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Abstract

Gate Last InGaAs MOSFETs with

Regrown Source-Drain Regions and ALD Dielectrics

Andrew Carter

ITI-V-based MOSFETSs have the potential to meet or exceed the performance of
silicon-based MOSFETSs due to their small electron effective mass. Modern Si-based
MOSFETSs with 22 nm gate lengths utilize high-k gate dielectrics and non-planar
device geometries to optimize device performance. III-V HEMT technology has
achieved similar gate lengths, but large source-drain access regions and the lack
of high-quality gate insulators prevent further device performance scaling. Sub-22
nm gate length 1II-V MOSFETS require gate insulators with <1 nm effective oxide
thickness, semiconductor-insulator interface trap densities less than 2x10'? cm™2
eV~!, and metal-semiconductor contact resistivities less than 1 Q-pm?.

This dissertation presents InGaAs-based III-V MOSFET process flows and de-
vice results to assess their use in VLSI circuits. Previous III-V MOSFET re-
sults focused on long (>100 nm) gate lengths and ion implantation for source-
drain region formation. Scaling III-V MOSFETSs to shorter gate lengths requires
source-drain regions that are: self-aligned to the channel, have low sheet resistance,
have high mobile charge densities, and have low metal-semiconductor contact re-
sistance. MBE- and MOCVD-based raised epitaxial source-drain regrowth meet
these requirements. MBE InAs source-drain regrowth samples have shown 0.5 to
2 Q-pm? metal-semiconductor contact resistivities. MOCVD source-drain regrowth

samples have shown <100 €2-pm single-sided access resistance to InGaAs MOSFETSs.



Gate insulators on III-V materials require wide bandgaps, high dielectric permit-
tivities, and low insulator-semiconductor interface trap densities. In-situ hydrogen
plasma / trimethylaluminum treatment prior to gate dielectric deposition was shown
to lower MOSCAP interface trap densities by more than a factor of two.

Devices using gate first MBE regrowth, gate last MBE regrowth, and gate last
MOCVD regrowth were fabricated and the resulting devices were characterized. 65
nm gate length gate first MBE regrowth devices employing a 2.2 nm EOT Al,O3 gate
insulator show a peak transconductance of 0.3 mS/micron at 1 V V4. Gate-first
FET performance scaling is limited by processing-induced damage and ungated ac-
cess regions. 64 nm gate length gate last MBE regrowth devices employing a 1.21 nm
EOT Al,O3/ HfO, bi-layer gate insulator show transconductance of 1.4 mS/micron
at 0.5 V V4. Other gate last MBE samples had long channel subthreshold swings
as low as 117 mV /dec. 48 nm gate length gate last MOCVD MOSFETSs employing
a 0.8 nm EOT HfO, gate insulator show peak transconductances of 2 mS/micron
at 0.5 Vg, with long channel devices having 97 mV /dec subthreshold swing. These

results show strong promise for I1I-V MOS devices in future VLSI applications.

Professor Mark Rodwell
Dissertation Committee Chair

el
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Chapter 1

Introduction

One of the most ubiquitous electronic technologies to date is the metal-oxide-
semiconductor field effect transistor (MOSFET). Its success has been driven by
silicon’s ability to be electrically passivated with its native oxide, SiO5. This oxide
allows for induced mobile charge inside the semiconductor, a fundamental property
of the MOSFET. In its development history, the gate length has scaled from multi-
ple microns, to today, just a few nanometers. Along the way, key process advances
had to be made, such as development of high-k dielectrics and metal gate elec-
trodes. Modern silicon MOSFETSs are now 22 nm gate-pitch spacing, and utilizing
non-planar device geometries. Figure shows a cross-section of an Intel NMOS
FinFET, and a zoomed out perspective of a CMOS circuit in the same technology.

There are limits to silicon MOSFET scaling. As the gate insulator thickness
decreases to improve gate-channel control, gate leakage currents rise exponentially,
increasing the static power dissipation of the total circuit. High-k dielectrics relax
the requirements on total gate insulator thickness, but Si MOSFETSs require 0.4
to 0.6 nanometers of SiOs, or suffer degraded channel mobilities and hence overall
device performance. Silicon’s electron effective mass along the direction of current

propagation is 0.2 mg; in the ballistic FET limit, this mass will limit maximum



CHAPTER 1. INTRODUCTION

»
»

¢
f
r

g

(a) TEM cross-section, NMOS FinFET  (b) Tilted SEM landscape, CMOS circuit

Figure 1.1: Images of Intel 22-nm FinFET devices [1],[2].

current density, and hence overall device performance.

ITI-V-based materials, such as GaAs, InGaAs, and InP, have been studied ex-
tensively for semiconductor devices. Their small effective masses, on the order of
one quarter or less than that of silicon, allow for higher device current densities.
InGaAs HEMTs using InAlAs gate insulators are useful field effect devices, but the
gate insulator’s small conduction band offset can cause large gate leakage currents.
ITI-V devices are missing an electrically passivating, wide bandgap native oxide, to
enable scaled VLSI devices in the material system.

