismatch may or may not be corrected. Figure

3.10 compares the true mismatch response and its best estimate at the calibration

frequency of 38.4 MHz. It is seen that the estimated gain-timing model near

perfectly match the true mismatch at the calibration frequency, but obviously

global match is not as good. Figure 3.13 shows similar SFDR results with different

calibration frequencies.

Noting that the correction is still locally valid around the calibration frequency,

even in the presence of modeling error, one can now recalculate the correction filter

for every SFDR evaluation frequency, and the result is shown in Figure 3.12. Since

the correction filter is re-designed for every evaluation frequency, now the SFDR

consistently improves across the entire Nyquist range. This level of correction

performance is nearly equivalent to the training method (e.g. compare Figure

3.12 with Figure 2.10(b)). It is noted that, however, in a training method, the

full-band correction is achieved by a single set of filter coefficients, unlike the blind

method case where correction filters are re-designed for every input sinusoidal

frequency. Sudden SFDR drop around 50 MHz is due to the artificial, unreal
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Figure 3.11: Measured SFDR characteristics after single-tone blind estimation.
Correction filter coefficients are fixed once calculated with three different sinu-
soidal input signals. Compare with Figure 3.12.
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Figure 3.12: Measured SFDR characteristics after single-tone blind estimation.
Correction filter coefficients are re-calculated at every SFDR evaluation frequency.
Compare with Figure 3.11.
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mismatch induced by the input signal, not actual channel mismatches. A single

period of a 50 MHz sinusoid is exactly equal to 4Ts, such that, in the worst case,

the first and second A/D converter may only catch peaks and zero-crossings, or

vice versa, of the input sinusoid, respectively. This signal-induced mismatch is

indistinguishable from actual channel mismatches with the present method. Put

in another way, input WSS assumption is not valid in this case and we need either

much longer observation or randomization techniques.

Figure 3.11 and Figure 3.12 are representative demonstrations of the blind

method assuming narrowband WSS signals. In reality, the center frequency of

the input may be time-varying and the correction filter will also be updated at a

certain rate. Figure 3.11 shows the expected SFDR performance after a sudden

change in input frequency before filter coefficients are updated. Figure 3.12, on the

other hand, exemplifies the opposite scenario where the input frequency changes

more slowly than the coefficient update rate.

3.5.5 Blind Correction with 80 MHz Bandwidth Signals

Six 80-MHz bandwidth signals are applied for the purpose of mismatch esti-

mation. The SFDR performance is evaluated by using sinusoids and summarized

in Figure 3.13. The blind algorithm now sees the CTF over a wider range of fre-

quencies than the narroband input case, and therefore the improvement in SFDR
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is more evenly distributed across the entire frequency range, than the narrowband

input case (Figure 3.11).

3.5.6 The Effects of Observation Sample Size

The estimation error of the proposed blind method is critically related to the

autocorrelation estimation accuracy ((3.10)). Assuming a WSS source, it can be

shown that the variance of non-WSS noise of autocorrelation estimation, due to

the finite observation, is inversely proportional to N2 and N , for asymptotically

narrowband and wideband signals, respectively. Representative experimental re-

sults are shown in Figure 3.14.

3.6 Conclusions

This chapter proposed and demonstrated a novel blind method of mismatch

correction for an M=2 TIADC, based on a parameterized filter bank and WSCS

characterization of relevant signals. Assuming WSS input, the proposed algorithm

corrects gain and timing errors by restoring the shift-invariance of the output

autocorrelation function. Extension of the proposed algorithm to M > 2 cases

should be straightforward, but its corresponding sufficiency check seems to be an

open question due to the complexity of the problem.

72



Chapter 3. Mismatch Correction for TIADCs: Blind Method

0 20 40 60 80 100
30

40

50

60

70

80
S

F
D

R
 (

d
B

)

Frequency (MHz)

Before correction

(a) TIADC-13

0 20 40 60 80 100
30

40

50

60

70

80

S
F

D
R

 (
d
B

)

Frequency (MHz)

Before correction

(b) TIADC-24

Figure 3.13: Measured SFDR characteristics after wideband blind estimation.
Corection filters are calculated with six different 80 MHz bandwidth signals.

73



Chapter 3. Mismatch Correction for TIADCs: Blind Method

0 20 40 60 80 100
30

40

50

60

70

80

90
S

F
D

R
 (

d
B

)

Frequency (MHz)

N

(a) Narrowband input signal. N=103, 3 · 103, 104, and 3 · 104.

0 20 40 60 80 100
30

40

50

60

70

80

90

S
F

D
R

 (
d
B

)

Frequency (MHz)

N

(b) Wideband input signal. N=3 · 104, 105, 3 · 105, and 106.

Figure 3.14: The effect of observation sample size N (TIADC-13).
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The proposed blind method is also experimentally verified. Under the present

experimental condition, mismatch modeling error is limiting broadband correc-

tion. The finite observation sample size also limits the SFDR performance with

wideband signals. In Chapter 4, another novel blind method will be introduced

which can effectively address the problem of mismatch modeling error.

In general, blind correction methods can complement training-based calibra-

tion methods by providing 100% availability of data conversion and the ability to

track time-varying mismatches.
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Chapter 4

Mismatch Correction for
TIADCs: Generalized Blind
Method

In Chapter 3, a blind mismatch correction is proposed, based on the assump-

tion that TIADC channels can be modeled as static gain-timing model. The

performance of this gain-timing correction, in general, depends on specific con-

verter hardware and the input signal bandwidth (Section 3.5). If the TIADC

input circuitry and sub-converters have high enough bandwidth with no in-band

poles or zeros, then the static gain and time delay may adequately model a sub-

converter. If, however, the lowest input pole (or zero) is not sufficiently higher

than the input bandwidth, the gain and phase response is no longer a straight

line. As a result, mismatches in the location of pole (or zero) between channels

will produce nonlinear gain and phase response. If the input circuitry has a band-

pass nature, the displacement of lower-frequency poles (or zeros) will also result

76



Chapter 4. Mismatch Correction for TIADCs: Generalized Blind Method

complicated mismatch behavior [11]. This modeling error is irreducible and acts

as residual mismatches, making gain-timing model inadequate for high-resolution

applications. The effect of such under-modeled mismatches is more serious with

wideband input signals [56].

Generalized mismatch modeling For a higher level of calibration perfor-

mance, therefore, generalized mismatch correction is necessary to break the limi-

tation of simple gain-timing model. Generalized error modeling, however, poses a

fundamental problem to blind techniques: How to uniquely identify multiple pa-

rameters? Now, we need to handle an increased number of parameters resulting

from generalizing correctible mismatches. The blind search algorithm will more

likely end up at local minima, resulting false correction. The pertinent goal is to

find a combination of realistic constraints and mismatch parameterization such

that the blind algorithm can uniquely identify a necessary number of mismatch

parameters under most practical cases.

Demanding computational cost Blind methods typically require a very high

computational cost. Iterative parameter search (closed-form solution generally

unavailable) needs accurate gradient information, which involves intensive calcu-

lation. Signal reconstruction, given error estimate, is also computationally ex-

pensive. This is partly due to the transformation between time- and frequency-
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domain, and partly due to the long impulse response in the presence of sampling

time error (recall sinc(n) decays as 1/n) (Chapter 5 will discuss a special mixed-

domain approach to significantly reduce the computational requirement).

In this chapter, a generalized blind correction method is proposed for the first

time. The proposed blind estimation method is based on polynomial mismatch

modeling, as well as input-WSS assumption. It will be shown that this particular

combination enables unique multi-parameter estimation, eliminating false correc-

tion in most practical cases.

A very efficient implementation of the proposed method is also presented. The

polynomial representation of mismatch errors is actively exploited to get an ana-

lytic form of error measure and gradient with no time-frequency transformation.

This enables more efficient parameter search and real-time adaptation.

The WSS input assumption is mainly for theoretical purpose, and, in practice,

the proposed method performs equally with most stochastically non-WSS signals

as well. This is because we rely on time-averaging (rather than stochastic expec-

tation) to get the empirical autocorrelation. Therefore, non-stationary part of the

input will be effectively smoothed out, unless the input signal has exact phase

relationships with the sampling clock (e.g. sin(π(m/M)fst), m = 1, ...,M − 1

where M is the number of TIADC channels)

78



Chapter 4. Mismatch Correction for TIADCs: Generalized Blind Method

4.1 System Model

A two-channel TIADC system is shown in Figure 4.1(a). The sample period

and frequency of the array is Ts and ωs = 2π/Ts, respectively. The analog input

x(t) is bandlimited from dc to 0.5ωs, and assumed to be a real-valued, zero-mean

and WSS random process. Figure 4.1(b) illustrates a linear equivalent model with

channel transfer function (CTF) H0(ω) and H1(ω). Any linear filtering effects

before A/D conversion are lumped into the CTF, including static gain, sampling

time shift, pole-zero effect, etc. Assuming the bit-resolution is high, quantization

effects are ignored.

Normalization with respect to the first channel yields Figure 4.1(c), where the

correction digital filters F0(e
jω) and F1(e

jω) are also shown. This normalization

clarifies we are interested only in channel mismatches, disregarding common linear

time-invariant (LTI) filtering. There are two justifications for this: first, an LTI

system does not create distortion sidebands, and second, common filtering due to

CTF is acceptable in most cases. Now, the normalized CTFH(ω) ≡ H1(ω)/H0(ω)

fully characterizes the general linear mismatches between the two channels.
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Figure 4.1: M = 2 TIADC system model. z[n] and y[n] are corrected and
uncorrected TIADC output, respectively.
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4.1.1 Parameterized Filter Bank Model

The system in Figure 4.1(c) can be regarded as an M = 2 filter bank, with

analysis and synthesis filter bank equal to the analog and digital filters, respec-

tively. The alias component (AC) matrix for each bank is then defined as

HAC(ω,p∗) =




1 H(ω,p∗)

1 −H(ω − ωs/2,p
∗)







1 0

0 ejωTs




FAC(ejω, p̃) =




F0(e
jω, p̃) F1(e

jω, p̃)

F0(e
j(ω−ωs/2), p̃) −F1(e

j(ω−ωs/2), p̃)







1 0

0 e−jωTs


 .

(0 ≤ ω < ωs/2)

(4.1)

Note that HAC and FAC is a function of p∗ and p̃ which is an actual and estimated

mismatch parameter vector, respectively. The perfect reconstruction condition is

HACFT
AC = 2I, (4.2)

which means that the entire system in Figure 4.1(c) reduces to an LTI system

with no aliasing error.
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4.1.2 Correction Filter Calculation

Equation (4.2) suggests that the correction filter, given mismatch estimatep̃,

should be designed as

FAC(ejω, p̃) = 2H−T
AC(ω, p̃), (4.3)

where HAC(ω, p̃) is the AC matrix of a hypothetical analysis filter bank (assumed

to be invertible),

HAC(ω, p̃) =




1 H(ω, p̃)

1 −H(ω − ωs/2, p̃)







1 0

0 ejωTs


 . (4.4)

H(ω, p̃) is the estimated CTF parameterized by mismatch estimation p̃. The

correction filters can be designed as follows: First, specify H(ω, p̃) using the

current estimation p̃, second, build HAC using (4.4), third, invert it to obtain

FAC using (4.3), and finally obtain the time-domain impulse response using any

conventional filter design method (e.g. frequency sampling, least-squares, etc).

f0[n, p̃] = IDFT (F0(e
jω, p̃)) ,

f1[n, p̃] = IDFT (F1(e
jω, p̃)) .