Given the prospects of limited silicon CMOS scaling, research has recently turned
towards highly scaled I1I-V MOSFETSs to obtain performance better than that of
silicon. Major goals include a heterogeneous, passivating wide band gap insulator;
shallow, heavily doped, source/drain formation technology; and ultra low metal-
semiconductor contacts. In this dissertation, an overview of MOS devices, process

modules for ITI-V MOSFET fabrication, and results from two process flows will be
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covered.

Chapter 2 (MOS Theory) examines the semiconductor device theory of a MOS-
FET. It examines long channel models, short channel behavior, and the ballistic
FET model, and outlines the key concepts for field effect device scaling and opti-
mization of performance.

Chapter 3 (Gate Insulator Development) examines gate insulator development
using atomic layer deposition (ALD). A new in-situ surface treatment using trimethy-
laluminum and hydrogen plasma can reduce the interface trap density on InGaAs.
MOS capacitor data analysis extracts interface trap density as a function of electron
band energy.

Chapter 4 (Source/Drain Regrowth Development) examines source/drain re-
growth development for the III-V MOSFET. Regrowth was pursued using both
molecular beam epitaxy (MBE) and metal-organic chemical vapor deposition (
MOCVD ). MBE-grown relaxed InAs on InGaAs provides low metal-semiconductor
access resistances, while MOCVD-grown lattice-matched InGaAs on InGaAs pro-
vides a defect-free source-drain region to III-V MOSFETs.

Chapter 5 (Gate First Process Flow and Results) outlines the UCSB gate first
process flow and subsequent scaling to 65 nm gate lengths. Strengths and weak-
ness are analyzed in terms of FET figures of merit, such as peak current density,
transconductance, and off-state performance.

Chapter 6 (Gate Last Process Flow and Results) outlines the UCSB gate last
process flow. Comparisons between gate first and gate last processes are made,
showing how a gate last process is more amenable to device scaling. A variety
of experiments were done to analyze MOSFET behavior with varied channel thick-

ness, delta doping concentration, and surface preparation. Both MBE and MOCVD
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source/drain regrown devices are analyzed. 48 nm gate length devices using digi-
tal channel etching (/6.5 nm channel thickness) show peak transconductance of 2
mS/micron and drain currents in excess of 1 mA/micron. Further channel thick-
ness reduction or removal of back barrier delta doping degrades device performance,
while improving short channel effects. CV-extracted mobility data suggests mobil-
ity reduction in thin InGaAs quantum wells is the source of device performance
degradation.

Chapter 7 (Conclusions) concludes the dissertation by summarizing the device
results, discussing areas for improvement, and looks forward to future process flows,

devices, and paths for continued MOS scaling.
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Chapter 2
MOSFET Theory

2.1 Introduction

MOSFET device physics has been treated extensively in the literature since silicon-
based structures were first fabricated [I]. Proper physical understanding of how
MOSFETSs work is critical to engineering new devices and improving their perfor-
mance. This chapter focuses on MOSFET device physics, with special considera-
tions for I1I-V-based MOSFETS, short channel effects in MOSFETSs, and scaling

MOSFET dimensions and material parameters for improved performance.

2.2 MOSFET Long Channel Theory

Figure is a cross-section cartoon of a generic MOSFET. A MOSFET has four
terminals: gate, source, drain, and body. A MOSFET works on the principle of
the field effect [2]; charges on the gate induce opposite charges in the material,
which alters the material conductivity. This induced charge layer can be quite
thin, leading to high sheet carrier densities (cm™2). The source and drain regions

contact this conductive layer. Depending on the voltage conditions of the gate,
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Figure 2.2: Top-down schematic of a MOSFET.
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source, and drain, the current-voltage relationship between the drain and source
can be an open circuit, resistive (linear I-V), constant current (current source), or
exponential (thermionic emission). The body contact is typically connected to the
source terminal.

Here are equations for the I-V relationship of the long-channel (i.e. long gate

length) MOSFET [3],[4],[5]:

Iinear 1 V23
ZW = Z,UCQ*Ch |:<‘/gs — ‘/th) ‘/ds - ; :| Vds S V;ls,satv ‘/gs Z Wh (221)

Isa urate 1 V. s
tTtd - zﬂcg—th |:(‘/gs - ‘/;fh - ; > Vds,sat:| Vds > V;is,sata ‘/gs > ‘/th

(2.2.2)

Vds,sat = vas — Vi (223>

where W is the gate width, L is the gate length, C,_4, is the gate-channel
capacitance, and Vy, is the device threshold or turn-on voltage. C,_;, represents the
capacitive coupling between charges on the gate metal and inside the semiconductor.
See Section for further analysis. The electron mobility, u, is the relationship
between electric field and electron velocity inside the semiconductor: veeerron = HF,
where E is the electric field inside the semiconductor along the direction of current
flow. Figure illustrates the current-voltage relationship of the transistor. While
Vias << Vgs-Vyp,, the device behaves like a resistor. Varying the gate voltage varies

the induced charge in the channel, and hence the resistance of the channel. As
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Figure 2.3: Long Channel FET Model: Jgrqin-Vas and Jgrqain-Vgs

Vs approaches Vg,-Vy,, the current increases more slowly with Vg4,. This is due
to depletion region formation near the drain contact, “pinching oft” the conductive
channel. After V4o > Vg,-Vyy,, the channel is fully pinched off and all additional
voltage Vg, is dropped in the depletion region near the drain. At this point the
FET behaves like a current source across the drain-source contacts. The threshold
voltage is the gate voltage required to induce a charge density large enough to create
a conductive channel. Threshold voltage is typically defined as the Vg4 necessary
to have a specific drain current density (e.g. 1pA/um)at a fixed V.