(4.5)

In (4.5), IDFT(·) is the inverse discrete Fourier transform operator. f0[n, p̃]’s

and f1[n, p̃]’s are correction filter taps, whose combined output is the mismatch-

corrected TIADC output in Figure 4.1(c).

So far, we have not assumed any specific parameterization of H(ω,p∗) or

H(ω, p̃) (and h[n,p∗] or h[n, p̃] thereof). The proposed system configuration in
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Figure 4.1(c) and the derivation of correction filter in (4.5) is completely gen-

eral and capable of generalized mismatch correction. The traditional gain-timing

model can be handled as a special case. One important question remains: how to

model or parameterize CTF as a function of mismatch parameters.

4.2 Polynomial Mismatch Modeling

In general, the modeling of channel mismatches should be application-specific;

different analog front-ends will exhibit different mismatch behaviors. The best

mismatch modeling will be physics-based, such that a small number of intrinsic

parameters provide a good global fit to actual mismatch responses.

Among many possible parameterizations, polynomial approximation in polar

coordinate has desirable properties in particular. First, under WSS input and

small mismatch assumption, it guarantees unique parameter identification under

mild conditions, as will be shown in the following section. Second, polynomial

modeling can closely approximate arbitrary linear transfer functions if they are

smooth and continuous within the band of interest (See e.g. Figure 2.6 and Figure

3.7). Last, the traditional static gain and timing mismatch can be readily handled

as a special case of polynomial modeling.
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Consider magnitude-phase decomposition of channel response, omitting de-

pendency on mismatch parameters p∗ or p̃ for simplicity,

H(ω) = (1 + g(ω)) ejφ(ω), (4.6)

where g(ω) and φ(ω) is general gain and phase mismatch, respectively. Under

small-mismatch assumption,

H(ω) ≈ 1 + g(ω) + φ(ω). (4.7)

Representing g(ω) and φ(ω) as a frequency polynomial,

g(ω) =

Q∑

k=0

akω
k,

φ(ω) =

Q∑

k=0

bkω
k.

(4.8)

It is assumed g(ω) and φ(ω) has the same order, Q, for simplicity, but they can

be of a different order as well.

4.3 Stationarity-Based Blind Multi-Parameter Es-

timation

The proposed blind estimation method in this chapter is based on the assump-

tion that the TIADC input is WSS [56, 57]. If channel mismatches are present,

the TIADC output is not WSS in general. The blind algorithm adjusts mismatch

estimates to restore WSS property at the TIADC output.
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Let Ry[n,m] ≡ E[y[n]y[m]] and Rz[n,m] ≡ E[z[n]z[m]] be the autocorrelation

of uncorrected and corrected TIADC output, respectively (Figure 4.1(c)). It can

be shown that Rz is periodic with respect to a common shift, due to the periodic

channel switching, satisfying

Rz[n,m] = Rz[n+ 2,m+ 2], for all n and m. (4.9)

If channel mismatch is present, Rz is generally (but not necessarily) shift-dependent,

Rz[n,m] 6= Rz[n+ 1,m+ 1], for some n and m. (4.10)

It follows from (4.9) and (4.10) that Rz[n,m] is completely specified by Rz[u, 0]

and Rz[u + 1, 1]. The TIADC output z[n] will become WSS if and only if

Rz[u, 0]=Rz[u + 1, 1]. Therefore, the optimum mismatch parameter p̃opt can be

obtained by the following minimization,

p̃opt = arg minep J, (4.11)

where the error measure J is defined as

J ≡
Umax∑

u=0

(Rz[u+ 1, 1] −Rz[u, 0])2 . (4.12)

Umax is the maximum time lag to consider. Equation (4.12) can also be written

in terms of cyclic correlation,

J ≡
Umax∑

u=0

(
R

1
2
z [u]

)2

. (4.13)
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Minimization of (4.11) can be realized in many different ways. For example,

if given enough computational power, exhaustive search can be performed over a

single batch of data. Otherwise, gradual descent to the minimum over multiple

batches may also be attempted with reduced computational cost (but with slower

convergence). Depending on the implementation, observation of either corrected

or uncorrected output may be more convenient than the other (i.e. z[n] or y[n] in

Figure 4.1(c), respectively)

4.4 Uniqueness of Solution

Regading the optimum estimate obtained by (4.11), the following question

needs to be answered: Is the solution unique? Equivalently, under what conditions

does J = 0 imply p̃opt = p∗? To answer this question, consider the cyclic spectral

density S
1/2
y (ω) (i.e. Fourier transform of R

1/2
y [u]. See Section 3.2 for review of

cyclostationary random process). It can be shown that S
1/2
y (ω) is written as

S
1/2
y (ω) = S0

x(ω)
(
H̃∗(ω) −H∗(ω)

)(
H(ω) + H̃(ω − ωs/2)

)

+S0
x(ω − ωs/2)

(
H̃(ω − ωs/2) −H(ω − ωs/2)

)

·
(
H̃∗(ω) +H∗(ω − ωs/2)

)
.

(4.14)
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One can rewrite CTF’s in a polar form, and apply small-mismatch assumption to

yield

H(ω) = (1 + g(ω)) ejφ(ω) ≈ 1 + g(ω) + jφ(ω),

H̃(ω) = (1 + g̃(ω)) ej
eφ(ω) ≈ 1 + g̃(ω) + jφ̃(ω).

(4.15)

Representing each error term in (4.15) as a Q-th order polynomial,

g(ω) =

Q∑

k=0

akω
k, φ(ω) =

Q∑

k=0

bkω
k,

g̃(ω) =

Q∑

k=0

ãkω
k, φ̃(ω) =

Q∑

k=0

b̃kω
k.

(4.16)

Thus, p∗ = [a0 a1 ... aQ b0 b1 ... bQ]T and p̃∗ = [ã0 ã1 ... ãQ b̃0 b̃1 ... b̃Q]T . Plugging

(4.15)–(4.16) into (4.14), and taking real and imaginary part, one can show that,

to a first-order approximation, S
1/2
y (ω) ≡ 0 is equivalent to

Weg = 0,

Weφ = 0,

(4.17)

where W and coefficient error vectors eg and eφ are defined as

[W]n,m = S0
y(ωn)ω

m
n + S0

y(ωn − ωs/2) (ωs/2 − ωn)
m ,

[eg]n,1 = ãn − an,

[eφ]n,1 = b̃n − bn.

(0 ≤ n ≤ F − 1, 0 ≤ m ≤ Q, 0 < ωn < ωs/2)

(4.18)

ωn’s are F frequency points where either S0
y(ωn) or S0

y(ωn − ωs/2) is nonzero

(hence positive). If W has at least (Q + 1) linearly independent rows, then the
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only solution of (4.17) is eg = 0 and eφ = 0, which means that p̃opt = p∗.

Obviously, the input needs to have at least (Q + 1) spectral tones, and this will

enable identification of up to 2(Q + 1) real-valued mismatch parameters. As the

input spectrum becomes richer, it is more likely that at least (Q + 1) rows are

independent with each other, guaranteeing unique parameter identification.

For theoretical purpose, consider the following assumption: The TIADC in-

put has at least (Q + 1) distinct spectral tones at ωn’s, such that only one of

S0
y(ωn) or S0

y(ωn−ωs/2) is nonzero. Under this minimal asymmetric tone (MAT)

assumption, (4.17) simplifies to

Veg = 0,

Veφ = 0,

(4.19)

where V is now a diagonally weighted vandermonde matrix,

[V]n,m = S0
y(ωn)ω

m
n . (4.20)

V is nonsingular if and only if ωn’s are distinct. Therefore, the MAT condition

strictly guarantees unique mismatch identification. The MAT condition can be

met if the input spectrum has a small unoccupied region (not in a mirror symme-

try) across f = 1/4fs. Since the probability of W being singular has zero measure,

W will be almost always nonsingular even if MAT is not met, as long as the input

spectrum is rich enough.
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4.5 Simulation Results

In this section, a numerical example is presented to demonstrate the proposed

generalized blind method. The M = 2 TIADC under simulation has 12-bit reso-

lution, and each channel has a single pole around 0.6ωs. Mismatch parameters are

3% static gain error, 0.6% sampling time error and 2% pole location mismatch.

The input signal has three equal-magnitude tones at 0.065ωs, 0.185ωs and 0.405ωs.

It is readily seen that the MAT condition (Section 4.4) is satisfied with Q up to

2.

A batch of N = 100, 000 samples of uncorrected TIADC output y[n] is time-

averaged to obtain Ry. Next, Ry goes through double convolution with correction

filters to calculate Rz, autocorrelation of corrected TIADC output. Rz is then

passed to a minimizer routine to find out the best mismatch estimate ((4.12)).

The number of tap for each correction filter is L = 61, and the maximum time

lag to consider is Umax = 10.

Two representative mismatch models are tested for comparison: conventional

gain-timing model and 2nd-order polynomial model (Q = 2). Figure 4.2(a) and

Figure 4.2(b) each compares the true CTF and its estimates with either mismatch

model. Dotted lines are true magnitude and phase response, where the curvature

is due to the pole location mismatch. Solid lines correspond to the best esti-
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(a) Dotted line: actual mismatch. Solid line: Estimates of gain-timing model
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(b) Dotted line: actual mismatch. Solid line: Estimates of generalized mismatch
model (2nd-order polynomial)
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Figure 4.2: Comparison of correction results from gain-timing model and gen-
eralized model. It is clearly seen that the generalized model provides a superior
match to the actual mismatch response, and hence greater SNR improvement than
gain-timing model.
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mation, which is also the best fit to the true responses weighted by the input

spectral density. Second-order modeling gives a good match, and the limitation

of gain-timing model is clearly seen. Mismatch-limited SNR is closely approxi-

mated by 1/ |H(ω, p̃) −H(ω,p∗)| which is plotted in Figure 4.2(c). Up to 35 dB

of improvement is observed as a result of generalized mismatch modeling

4.6 Efficient Adaptive Implementation

The correction and estimation of generalized mismatches is discussed in Section

4.3 and Section 4.1.2 in a general context. In this section, an efficient implementa-

tion of the proposed method is introduced, exploiting polynomial representation

of mismatch. First, consider simpler correction filter structure by introducing an

appropriate normalization.

4.6.1 Correction Filter Normalization

From (4.3) and (4.4), FAC can be shown to be

FAC(ejω, p̃) =
2

H(ω, p̃) +H(ω − ωs/2, p̃)

·




H(ω − ωs/2, p̃) 1

H(ω, p̃) −1







1 0

0 e−jωTs


 .

(4.21)
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Figure 4.3: M = 2 TIADC system with a normalized correction filter.

One can ignore the common filtering factor 2/ (H(ω, p̃) +H(ω − ωs/2, p̃))

(valid under small-mismatch assumption). Then, it is readily seen that correc-

tion filters are given by

F0(e
jω, p̃) = H(ω − ωs/2, p̃),

F1(e
jω, p̃) = 1,

(4.22)

suggesting that only one non-trivial filter is required, F0(e
jω, p̃).

Let h(t) and f [n] be the impulse response of H(ω, p̃) and F0(e
jω, p̃), respec-

tively. Then, f [n] directly follows from (4.22),

f [n] = (−1)n h(nTs). (4.23)

The equivalent TIADC system with a normalized correction filter is shown in

Figure 4.3 (h[n] ≡ h(nTs)).
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4.6.2 Analytic Filter Calculation

Assuming a polynomial representation of generalized mismatches, as discussed

in Section 4.2, one can explicitly represent the correction filter coefficients f [n]

in terms of polynomial coefficients. This enables bypassing of time-consuming

numerical operations such as matrix inversion, time-frequency domain transfor-

mation, etc, significantly increasing numerical efficiency.

From (4.7), (4.8), and (4.23), correction filter coefficients f [n] can be written

as a function of polynomial coefficients (for Q = 2)

f [n] = (−1)n

(
δ[n] +

2∑

k=0

akhk[n] +
2∑

k=0

bkhk+3[n]

)
, (4.24)

where subsequences hk[n]’s are defined as

h0[n] = δ[n],

h1[n] =
π

2
δ[n] +

(−1)n − 1

n2π
,

h2[n] =
π2

3
δ[n] +

2(−1)n

n2
,

h3[n] =
(−1)n − 1

nπ
,

h4[n] =
(−1)n

n
,

h5[n] =
2 (1 − (−1)n)

n3π
+
π(−1)n

n
.

(4.25)

Equation (4.24)–(4.25) define Q = 2 parameterization of f [n, p̃], where p̃ =

[ã0 ã1 ã2 b̃0 b̃1 b̃2]
T . Extension to Q > 2 is straightforward.
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4.6.3 Analytic Error Measure and Gradient

Now, using (4.24)–(4.25), the error measure (4.12) as well as its gradient can

be obtained in an analytical form. First, represent Rz[u, 0] and Rz[u + 1, 1] in

terms of polynomial mismatch coefficients

Rz[u, 0] =
L∑

k=−L

L∑

l=−L

f [k]f [l]Ie[u− k]Ie[−l]Ry[u− k,−l]

+
∑L

k=−L f [k]Io[u]Ie[−k]Ry[u,−k],
(4.26)

Rz[u+ 1, 1] =
L∑

k=−L

L∑

l=−L

f [k]f [l]Ie[u+ 1 − k]Ie[1 − l]Ry[u+ 1 − k, 1 − l]

+
L∑

k=−L

f [k]Ie[u+ 1 − k]Ry[u+ 1 − k, 1]

+
L∑

k=−L

f [k]Io[u+ 1]Ie[1 − k]Ry[u+ 1, 1 − k]

+Ry[u+ 1, 1]Io[u+ 1].

(4.27)

In (4.26)–(4.27), Ry[n,m] is the autocorrelation measured at the uncorrected

TIADC output y[n]. (2L + 1) is the number of f [n] taps. Ie[n] = 1 if n is

even, 0 if not. Similarly, Io[n] = 1 for odd n, and 0 otherwise.

The derivative of autocorrelation coefficients similarly follows.

∂Rz[u, 0]

∂p̃m
=

L∑

k=−L

L∑

l=−L

(hm[k]f [l] + f [k]hm[l])

·Ie[u− k]Ie[−l]Ry[u− k,−l]

+
L∑

k=−L

hm[k]Io[u]Ie[−k]Ry[u,−k],

(4.28)
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∂Rz[u+ 1, 1]

∂p̃m
=

L∑

k=−L

L∑

l=−L

(hm[k]f [l] + f [k]hm[l])

·Ie[u+ 1 − k]Ie[1 − l]Ry[u+ 1 − k, 1 − l]

+
L∑

k=−L

hm[k]Ie[u+ 1 − k]Ry[u+ 1 − k, 1],

+
L∑

k=−L

hm[k]Io[u+ 1]Ie[1 − k]Ry[u+ 1, 1 − k],

(4.29)

where p̃m is m-th mismatch parameter in p̃.

4.6.4 Steepest Descent Iteration

Finally, the minimization of J in (4.12) can be performed by the following

iteration rule,

p̃(i+1)
m = p̃(i)

m − α
∂J

∂p̃m

∣∣∣∣epm=ep(i)m

, (4.30)

where the error gradient ∂J/∂p̃m is obtained by differentiating (4.12) and substi-

tuting (4.26)–(4.27) and (4.28)–(4.29)

∂J

∂p̃m
= 2

Umax∑

u=0

(Rz[u+ 1, 1] −Rz[u, 0])

(
∂Rz[u+ 1, 1]

∂p̃k
− ∂Rz[u, 0]

∂p̃k

)
, (4.31)

where p̃
(i)
m is the estimate p̃m at i-th iteration. α is a convergence parameter

(α≪ 1). Note the calculation of gradient by (4.26)–(4.27) and (4.28)–(4.29) does

not involve numerically intensive operations such as matrix inversion or transfor-

mation between time- and frequency-domain. The required calculation is mostly
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Figure 4.4: Convergence of mismatch parameters and error measure using adap-
tive implementation of the generalized blind correction.

double-convolution, therefore further reduction in complexity would be possible

using fast Fourier-transform operation

4.6.5 Simulation Example

In this section, a simulation example is given to demonstrate the efficient im-

plementation of generalized blind correction. The M = 2 TIADC array under

simulation has 12-bit resolution with 0.4% static gain and 0.6% sampling time

mismatch. Each channel has a single pole around 0.6ωs, and the mismatch in pole

location is 2%. The magnitude and phase of CTF are modeled as a Q = 2 polyno-

mial. The input signal has three tones with equal magnitudes at 0.065ωs, 0.185ωs

and 0.405ωs. This particular signal enables unique polynomial identification up

to Q = 2 (Section 4.4).

96



Chapter 4. Mismatch Correction for TIADCs: Generalized Blind Method

Normalized freq. Normalized freq.

0 0.1 0.2 0.3 0.4 0.5
0.995

1

1.005

0 0.1 0.2 0.3 0.4 0.5
-0.01

-0.005

0

M
ag

n
it

u
d

e

P
h
as

e 
(r

ad
ia

n
)

(a) Dotted line: actual mismatch. Solid line: Estimates of generalized mismatch
model (2nd-order polynomial)

0 0.1 0.2 0.3 0.4 0.5
40

50

60

70

80

90

Normalized freq.

uncorrected

S
N

R
 (

d
B

)

corrected

(b) SNR improvement
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Total 500 iterations are performed according to the descent rule (4.30). For

each iteration, Ry is obtained by time-averaging N = 100, 000 uncorrected output

samples. L = 20 and Umax = 5. Figure 4.4 shows a convergence plot for parameter

estimate p̃m and error measure J , respectively. Figure 4.5(a) compares the true

and estimated CTF. A close agreement is seen, which obviously the simple gain-

timing model cannot provide. Finally, mismatch-limited SNR is estimated by

1/ |H(ω, p̃) −H(ω,p∗)|, and shows 15–30 dB improvement after calibration in

Figure 4.5(b).

4.7 Conclusions

In this chapter, it is proposed and demonstrated that generalized mismatch

errors can be blindly identified and corrected, achieving significant SNR and SFDR

improvement (15–35 dB), for an M = 2 TIADC under realistic assumptions.

Parameterized filter banks and cyclostationary spectral analysis is a key to the

algorithm implementation and theoretical analysis, respectively.

Polynomial approximation in polar coordinate has been used for the present

study, but in principle other parameterizations are also possible. The best para-

meterization will be application specific. It will capture the physics of mismatches

with a minimal number of parameters while systematically avoiding the possibility
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of false correction. The proposed approach and theoretical framework can also be

applied to general sampling networks, as well as A/D conversion systems, where

the sampler performance is sensitive to periodic patterning artifacts.
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Chapter 5

Mismatch Correction for
TIADCs: Mixed-Domain Blind
Method

Currently known techniques for TIADC mismatch correction can be catego-

rized into training (foreground) [11, 20] and blind (background) methods [24, 27–

29, 48–50, 56–63]. As discussed before, training methods are suitable for high-

resolution application in general, since they are capable of correcting general lin-

ear mismatches [11], but at the cost of suspension of data acquisition during each

calibration. They are also subject to post-calibration detuning due to temperature

variation, aging, etc [11]. Blind methods, on the other hand, use normal input

signals for calibration purpose, and therefore do not require dedicated calibration

period. Slowly time-varying errors may also be tracked. There have been pro-

posed a variety of blind methods with different accomplishments and limitations.

One group of techniques performs error detection and correction entirely in the

100



Chapter 5. Mismatch Correction for TIADCs: Mixed-Domain Blind Method

digital domain [29, 48–50, 58], as illustrated in Figure 5.1(b). Another class of

techniques use both analog and digital domain [24,27,28,59,62].

Previous mixed-domain methods typically involve special analog signal process-

ing (e.g. adding a known signal to the input as in Figure 5.1(c)) to facilitate

mismatch estimation, which may potentially compromise input signal integrity.

Purely digital techniques keep the analog signal path intact, but their compu-

tational cost is highly demanding. This is partly due to the complex parameter

search algorithm, but mostly due to digital correction of sampling time delay, since

matrix inversion or transformation between the time and frequency domains is

usually required for correction filter calculation. Further, the resulting correction

filter is long (sinc(t) decays only as 1/t), increasing hardware cost and complexity.

Depending on blind correction algorithms, the estimation of timing error may also

be computationally complex. For both classes of techniques, special assumptions

are necessary (e.g. reduced input bandwidth, limited number of TIADC channels,

wide-sense stationarity, or their combination, etc) to make the problem of blind

estimation solvable. Full-digital techniques tend to require stronger assumptions,

thus are more restrictive than mixed-domain methods. Using an extra ADC may

provide a convenient calibration reference, but the analog input path is subject

to switching, raising concerns about the input signal integrity.
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Figure 5.1: A M = 4 TIADC system with mismatch correction system
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The above discussion naturally leaves us one interesting option in the mixed-

domain: timing error correction in the analog domain by directly tuning sampling

clocks (Figure 5.1(d)). This obviates long digital filters as well as their online

calculation for timing correction. Additional benefit is that, now timing correction

is ideal over multiple Nyquist zones. In contrast, a single set of digital filters can

only provide approximate timing correction (e.g. limited usable bandwidth, in-

band ripples, etc) over a single Nyquist zone. A reliable blind estimation method

needs to be developed to close the feedback loop, preferably with weaker working

assumptions to allow application to the widest range of signals. Since the clock

tuning circuitry is subject to environmental changes, drift, etc (as with other

analog circuits), the importance of a reliable estimation algorithm is emphasized.

In this chapter, an entirely new mixed-domain blind method is proposed, with

complete theory and experimental results, in accordance with the above discus-

sion. Dramatically reduced computational complexity and exceptionally wide

applicability are among the contributions of the proposed method. The proposed

blind method is based on the assumption that the input signal is wide-sense sta-

tionary (WSS). Under the input WSS assumption, the mismatch estimates are

guaranteed to converge to true parameters. However, the proposed method is

equally effective with most commonly-arising signals which do not meet the WSS

constraint. In particular, the algorithm functions with sinusoidal input signals. No
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further restriction is necessary other than the input WSS condition. Specifically,

the TIADC can have an arbitrary number of channels, and the input spectrum

can cover the full Nyquist bandwidth. In fact, the proposed blind method works

in any Nyquist zone.

Section 5.1 describes the system model. Section 5.2 introduces the proposed

error detection method, and Section 5.3 develops its adaptive implementation for

parameter estimation. Section 5.4 discusses experimental results, and Section 5.5

gives conclusion.

5.1 System Model

Figure 5.2 shows a block diagram of the M = 4 TIADC structure with the

proposed mismatch correction scheme. Each of four sub-converters successively

samples the analog input signal x(t) every 4Ts such that the overall sampling

rate is fs (=1/Ts). Listed below are pertinent assumptions and clarifications with

references to Figure 5.2.

� The input x(t) is WSS and bandlimited from dc to 1/2fs. No further infor-

mation about x(t) is known.

� The sub-converters’ resolution is sufficiently high enough for ADC quanti-

zation errors to be ignored.
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� The mismatch in sub-converter dc offsets is independently corrected by first

measuring and subsequently subtracting the time-average sub-converter out-

puts.

� The k-th channel sub-converter has intrinsic gain G∗
k and sampling time

error ∆t∗k which are unknown.

� The estimate of the intrinsic gain and sampling time errors is G̃k and ∆t̃k,

respectively.

� Correction of sampling time mismatches is achieved by tuning individual

sampling clock to the estimate ∆t̃k.

� Correction of gain error is performed by digitally dividing the sub-converter

output by the gain estimate G̃k.

� Residual mismatch error is defined as the difference between intrinsic and

estimated parameters.

� Finally, the magnitude of intrinsic mismatches is small. The precise inter-

pretation will be made clear in the context.

The output of the k-th sub-converter, yk[n], is

yk[n] = G∗
kx
(
(Mn+ k)Ts + ∆t∗k − ∆t̃∗k

)
,
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where M is the number of TIADC channels. After gain correction,

zk[n] =
yk[n]

G̃k

. (5.1)

Therefore, the subsequence zk[n] is a scaled, time-shifted, and undersampled ver-

sion of x(t),

zk[n] =

(
G∗
k

G̃∗
k

)
x
(
(Mn+ k)Ts + ∆t∗k − ∆t̃∗k

)
. (k = 0, 1, ...,M − 1) (5.2)

The overall TIADC output z[n] is obtained by taking zk[n]’s in a cyclic fashion

as follows.

z[n] = z
n mod M

[
floor

( n
M

)]
, (5.3)

where floor(x) is the greatest integer smaller than or equal to x.

5.1.1 TIADC Mismatch Model

If there is no residual mismatch, it follows from (5.2) and (5.3) that

z[n] = x(nTs),

i.e. perfect reconstruction of the input. Otherwise, z[n] is modulated by residual

gain or sampling time errors. In the frequency domain, this modulation manifests

itself as frequency-shifted input spectra, i.e. aliasing error. Let Hk(f) the linear

time-invariant (LTI) frequency response of k-th channel (which includes static
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gain and time delay as a special case). The spectrum of z[n] consists of linearly

weighted, frequency-shifted input spectra (Section 2.3),

Z
(
ej2πf

)
=

M−1∑

m=0

cm

(
f − m

M
fs

)
X
(
f − m

M
fs

)
, (5.4)

where Z(ej2πf ) and X(f) are the Fourier transform of z[n] and x(t), respectively.

The conversion gain cm(f)’s are obtained by taking the discrete Fourier transform

(DFT) of Hk(f)’s with respect to k,

cm(f) = DFT (Hk(f)) m, k = 0, 1, ...,M − 1. (5.5)

If no mismatch, Hk(f)’s are all equal. The only nonzero DFT coefficient in the

case is c0(f), average of Hk(f)’s, yielding the following alias-free output

Z () = c0(f)X(f)

=

(
1

M

M−1∑

k=0

Hk(f)

)
X(f).

(5.6)

5.1.2 Adjacent-Channel Timing Offset

It will prove to be useful to use the adjacent-channel timing offset δk between

two cyclically neighboring channels,

δk ≡ ∆tk − ∆tk+1. (k = 0, 1, ...,M − 2) (5.7)

δk’s do not retain the common timing offset in sampling instance, but the timing

mismatch information is still preserved. To retrieve ∆tk’s from δk’s (to drive
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tunable sampling clock), therefore, another constraint is required. Two reasonable

choices are

∆tk =
k−1∑

n=0

δn, assuming ∆t0 = 0, (5.8)

∆tk =
k−1∑

n=0

δn −
1

M

M−2∑

m=0

(M − 1 −m) δm, assuming
M−1∑

k=0

∆tk = 0. (5.9)

Equation (5.8) puts global timing reference on the sampling instance of the first

channel, while (5.9) takes channel average as a timing reference. The conversion

(5.8) allows simpler implementation than (5.9). Further, no clock tuning is nec-

essary for the first channel for (5.8). The conversion rule (5.9), however, evenly

distributes timing error acrossM tunable clocks, and so their delay dynamic-range

requirement is always smaller than (5.8). Timing conversion in this work follows

(5.9).

5.2 Stationarity-Based Blind Method

In general, looking at the TIADC output alone does not uniquely determine

converter mismatches, since there are many input-mismatch combinations that

will yield the same TIADC output. It is necessary, therefore, to constrain the

permissible input signal to a proper subset of all Nyquist-bandlimited signals. It

is desirable that these constraints are weak to admit as large classes of signals as

possible, but strong enough to enable blind mismatch detection. How to constrain
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the input signal is an important question deserving attention, since this determines

the practicality and complexity of the blind algorithm.

Among proposed approaches has been to constrain the input signal band-

width in the frequency domain, inspired by the frequency-translation action of

mismatch in (5.4). The unoccupied portion of the input spectrum plays the role

of aliasing detector (hence, mismatch detector). Some recent techniques require a

small fraction of extra bandwidth for aliasing detection, attempting to minimize

input spectrum loss. While these frequency-domain techniques are theoretically

sound, their practical application is not easy because of the following two prob-

lems. First, parameter estimation is highly sensitive to out-band noise: additive

thermal noise, out-of-band interferers, signal harmonics, adjacent-channel residual

power, etc. Any of these signal component will raise a false alram to the aliasing

detector, resulting erroneous mismatch detection. Second, the boundary between

signal band and aliasing-detection band must be accurately known a priori. Im-

precise knowledge of the aliasing-detection band will again increase the chance of

false aliasing detection.

In this work, blind parameter estimation is based on the assumption that the

TIADC input is WSS. There is no bandwidth restriction on the TIADC input

signal (other than the Nyquist sampling criterion) unlike frequency-domain ap-

proaches, so the problem of out-of-band interferers are automatically removed.
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Let the TIADC input x(t) a WSS signal. Then, its autocorrelation is given by

Rx(τ) = E [x(t+ τ)x(t)] , for all t and τ .

Let Rz,k[0] and Rz,k[1] be the zero-lag and unit-lag autocorrelation coefficients of

the TIADC output z[n], respectively, referenced to k-th channel,

Rz,k[0] = E
[
z2
k[n]
]
, (5.10)

Rz,k[1] =





E [zk[n]zk+1[n]] , k = 0, 1, ...,M − 2

E [zk[n]z0[n+ 1]] . k = M − 1

(5.11)

These can be rewritten in terms of the input autocorrelation Rx(τ) by using (5.2),

Rz,k[0] =

(
G∗
k

G̃k

)2

Rx(0), (5.12)

Rz,k[1] =
G∗
kG

∗

(k+1) mod M

G̃kG̃(k+1) mod M

(
Rx(Ts) +

(
δ∗k − δ̃k

) dRx

dτ

∣∣∣∣
τ=Ts

)
. (5.13)

The first-order approximation in (5.13) is valid if δ∗k and δ̃k are much smaller

than Ts. Note Rz,k[0] is a function of only gain mismatch, while Rz,k[1] depends

on both gain and timing errors. The following important observations are made

from (5.12) and (5.13).

1. No residual mismatch condition: If there is no residual mismatches, then

Rz,0[m]=Rz,1[m]... =Rz,M−1[m] (m = 0, 1). In other words, Rz,k[m]’s are

equalized across channels, and shift-independence has been attained.
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2. Equalized autocorrelation condition: If all Rz,k[m]’s are equalized (m =

0, 1), then gain and timing estimates are equal to intrinsic ones up to a

common scale factor and time delay, respectively, i.e. G̃0/G
∗
0=G̃1/G

∗
1...

=G̃M−1/G
∗
M−1, and ∆t̃0 − ∆t∗0=∆t̃1 − ∆t∗1... =∆t̃M−1 − ∆t∗M−1.

3. Equivalence condition: Therefore, to within common time delay and scaling,

the attainment of equalization of Rz,k[0]’s and Rz,k[1]’s is necessary and

sufficient for perfect mismatch correction.

The proof of No residual mismatch condition and Equalized autocorrelation con-

dition directly follows from (5.12) and (5.13). The Equivalence condition is a key

result which the proposed blind method is based on. The next section will develop

actual implementation to achieve the output correlation equalization.

5.3 Adaptive Estimation Algorithm

Adaptive algorithm for the proposed blind estimation method is developed

in this section. The goal is to achieve equalization of the zero-lag (Rz,k[0]) and

unit-lag (Rz,k[1]) correlation coefficients. Convergence analysis is also presented.

For adaptation to time-varying mismatch errors, the algorithm will be iterative in

nature. Starting from an initial estimate, the calibration loop will gradually refine

parameter estimates until the zero- and unit-lag output correlation coefficients
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are all equalized. The equivalence result in Section 5.2 then guarantees that the

estimates are equal to true parameters up to a common scale and time delay.

5.3.1 Empirical Output Autocorrelation

Calibration cycle starts with obtaining output autocorrelation coefficientsRz,k[0]’s

and Rz,k[1]. Given a batch of sub-converter output yk[n], gain-corrected stream

zk[n] is calculated from (5.1). Output correlation coefficients are then empirically

obtained by

R
(i)
z,k[0] =

1

N

N−1∑

n=0

z
(i)
k [n]2, (5.14)

R
(i)
z,k[1] =





1

N

N−2∑

n=0

z
(i)
k [n]z

(i)
k+1[n], k = 0, 1, ...,M − 2

1

N

N−2∑

n=0

z
(i)
k [n]z

(i)
0 [n+ 1], k = M − 1

(5.15)

where the superscript indicates that the calculation is based on i-th iteration

batch data. For simpler notation, this superscript will be dropped afterwards

unless necessary for clarity.

5.3.2 Equalization Reference

Given the two sets of empirical correlation coefficients from (5.14) and (5.15),

one can choose an appropriate equalization reference for each set against which

empirical coefficients are compared. One of the sensible choices is the following
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average coefficients,

Rz,ref [0] =
1

M

M−1∑

k=0

G̃2
kRz,k[0], (5.16)

Rz,ref [1] =
1

M

M−1∑

k=0

Rz,k[1], (5.17)

where Rz,ref [0] and Rz,ref [1] is the equalization reference for Rz,k[0]’s and Rz,k[1]’s,

respectively. The reference coefficients in (5.16) and (5.17) are basically an av-

erage across channels, except for the weighting by gain estimate in (5.16). This

weighting effectively prevents the common gain factor from drifting or unbound-

edly increasing over calibration cycles. In fact, Rz,ref [0] is equal to the average

correlation observed before digital gain correction, i.e. at yk[n]. Using (5.16) is,

however, more efficient than separately observing yk[n] and calculating its auto-

correlation coefficients. After plugging (5.12) and (5.13) into (5.16) and (5.17),

and neglecting common scaling factor, Rz,ref [0] and Rz,ref [1] can be rewritten as

a function of TIADC input autocorrelation,

Rz,ref [0] = Rx(0), (5.18)

Rz,ref [1] = Rx(Ts), if no residual gain error. (5.19)
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5.3.3 Parameter Recursion

By subtracting (5.18) and (5.19) from (5.12) and (5.13), we have

Rz,k[0] −Rz,ref [0] = Rx(0)

((
G∗
k

G̃k

)2

− 1

)
, (5.20)

Rz,k[1] −Rz,ref [1] =
dRx

dτ

(
δ∗k − δ̃k

)
. (5.21)

Rx(0) is the input signal power, and so it is strictly positive for nonzero signals.

The derivative dRx/dτ at τ = Ts is strictly negative or positive depending on the

occupied Nyquist zone. Therefore, the sign of the left-hand side of (5.20) and

(5.21) uniquely determines if the current gain or timing estimate is greater or

smaller than intrinsic ones. This leads to the following parameter update rule.

G̃
(i+1)
k = G̃

(i)
k + βg

(
R

(i)
z,k[0] −R

(i)
z,ref [0]

)
, (5.22)

δ̃
(i+1)
k = δ̃

(i)
k + βt

(
R

(i)
z,k[1] −R

(i)
z,ref [1]

)
, (5.23)

where βg > 0 and

βt > 0 if x(t) is in odd-order Nyquist zones,

βt < 0 otherwise.

G̃
(i)
k and δ̃

(i)
k are the estimate of k-th channel gain and adjacent-channel timing

error at i-th iteration, respectively. Once Rz,k[0]’s and Rz,k[1]’s are all equal-

ized, the driving term in the parenthesis in (5.22) and (5.23) is zero, convergence

being achieved. The stability and speed of convergence is controlled by βg and
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βt which will be referred to as convergence parameters. Note that the use of

adjacent-channel timing parameters enabled decoupling of parameter update for

each channel.

5.3.4 Algorithm Summary

The overall calibration loop is represented as a signal-flow graph in Figure

5.3. Adjacent-channel timing parameters are converted to sampling time offsets

before driving clock tuning circuitry. Note that the calculation of 2M correlation

coefficients is practically all that is necessary for a single parameter update. This

is significantly more efficient than previous blind techniques. The recursion rule

in (5.22) and (5.23) also yields faster convergence than finite-difference methods

or general search algorithms, because parameter adjustment is made with a priori

known direction of decreasing residual error. Convergence is guaranteed given

appropriate choice of convergence parameters (see next subsection). All these

benefits come from the deliberate mixed-domain operation, i.e. direct tuning

of sampling clocks driven by autocorrelation-based error detection in the digital

domain.
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5.3.5 Convergence Analysis

Let’s define γ
(i)
k and ε

(i)
k as residual gain and adjacent-channel timing error at

i-th iteration, respectively.

γ
(i)
k = G̃

(i)
k −G∗

k, (5.24)

ε
(i)
k = δ̃

(i)
k − δ∗k. (5.25)

Then, from (5.20)–(5.23), it can be shown that γ
(i)
k and ε

(i)
k follows a geometric

series under a small-mismatch regime,

γ
(i)
k = (1 − 2βgRx(0))i γ

(0)
k , (5.26)

ε
(i)
k =

(
1 − βt

dRx

dτ

)i
ε
(0)
k . (5.27)

The effect of residual gain error is neglected in Figure 5.27, for simplicity. The

magnitude of geometric ratios in (5.26) and (5.27) should be less than one to

ensure convergence. For monotonous convergence, which is usually preferred over

an oscillatory one, βg and βt must lie in the following range.

0 < βg <
1

2Rx(0)
, (5.28)

0 < βt <
1

dRx

dτ

. (5.29)

It is seen from the above that small values of βg and βt will in general guarantee

monotonous convergence. Having large values of βg and βt will accelerate con-

vergence as long as (5.28) and (5.29) are satisfied. This will, however, necessarily
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amplify noise from the driving term (the one in the parenthesis in (5.22) and

(5.23)), making the steady-state estimate also noisy. With same βg and βt, on

the other hand, the gain and timing estimate will generally converge faster with

higher input power and fast-changing input signal, respectively, as the geometric

ratio in (5.26) and (5.27) becomes smaller.

5.3.6 Other Considerations

For simplicity, previous analysis assumed perfect gain match when discussing

timing estimate convergence. Equation (5.13) suggests that nonzero residual gain

error may bias timing error estimates. As long as the gain calibration loop is in

action, however, timing estimates will eventually converge to a true parameter

(see Section 5.4 for experimental results).

There are several factors which will more or less affect parameter estimation:

ADC quantization noise, sampling clock random jitter, autocorrelation estimation

error due to finite observation, finite-resolution sampling clock tuning, etc. Using

small values of βg and βt, or increasing the batch size N , in general decrease the

contribution of these noise sources. However, sampling clock quantization error

can only be reduced by increasing its resolution. The minimum tuning resolution

should be commensurate with the target signal-to-noise ratio (SNR) or spurious-

free dynamic range (SFDR) level. For example, 80 dB of target SNR requires
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approximately 0.00003Ts of timing control resolution (assuming the input sinusoid

is at 1/2fs). If the delay control range is 0.03Ts, for instance, then approximately

1000 quantization levels (i.e. 10-bit level) will be necessary.

Other than the minimum resolution requirement for timing control, the pro-

posed calibration scheme is tolerant to analog imperfections in clock tuning cir-

cuitry. For example, the precise tuning curve needs not be known. It can even

change between calibration cycles since the feedback action of the blind calibration

will eventually track such variations. As a final remark, note that the recursion

rule in (5.22))-(5.23) is only a basic realization retaining essential features. More

sophisticated or efficient implementation may be possible. See e.g. [64].

5.4 Experimental Results

Experimental results based on an M = 4 TIADC are presented in this sec-

tion to demonstrate the proposed calibration method. The proposed calibration

method is tested with a number of different input signals, across multiple Nyquist

zones.
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5.4.1 Setup

Figure 5.4 shows the M = 4 TIADC experimental setup. Four 14-bit 100

MSPS commercial ADC’s (AD6645 from Analog Devices, Inc.) are used to obtain

400 MSPS of aggregate sampling rate. The logic analyzer performs both data ac-

quisition and digital signal processing by custom C-program. Four-phase sampling

clock is derived from a single 100 MHz reference clock, followed by a voltage-

controlled delay line. Each tunable line consists of a single 50 ohm T-section

(L − C − L) with reverse-biased varactor diodes (MV104 from ON Semiconduc-

tor) for delay control. The delay line provides approximately 0.2Ts (Ts = 2.5ns)

of delay tuning range across 0–3 V of tuning voltage. Tuning sensitivity KT is

0.06 Ts/V at the center. A single iteration takes 1–10 s, depending on the batch

size N . The speed is mainly limited by the logic analyzer arming and acquisition

time.

5.4.2 Narrowband Input Test

Sinusoids are used as a representative narrowband input signal. Convergence

parameters are chosen to be 1/10 of the stability limit given by (5.28)-(5.29) (βg,

βg ≈ 0.2). Batch size for all narrowband tests is N=4,096.

First, a 171.567 MHz sinusoid is applied at the TIADC input, and the blind

calibration loop is initiated. Figure 5.5 shows the measured convergence curve for
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Figure 5.4: Experimental setup for a M = 4, 400 MSPS TIADC with the pro-
posed mixed-domain blind adaptive calibration loop. Sampling clock is fine-tuned
by a single L − C − L section of varactor-loaded delay line. Six-dB attenuators
minimize impedance variation with varactor tuning, thus preventing undesirable
cross-line tuning effects.
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gain and sampling time error estimate. Theoretical learning curves are calculated

by (5.24)-(5.27), and superimposed on the same plot (dotted lines). It is seen

that the measurement closely follows prediction. Small discrepancy in timing

convergence plot is due to slight curvature in delay tuning characteristic (the

prediction assumes linear tuning).

Figure 5.6 shows the TIADC output spectrum before and after 300 calibration

iteration. The proposed calibration suppressed mismatch spurs by more than

40 dB, achieving >80 dB of SFDR. Figure 5.7 shows the improvement in SFDR

over iterations. Note that the initial linear increase (in dB scale) comes from

exponential parameter convergence. The total number of observation samples to

reach 80 dB of SFDR is approximately 106 (≈ 230N). Equalization process of

output correlation coefficients is shown in Figure 5.8.

Next, the frequency of the input sinusoid is swept across the first two Nyquist

zones, i.e. 10–390 MHz, with the same batch size N=4,096. SFDR in the steady

state is measured and plotted against test frequencies in Figure 5.9. Up to 70–90

dB of SFDR is consistently observed.

There are three frequencies in the first Nyquist zone where the stationary

input assumption fails for M = 4: 50 MHz, 100 MHz, and 150 MHz. As the input

sinusoid comes closer to one of these frequencies, longer batch size is required

to maintain calibration performance (for more effective phase randomization).
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Figure 5.5: Measured convergence plot of gain and timing error estimates with a
171.567 MHz sinusoidal input. Solid lines represent measurement. Dotted lines de-
note predicted curves by (5.26)-(5.27)) with intrinsic gain [0.99865, 1.0038, 1.0005,
0.99695], and sampling timing errors [0.0224Ts, 0.0012Ts, 0.0058Ts, -0.0294Ts ]
characterized at 172.8 MHz by a training method (Chapter 2)
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Figure 5.6: Measured TIADC output spectrum with a 171.567 MHz input
(marked with ‘1’). Gain and sampling time mismatch spurs are labeled with
‘X’. ‘O’ represents offset spurs. Input signal harmonics up to 7-th order are also
shown as numbers.
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Figure 5.7: Improvements in SFDR during 300 iterations with a 171.567 MHz
sinusoid input (N = 4, 096). Total 106 samples are used to reach 80 dB of SFDR.

Calibration performance versus batch size near 150 MHz is investigated in Figure

5.10. No performance loss is observed down to 150.5 MHz. If the input is at

150.05 MHz, however, SFDR drops below 50 dB (still 20 dB of calibration gain),

and at least N = 105 is necessary to regain 80 dB of SFDR level. In summary, the

batch size N=4,096 can meet 80 dB of single-tone SFDR requirement over 98.5%

of the entire Nyquist band. If longer observation up to N = 105 is allowed, then

the spectral performance is maintained over 99.85% bandwidth.

Note that the multiple Nyquist-zone operation as shown in Figure 5.9 would

not be feasible in fully digital blind methods, unless switching through different

sets of correction filters.
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is one of the failure frequencies (50, 100, and 150 MHz). The closer the input
frequency approaches to 150 MHz, the longer batch is required. Dotted line is
uncalibrated performance.

5.4.3 Wideband Input Test

An independent, identically distributed sequence is first generated by an ar-

bitrary waveform generator, and filtered by a 10-tap FIR filter. Its occupied

bandwidth is approximately 180 MHz. Unlike sinusoidal inputs, wideband input

signals mostly overlap with their own aliasing products. For the purpose of alias

identification, a deep notch is created at 80 MHz. Before calibration, there ex-

ist significant channel mismatches, and the notch at 80 MHz is partially filled

with frequency-shifted input spectra (Figure 5.11(a)). After 1,200 iterations, cal-

ibration suppresses aliasing products, and the deep notch is restored, as seen in

Figure 5.11(b). Parameter convergence plots are shown in Figure 5.12. Note that

the batch size N = 131, 072 is much longer than the narrowband case. This
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Figure 5.11: Measured TIADC output spectrum with a dc–to–180 MHz wide-
band input signal before and after blind calibration. The original deep notch at
80 MHz was masked by aliasing products before calibration, but is restored after
calibration, implying that mismatch is corrected.
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Figure 5.12: Measured convergence plot of gain and timing estimates with the
wideband input signal in Figure 5.11(N = 131, 072).
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is because empirical correlation coefficients for wideband signals are noisier than

narrowband ones, in general.

5.4.4 Effects of Residual Gain Error on Timing Conver-

gence

As a last test, timing calibration loop is first initiated with a 171.567 MHz

sine input, with gain correction turned off. In Figure 5.13(b), timing estimates

are seen to converge with bias in the presence of residual gain error. After 200

iterations, gain correction loop begins (Figure 5.13(a)), and timing parameters

start re-adjusting themselves. After another 100 iterations, both gain and timing

estimates achieved convergence to a true parameter. Under a small-mismatch

regime, in general, residual gain error does not significantly affect the convergence

of timing parameters, as experimentally verified by Figure 5.13(b) and Figure

5.13(c).

5.5 Conclusions

In this chapter, a new adaptive blind technique for multi-channel TIADC’s

is demonstrated. The analog-domain correction of timing mismatches, combined

with autocorrelation-based error detection, dramatically reduces hardware and
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Figure 5.13: Measured convergence plot with a 171.567 MHz sine input. Gain
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error convergence.
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computational complexity. Specifically, empirical calculation of 2M output auto-

correlation coefficients is practically enough for a single parameter update. Ex-

ceptional spectral performance of 70–90 dB of mismatch-limited SFDR was ex-

perimentally achieved across the first two Nyquist zones. Proof of parameter

convergence is given under WSS input assumption, but the algorithm accepts

many practical non-WSS signals as well. There is no restriction in the number of

TIADC channels, input bandwidth, etc
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Chapter 6

Millimeterwave Imaging Sensor
Nets: A Scalable 60 GHz
Wireless Sensor Network

Sensor networks provide distributed information collection and transmission,

and are useful for many industrial, environmental or military applications. A large

number of sensors are randomly or systematically deployed over a certain field for

local data gathering. Such information is transferred to a final destination in a

multi-hop fashion (Figure 6.1) among neighboring sensors by locally forming an

ad-hoc network. For a complete information map, a certain kind of positioning

is also necessary in most cases, i.e. each sensor node needs to provide its own

location information as well. External positioning capability such as GPS may be

used for this purpose.

This conventional approach is widely used in many practical applications,

but scalability issue arises when the number of sensor nodes is very large (e.g.
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Sensor Network
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Figure 6.1: A Multi-hop based wireless sensor network. After [8].

> 1, 000). First, multi-hop data transmission is not very efficient in a large scale

network. Second, the cost of each sensor may not scale down commensurately with

the scale of network because of the minimum required intelligence (for e.g. posi-

tioning and ad-hoc networking). The complexity of sensor also strongly correlates

with power consumption. Although modern CMOS technologies enable efficient

signal processing, the collective cost and energy expenditure may be unacceptable

for very large scale sensor networks.

In this chapter, we demonstrate a new approach to large-scale sensor nets [65–

67]. The next section describes the proposed system architecture. The following

sections present the system design and experimental characterization results based

on a short-range (< 10 m) indoor radio experiment.
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Figure 6.2: Typical realizations of the proposed imaging sensor networks with
three different kinds of information collectors

6.1 Imaging Sensor Net Architecture

The motivation behind the proposed architecture is best described by sim-

plistic sensors: stripped of their complexity to retain only essential functionality

without any geolocation (positioning) or networking capability. This will enable

ultimate cost and energy efficiency in favor of a very large scale network. The

system complexity (or functionality) is instead moved to an information collector,

whose spatially narrow radio beam selectively activates a subset of sensor nodes.

Figure 6.2 illustrates three representative scenarios. In either case, the collec-

tor beam sequentially scans a sensor field (2-D or 3-D in general). Illuminated

sensors respond to the beacon by appropriately modulating and sending it back

to the collector, as illustrated in Figure 6.3. The collector, upon completing a

full scan, acquires necessary information map across sensor field. The location of

each sensor can also be accurately determined by using a wide bandwidth, spa-
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Figure 6.3: Virtual imaging approach to the wireless sensor network

Data
deltaf

frequency

shift

sensor data

modulation

From collector To collector

Figure 6.4: Equivalent circuit for a imaging sensor node

tially narrow beacon in analogy to radar. The return signal, however, also carries

local data from possibly a number of sensors, unlike conventional radar. Further-

more, sensors intentionally shift the frequency of the received beam to differentiate

their transmission signal with direct ground return or environmental reflections

(Figure 6.4). This necessitates non-coherent signal processing unlike conventional

synthetic aperture radar (SAR). The proposed sensor net can also be interpreted
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Sensor Network

as a virtual imaging network: image map is drawn from reflected light by a large

number of target pixels.

6.2 Radio Link Characterization

The round-trip radio link between the collector and passive sensor is governed

by the following relationship.

Pr
Pt

=

(
Pr
Pt

)

up

Gsens

(
Pr
Pt

)

down

=

(
DTXDsensλ

2
down

e−αR

(4πR)2

)
Gsens

(
DRXDsensλ

2
up

e−αR

(4πR)2

)
.

(6.1)

In (6.1), Pr and Pt are the collector receive and transmit power, respectively. DTX ,

DRX and Dsens are collector TX, RX and sensor antenna gain. λup and λdown are

up and down-link wavelength, respectively. R is the distance and α is atmospheric

attenuation constant, 6–16 dB/km in the 60 GHz unlicensed band. Gsens models

modulation loss in the sensor (≃ −5.6 dB). Other sources of power attenuation

include matching loss, polarization loss, etc. Note from (6.1) that the received

power quickly drops as 1/R4. To revert to more desirable 1/R2 dependency, the

sensor must operate in a power-limited regime with sufficiently high RF gain.

At a sensor data rate of B, the received Eb/N0 is

Eb
N0

=
Pr

kTBF
, (6.2)
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Figure 6.5: Block diagram of the 60 GHz prototype collector

where kT = −174 dBm and F is the receiver noise figure. Assuming BPSK

or differentially-encoded BPSK (DBPSK) modulation, approximately 12 dB of

Eb/N0 is required to achieve 10−6 of uncoded bit-error rate (BER).

6.3 Prototype Collector

Figure 6.5 and Figure 6.6 show a simplified block diagram and a photo of the

experimental 60 GHz collector, respectively. It consists of three functional blocks:

up-down converter, steerable high-gain antennas and digital signal processing rou-

tine.
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Figure 6.6: A photograph of the collector prototype

6.3.1 60 GHz Up/Down Converter

The input to the up/down converter is a range code, which is basically a wide-

band signal having a sharp autocorrelation peak. By taking cross-correlation

between its transmit and receive copy, and by finding the location of peak, the

relative distance between the collector and sensor can be estimated. In this initial

work, a pseudo-random bit sequence (PRBS) signal is adopted.

The chip-rate (CR) and length of PRBS determines raw range resolution and

the sensor field size, respectively. With higher CRs, a single chip travels shorter

distance in the air, and thus the correlation peak becomes sharper, providing

finer range resolution. One PRBS period must be long enough to enable round-
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trip propagation from the most distant sensor. Otherwise, a single correlation

peak will correspond to two or more different ranges, causing ambiguity. The CR

and its length is chosen to be 20 MHz and 26 − 1, respectively. A single chip

round-trip gives c/(2CR) = 7.5 m of range resolution (c=the speed of light). The

PRBS repeats itself for every (26−1)/CR = 3.15 us, and this is enough for unique

determination of the range up to 472.5 m.

The PRBS is upconverted to TX-IF (=20.166 GHz) followed by frequency

triplication to reach 60.5 GHz. The tripler output power is 7 dBm. The transmit-

ted beam, once received by a sensor, is shifted in frequency by 50 MHz (to filter

out ground returns), and received by a high-gain collector antenna. A harmonic

mixer and block down-converter translates the received beam down to the first

IF (RX-IF1 =4.25 GHz) and second IF (RX-IF2 =900 MHz), respectively. The

final I/Q demodulator output is digitized by a multi-channel oscilloscope for sub-

sequent digital signal processing. A copy of transmit PRBS code is also captured

for timing (and hence range) reference.

6.3.2 Steerable High-gain Antennas

High-gain antennas are beneficial for the proposed imaging sensor nets for two

reasons. First, higher-gain antennas have proportionately narrower beam angles,
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yielding finer angular resolution. This is seen from the following relationship [68].

D ≈ π

Θ1Θ2

, (6.3)

whereD is the antenna gain, and Θ1 and Θ2 are half-power beamwidth (in radians)

of the antenna along two orthogonal directions, respectively. Second, transmit

power density is proportional to the antenna gain. The collector beacon therefore

reaches further with higher gain antenna. The gain of TX and RX antenna for the

prototype collector in Figure 6.5 is DTX=23 dB and DRX=40 dB, respectively.

Their half-power beamwidth is approximately 14 degree and 2 degree, respectively.

They are mounted on a motorized positioner so that the beam can be steered in

azimuth and elevation with sub-degree accuracy.

6.3.3 Digital Signal Processing: Localization and Demod-

ulation

The role of collector signal processing is first, to accurately determine the

location of sensors, and second, to reliably demodulate local sensor data at the

same time. An outline of the localization process is given fist, neglecting sensor

data modulation for simplicity. The detailed description is given next.
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Figure 6.7: Imaging sensor net geometry in angular coordinate

Outline of the Localization Process

Figure 6.7 illustrates the sensor network coordinate assuming a beam-steerable

collector. Only one angular coordinate is considered for simplicity. The discus-

sion however easily extends to a more general case with two orthogonal angular

coordinates for full 3-D localization.

Let s(t) the range code, and r(t, φ) the collector receive signal as a function of

azimuth angle φ and time t. Assume the collector is at origin, and a single sensor

is located at (R1, φ1). r(t, φ) is then represented as

r(t, φ) = G (φ− φ1) s (t−R1/2c) + n(t), (6.4)

where G(φ) and n(t) is the antenna gain function (AGF) and Gaussian noise,

respectively. The maximum-likelihood (ML) estimate of the sensor location,
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Figure 6.8: Measured antenna gain function (AGF).
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(R̃1, φ̃1), can be obtained from the observation r(t, φ) by

(R̃1, φ̃1) = arg min
( eR,eφ)

〈
G
(
φ− φ̃

)
,
∣∣∣
〈
r(t, φ), s

(
t− R̃/2c

)〉
t

∣∣∣
〉

φ
, (6.5)

where < · >t and < · >φ is taking cross-correlation in t and φ, respectively.

Equation (6.5) is essentially 2-D matched filtering, but only the magnitude is

taken from the range correlation output. This is because the phase of r(t, φ) is

unknown to the collector. The AGF G(φ) is equal to the cascade of collector TX

and RX antenna. For the present prototype, G(φ) is almost equal to RX antenna

(40 dB cassegrain) pattern since the TX antenna (23 dB horn) has a much wider

3 dB beamwidth.

Figure 6.8 shows the measured AGF as a function of two orthogonal angular

coordinates, i.e. the elevation and azimuth. The actual localization process,

therefore, involves triple matched filtering as a direct extension of (6.5).

Detailed Description

This section presents detailed descriptions on the signal processing algorithm

for sensor data extraction and location estimation. The algorithm operates on

the I- and Q- channel data captured from the collector receiver along different

orientations of the collector antenna (termed snapshots). In order to support

real-time processing speeds, suboptimal but efficient strategies are adopted. The

algorithm must operate in the presence of a residual frequency offset, due to sensor
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Figure 6.9: Block diagram of the collector signal processing algorithm (Courtesy
of Bharath Ananthasubramaniam)

frequency offset uncertainties, and without timing synchronization between the

sensor and collector, which is unlike a standard spread-sprectrum (SS) system.

The signal at the output of the collector receiver chain, in complex baseband

notation, is given by

r(t) = A b(t)︸︷︷︸
Data

ej2π∆ft+jψ
∑

k

s(t− kTc − 2τ)︸ ︷︷ ︸
Range

+n(t). (6.6)
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where A is the received signal amplitude, ψ and ∆f are the phase and frequency

offsets between the collector and sensor LOs, τ is the one-way propagation time

between the collector and the sensor, s(t) is one period of the BSPK-coded range

code with a single chip time Tc, the differential BPSK data stream is b(t) =

∑
l dl p(t− lTb−δ), where p(t) is the symbol pulse shape, Tb is the symbol interval

(duration of p(t)), and δ is timing offset between the collector and sensor clocks,

and n(t) is AWGN in the received signal from both the collector receiver and

sensor transceiver.

It is clear from (6.6) that the sensor data and sensor location information are

tightly coupled in the received signal, and the residual frequency modulation must

also be undone before the data or the range can be estimated. We simplify the

processing by choosing the location code bandwidth ∼ 1/Tc to be much larger

than the residual frequency offset ∆f and data rate 1/Tb. Such a choice ensures

that data and frequency offset have little effect on the the phase coding in the

location code. The matched filtering with the location code can thus be performed

with the location code template to extract the propagation delay τ before the

residual frequency offset estimation and data extraction. The block diagram of

the complete signal processing algorithm is shown in Figure 6.9 and we briefly

discuss each block below.
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Location Code Matched Filter: The received signal r(t) is matched filtered

against the location code s(t) neglecting the effects of the residual frequency mod-

ulation and data. If a sensor reflection is present, periodic peaks in the in the

matched filter (MF) output corresponding to the sensor range (2τ) is obtained

for each location code cycle separated by Tc seconds in the absence of noise. In

particular, the round trip propagation delay is measured differentially between

peaks in the matched filter local copy of the location code and peaks in the sensor

return, in order to compensate for any drifts in the collector chip clock.

It can be observed that the peaks in the MF output are scaled by a product

of the residual frequency offset and the modulating data. Since, by design, both

the frequency offset and data vary far slower than a location code period, the

sequence of peaks is an oversampled version of the data stream with the residual

frequency modulation.

Coarse Delay and Frequency Offset Estimation: In order to extract this se-

quence of complex factors, the peak locations must be estimated after averaging

out noise. Therefore, the MF output is coherently averaged for each of several

discrete hypotheses for the delay and frequency offset, and the hypotheses that

capture the most of the signal energy are chosen to correspond to reflecting sen-

sors. In essence, we generate a delay-frequency profile of the received signal and

search for sensors in this two dimensional space. Since the I- and Q-channel sig-
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nals are already sampled in time, these samples naturally provide a set of coarse

“delay bins” to search over. A periodogram is constructed for each delay bin,

which is efficiently computed using the FFT.

Collection of Peaks in MF output: The coarse delay estimate can now be

used to extract the sequence of peaks in the MF output. The noise is white as

the output of the MF is sampled every Tc seconds maintaining the independence

between samples.

Frequency Offset Compensation: The residual frequency modulation can be

canceled by appropriately rotating the phase of the peak samples using the esti-

mated residual frequency offset. We are now left with the problem of decoding

DBPSK data in AWGN, which is easily accomplished.

Symbol Matched Filter: The data stream that is embedded in AWGN can be

recovered by matched filtering with the symbol pulse shape p(t). But, the opti-

mal times for sampling the symbol matched filter (SMF) output are not known.

Therefore, the data symbol clock must also be recovered from the SMF output.

Symbol Clock Recovery and Symbol Decisions: We utilize the Gardner detector

[69] that only requires only two samples of the SMF output per symbol period,

one of which is used for symbol decisions. The detector determines the optimal

sampling instants by searching for maxima in the rectified SMF output using a

searching for the instant when the average derivative goes to zero. Since this

150



Chapter 6. Millimeterwave Imaging Sensor Nets: A Scalable 60 GHz Wireless

Sensor Network

detector does not require phase synchronization it is resilient to residual phase

errors from the frequency offset compensation. Finally, the DBPSK data, which

is also robust to residual phase errors, is differentially demodulated.

Data and Frequency Offset Compensation: The coarse delay was estimated

using the delay-frequency profile is not accurate enough for range estimation. To

enable coherent averaging, the effects of the data and residual frequency modula-

tion on the MF output are first undone. However, this is not equivalent to the MF

output in the absence of data and residual frequency offset as data symbol tran-

sitions alter the phase coding in the location code destroying its autocorrelation

properties.

Soft Delay Estimation: In order to avoid the computational burden of compen-

sating for the data and frequency offset prior to the MF, we use the compensated

MF output in the previous step, but drop all the cycles of the location code that

contain a symbol transition. Since there are sufficiently many location code cycles

in every symbol interval and the residual frequency modulation causes very little

phase variation in a cycle duration, the cycles with no symbol transitions (known

from demodulated data) are equivalent to MF outputs in the absence of data and

residual frequency modulation. It is now simple to average multiple periods of

the MF output that are aligned in phase to obtain one period of the MF output
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that can be used for range localization. In order to get subsample resolution the

averaged MF output is suitably interpolated.

Now, an azimuth and elevation matched filtering across multiple snapshots

can be further performed to locate the sensor in three dimensional coordinates.

6.4 Prototype Sensor

The essential functionality of imaging net sensors is to receive, modulate and

re-radiate the 60 GHz beacon. The construction of communication circuits in

the 60 GHz band presents a certain level of difficulty in low-cost implementation.

One quarter-wavelength at 60 GHz is approximately 0.5 mm on a εr = 4 sub-

strate. This is rather small compared to lithographic tolerance (≈ 1 mil=0.025

mm) and minimum line width/spacing (4≈5mil=0.1≈0.125 mm) in standard low-

cost PC board manufacturing (finer technologies may be sought, e.g. LTCC, but

at a potentially significant cost penalty.). Sensor RF circuitry (antenna, match-

ing network, etc) will therefore suffer from detuning. RFIC integration will be

cost-effective, but the sensor antenna will still need to be off-chip due to its con-

siderable size. Further, dielectric loss and skin effects introduce significant signal

attenuation at 60 GHz band, especially with low-cost substrates. All above con-
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Figure 6.10: A prototype 60 GHz low-cost passive sensor with a wideband an-
tenna and BPSK modulator.

siderations suggest that the sensor RF circuitry must be simple and robust against

manufacturing error.

Figure 6.10 shows the 60 GHz prototype sensor block diagram. The RF cir-

cuitry is implemented on a low-cost Rogers 4005C substrate (thickness=0.2 mm

and εr = 3.38). A linearly-tapered open-slot antenna (LTSA) is chosen for the

present work in favor of its broadband operation and relatively high gain [70–73].

It has an approximately frequency-independent geometry, and therefore it is rel-

atively insensitivity to manufacturing error, allowing for the use of low-cost PC

board manufacturing. Figure 6.12 compares the manufacturing tolerance of two
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Figure 6.11: Radiation pattern of the sensor LTSA. Solid line: measured, dotted
line: HFSS simulation

representative types of planar antennas: patch antenna and LTSA. Patch anten-

nas, in general, have a relatively narrow bandwidth due to their resonant struc-

ture, especially on a thin substrate [74]. On the other hand, open slot antennas

provide an inherently wideband characteristic due to the non-resonant, travelling-

wave mechanism of radiation [75], making their performance less sensitive to small

changes in design parameters than patch antennas.

The slot feed line, microstrip line and their transition is carefully designed

under the 5 mil resolution constraint [76–78]. The designed antenna has > 10

GHz bandwidth centered at 60 GHz. Its half-power beamwidth is approximately
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Figure 6.12: Comparison of manufacturing tolerance between two representative
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in design parameters, for each type of antenna, is obtained by electromagnetic
simulation (Agilent Momentum and Ansoft HFSS for a patch antenna and LTSA,
respectively).
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Figure 6.13: Measured impedance of the PIN-diode based one-port modulator.

40 degree with 7 dB of realized gain accounting for loss. The radiation patterns

are presented in Figure 6.11.

The collector beam is received by a LTSA terminated by a PIN diode. The

input bias turns on and off the PIN diode, presenting two impedance states

with approximately 180 degree phase difference (Figure 6.13). The beacon is

hence reflected with either 0 or 180 degree relative phase shift, and eventually

re-transmitted toward the collector. 16-bit local data and 50 MHz shifting LO (to

avoid direct ground returns) are simultaneously imposed on diode bias through

a XOR gate. The prototype consumes 7 mA of dc current from a 3 V supply

to forward-bias the PIN diode. The dc power consumption will, however, sig-

nificantly drop (e.g. µW level) if the entire circuit (except for the LTSA) is

implemented on silicon.
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The current prototype sensor is passive without any active RF amplification.

Its reflected power entirely depends on the collector transmit power. On one hand,

this suits well with the simplistic sensor approach; the sensor has minimal RF func-

tionality, and corresponding implementation loss can be compensated by raising

the beacon power. On the other hand, passive sensors are practically unsuitable

for longer range communication (e.g. >1 km). Scaled CMOS devices (e.g. 90-nm

node or below) will again provide low-cost millimeterwave amplification [79–83]

and help to scale up the sensor network.

6.5 Radio Experiment

In this section, radio link experiments are presented. Figure 6.14 shows the

overall experimental setup including collector, sensor and all required instruments.

6.5.1 Experiment Plan

The system is operated in four different settings depending on the presence or

absence of range code and sensor data modulation. These mode of operations are

deliberately chosen such that comparison of experimental results between different

modes will unambiguously reveal a certain performance metric we are interested

in.
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(a) Collector system on a cart (b) View from a sensor

Figure 6.14: Photographs of indoor radio experiment
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1. Pilot Mode: There is no data modulation at the sensor, and the range code

at the collector side is also turned off. Therefore, the transmitted waveform

from the collector is equal to a pure sinusoid. The received signal by the

collector consists of the frequency-shifted sinusoid plus additive Gaussian

noise. The parameter of the sinusoid, noise variance and finally the Eb/N0

at the receiver can be estimated by using the standard maximum-likelihood

(ML) method [84].

2. Data Only: The data modulation at the sensor node is turned on while the

range code is still inactive at the receiver. This mode of operation provides

a useful bit error rate statistics which can be compared against the nominal

mode where the received signal is also modulated by the range code.

3. Range Code Only: The data modulation at the sensor is turned off, with only

range code modulation at the collector. This mode of operation provides a

useful range estimation statistics which can be compared against the nominal

mode where the received signal is also modulated by the sensor data.

4. Data + Range Code: This is the nominal mode of sensor network operation,

with both sensor data and range code modulation.

First, a comparison of Eb/N0 will be made between measurement and pre-

diction by link budget analysis. Second, bit error rate (BER) is measured and
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Figure 6.15: Collector RX-IF2 spectrum with a sensor at 3m. Sensor return
signal is seen at 50 MHz away from the 20 MHz PRBS beacon directly reflected
from indoor environments.

discussed. Then, the localization performance of the imaging sensor network is

demonstrated.

6.5.2 Radio Link Verification

Figure 6.15 shows the received spectrum at the collector IF frequency. Sensor

reflection is clearly seen 50 MHz away from the center frequency when the sensor

is turned on. In Figure 6.16, the Eb/N0 measured using the pilot mode is plotted

against the expected Eb/N0 using the radio link characterization in Section 6.2.

The collector received power roughly falls as 1/R4, as expected by the link equa-

tion. In Figure 6.16, the loss of aperture efficiency due to near field effect is also

taken into account.
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6.5.3 Bit Error Rate

In Figure 6.17, a comparison of the BER performance of the prototype under

the nominal and data mode at 100 kbps is shown. The Eb/N0 for each sensor loca-

tion is measured from the pilot mode experiments, with the smallest Eb/N0 in the

plot corresponding to the maximum range of 8.54 m. The measured BER for dis-

tance less than 5.5 m was less than 10−5 (no errors were found in 100,000 bits). It

is observed that the BER measured in the nominal mode is only marginally worse

(< 1 dB) compared to the data mode. One can, therefore, conclude that data de-

modulation is not significantly affected by the presence of range code modulation.

Nevertheless, the BER in the nominal mode is roughly 4–5 dB worse than the
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Figure 6.17: Measured BER performance at the sensor data rate of 100 Kbps
(based on observing 100,000 bits)

expected BER for DBPSK modulation [85] at the same Eb/N0. It was found that

two factors are mainly responsible for this loss of Eb/N0: increase in the receiver

noise floor due to strong direct echoes, and signal processing implementation loss

(especially during the range-code correlation).
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6.5.4 Localization

Figure 6.18 shows the range estimate (20 measurements for each point), with

the expected range also shown as a dotted line. By comparing Figure 6.18(a) and

Figure 6.18(b), one can conclude that the presence of sensor data modulation does

not noticeably affect the estimation of range. It is also seen that the range estimate

consistently has approximately 12.6 m of offset. This is due to the “electrical”

delay (a.k.a group delay) present in the collector and sensor electronics. Most RF

circuits can be modeled as a cascade of a single L-C section at their passband,

which resembles an artificial delay line. The delay from these L-C sections, all

combined, amounts to 12.6 m, which is an order of magnitude greater than the

actual physical size of collector/sensor electronics.

Figure 6.20 and Figure 6.21 illustrates how the 2-D and 3-D localization is

done. The color image shown is the magnitude of matched filter output. The

peak of each image corresponds to the most likely location of the sensor.
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6.6 Conclusions

In this chapter, the basic link, localization and demodulation performance

of a prototype 60 GHz wireless sensor network is presented, based on a virtual-

imaging approach. One of the main limitations of imaging sensor networks based

on a passive sensor is the short communication range, as discussed in Section 6.2.

The communication range can be increased by realizing active gain in the sensor

RF circuitry. Link budget analysis shows that the current state-of-the art RF

CMOS technology can, in principle, support up to several kilometers of range.

Another viable approach to increase the range is to form a virtual sensor array

so that the collector can coherently combine signals from each sensor. Research

is currently under way to critically evaluate these possibilities [86].
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Conclusions

In this dissertation, the outcome of two research projects is presented: High-

resolution time-interleaved A/D conversion (TIADC) system, and millimeter-wave

wireless sensor network. In this chapter, key achievements are summarized, as well

as related on-going efforts and suggestions for future work.

7.1 Mismatch Correction for TIADCs

Time-interleaved A/D converters (TIADC) provide an architectural solution

to a very fast A/D conversion by using multiple parallel ADCs. Their practical

use, however, has been limited to low-to-moderate resolution applications due to

the nonlinear distortion created by channel mismatches. This thesis presents a

series of novel comprehensive, high-resolution correction methods of such chan-

nel mismatches under various operating scenarios. Experimental results demon-

strated that > 80 dB of spurious-free dynamic range (SFDR) performance can be
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achieved after error correction. This level of SFDR represents the state-of-the art

at the time of thesis writing, and is believed to satisfy the requirements of most

demanding applications.

Specifically, first, a training-based calibration method is developed. Channel

mismatches are characterized by applying a known input signal. The design of

digital correction filters is based on a modified weighted least squares (WLS)

method, where aliasing spurs can be individually controlled. The proposed design

method is capable of exploiting signal stop-bands for more efficient error correction

than conventional design methods.

Next, blind correction methods are proposed and demonstrated, where the

TIADC input signal is not known a priori. Instead, statistical signal process-

ing techniques are employed for mismatch estimation under wide-sense stationary

(WSS) input assumption. Parameterized filter banks provides a unified frame-

work for mismatch correction. Blind methods are necessary when training-based

methods are not effective, for example when system interruption for calibration is

not allowed, or when hardware mismatches are substantially time-varying.

A novel mixed-domain approach to the blind method is proposed. Mismatch

estimation is performed in the digital domain, but the correction of timing mis-

match is achieved in the analog domain by directly tuning sampling clock. This
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particular correction method allows for a very efficient hardware implementation

for mismatch estimation as well as correction.

7.1.1 Future Work

A/D conversion is an inevitable operation for almost all digital communication

receiver. Therefore, if a TIADC is part of the receiver, we can consider combining

TIADC mismatch correction with channel equalization. This may enable a better

system-level trade-off without significantly increasing the complexity due to mis-

match correction. We can also actively exploit the specific signal format to aid

mismatch estimation. One such example is the estimation of offset mismatches

for OFDM receivers [87]. Overall, this communication-receiver-oriented approach

is relatively unexplored so far, but is under active investigation at UCSB [88].

Time-interleaved operation can also be used for digital-to-analog (D/A) con-

version as well, although so far it has been employed almost exclusively for A/D

conversion. The overall sampling rate is multiplied by the number of DAC chan-

nels, and this can be useful for ultra-fast signal generation. See e.g. [89] for the

application of time-interleaved D/A converter (TIDAC) in a UWB transmitter.

Digital signal processing in this dissertation is mostly done on MATLAB after

data acquisition from theM = 4 experimental prototype. Monolithic implementa-

tion (e.g. CMOS) of the proposed correction methods will be therefore of interest
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for low-cost and low-power applications. In particular, the mixed-domain blind

method, introduced in Chapter 5, allows for a very efficient monolithic imple-

mentation. To obtain gain and timing mismatch estimates, online calculation of

two correlation coefficients is all that is necessary (i.e. two multipliers and accu-

mulators per each channel). Adjustable clock tuning is also easily implemented.

This will make feasible a single-chip, high-resolution (> 80 dB) TIADC with

background correction circuitry for high-speed instrumentation, communication,

radar, etc.

7.2 Millimeterwave Wireless Sensor Network

An entirely novel approach to wireless sensor network (WSN) is proposed and

demonstrated by a 60-GHz experimental prototype in collaboration with Prof.

Madhow’s research group at UCSB. A sophisticated information collector sweeps

a millimeterwave beam across the sensor field for data gathering as well as sen-

sor localization. Key motivation is simplistic, minimalistic sensor hardware in

favor of very large-scale networks. The system, instead, exploits millimeterwave

frequencies and signal processing techniques at the collector side to compensate

for simplistic sensor hardware. The proposed approach draws upon an imaging

principle, interpreting sensors as a reflective source, or a “pixel.” The 60-GHz pro-
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totype system consists of a collector transceiver, mechanically steerable high-gain

antenna, signal-processing algorithms and diode-based passive sensors. Results

from indoor radio experiment have been presented.

7.2.1 Future Work

In a typical wireless sensor network, sensor nodes are subject to severe energy

constraint. In this circumstance, the energy consumption of a sensor needs to be

minimized for a longer battery life. The dc power consumption of the prototype

60 GHz sensor is on the order of 20 mW, which is dominated by the PIN diode

bias current. To significantly reduce the dc power consumption, the entire sen-

sor circuitry is recently designed and fabricated in 90-nm CMOS process. Key

building blocks are ultra low-power ring oscillator [90] and 60 GHz impedance

modulator. Characterization of the IC is currently under way, and the measured

dc power consumption is less than 10 µW (A button-sized Lithium battery will

last more than one year at this level of dc power consumption).

The current 60-GHz prototype is based on passive-type sensors, which reflects

a millimeterwave beacon from the collector. While this enables very simple sensor

hardware, the communication range is severely limited due to the small sensor

transmit power. One way to increase the range is to implement active gain on

the sensor. Recently, deep sub-micron CMOS technologies (e.g. 90-nm or be-

171



Chapter 7. Conclusions

low) prove useful for low-cost millimeterwave amplification [79–83]. Link-budget

analysis shows that the sensor field can be scaled up to several kilometers by using

active sensors in the 60 GHz bands.

The current collector prototype performs mechanical beam sweeping. Electri-

cal beamsteering by a phased array system is an attractive option, since this is

more flexible, and enables substantially faster beam sweeping. System reliability

can also be enhanced by minimizing mechanically moving parts. The design and

implementation of a millimeterwave phased-array system is, however, challeng-

ing. Currently, a millimeterwave phased-array transmitter in a SiGe technology,

capable of 2-D beam sweeping, is under development at UCSB [91].

Another very interesting option to scale up the proposed sensor network is dis-

tributed beamforming, where a number of neighboring passive sensors collaborate

with others to form a large equivalent phased array [92–94]. The challenge is to

line up the phase and frequency of RF carriers from randomly distributed sensors,

to achieve in-phase power combining at the collector receiver. This is in contrast

to conventional regular beamformers, where each transmitting/receiving element

is at a known position with a common frequency standard. The distributed beam-

forming approach with unknown sensor frequency/phase is currently under active

investigation [86].
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