Figure illustrates the case where the device has been biased into current
saturation (Vgs> Vgs-Vip). From Eqn. Jarain-V gs has a quadratic relationship.
The DC transconductance gain of the device, dig#'”, is therefore linear. It should
be noted that in this model the device transconductance increases without bound.

When the device is turned “off,” i.e. V,,<Vy,, a significant amount of induced

charge is not present due to a potential barrier between the source and drain.

Jdrain 18 now thermionically limited:
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Liso Vs — Vi
Zdsoff ~ lyexp —Q( g th)

o T (2.2.4)

where I represents a “dark current” for this barrier-limited device, kg is Boltz-
mann’s constant, T is the device temperature, and m represents the gate’s control on
the channel semiconductor barrier. A typical figure of merit for MOSFET off-state
performance is the subthreshold swing. This represents the amount of gate voltage
required to reduce the subthreshold current by one order of magnitude, typically

written in mV/dec. Including interface trap density, the subthreshold swing is [0]:

SS = In(10)

q Coa

where C;; is the gate insulator-semiconductor interface trap density. Interface
traps are electron states that trap electrons or holes, inhibiting channel conduction.
They are typically dangling bonds at the insulator - semiconductor interface, but can
be located inside the gate insulator, or inside the semiconductor as well. In terms
of energy, they are typically within the band gap of the semiconductor, but can be
above (below) the conduction (valence) band edges as well. Since interface traps are
electrically active, they must be charged and discharged in parallel with the device
channel. For device bias above threshold, this reduces the gate’s capacitive effect
on the channel, reducing current density at a given gate bias above threshold. For
device bias into the subthreshold regime, the same effect will increase subthreshold

swing.
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Figure 2.4: Semiconductor electron velocity versus electric field.
2.3 MOSFET Short Channel Theory

MOSFET long-channel theory does not accurately predict on-state device behavior
as the gate length is decreased. As the applied gate bias increases, vertical electric
fields present in the channel decrease the mobility of the electrons in the channel,
due to increased surface scattering. As the transistor gate length decreases, the
horizontal electric fields increase to a point where the electron velocity is no longer
linearly dependent on electric field (Figure . As previously stated, semiconduc-
tor mobility is the linear response of electron velocity to electric field. Taken to a
limit, this suggests an electron can have an infinite velocity inside the semicondcu-
tor. In reality, once the electric field approaches a critical field strength, electrons
will dissipate their kinetic energy in the form of phonons into the semiconductor
crystal. This dissipation will slow the electron down; as the field increases, the
scattering increases, and the electron will reach a velocity limit, typically called the
saturation velocity.

In the case of a semiconductor MOSFET, a small enough gate length will allow

a moderate drain-source bias to reach the critical field strength, and hence the

10
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mobility approximation is no longer valid. The electron velocity in the device is no
higher than v, and now, rather than having an electrostatic pinch-off point, the
transistor is limited by electron velocity. A new model can be derived similar to the
long-channel model [3], but allowing mobility to change as a function of drain-source

field:

_ Hif

Vsat

where p is the “low field” mobility, a linear approximation of the electron
velocity-field curve for electric fields < Egpiticar; and Eg, is the drain-source field.

The transistor’s current-voltage behavior is now:

Iinear 1 VZS
ZW - L+ piyVas leCg—Ch [(Vqs - ‘/th) Vds - ; } ‘/ds < V;ls,sah ‘/gs > ‘/th
(2.3.2)
]sa urate 1 V. S
tI/Vt d — N 117 Vo oat ,ulfcgfth |:(‘/gs - ‘/th - ; > Vds,sat:| Vds > V;ls,saty ‘/gs > V;h
(2.3.3)
2 — 3
‘/ds sat — Lvsat 1+ Hi (VEJS ‘/th) -1 (234)
7 lulf 'UsatL

Compare Figures and For the same applied gate bias, the saturated
drain current density is lower. This is due to electron velocity saturation in the
channel. The FET makes the transition from the resistive to current saturation

region with a smaller V4, for the same reason. Combining Eqns. [2.3.3] and [2.3.3}

11
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Figure 2.5: Short channel FET Model: Jgrgin-Vas and Jgrain-Vgs

I saturated

W g—thUsat (‘/gs - ‘/th - ‘/;ls,sat> (235)

and taking a derivative with respect to Vg:

dIsaturated WC thUsat
=WC,_ Vs - 2.3.6
d‘/gs g=ch b \/1 2,U'lf Vgs ‘/th) ( )
Vsat L

Comparing and [2.5D], the transconductance no longer increases linearly with
gate bias; it begins to turn over due to velocity saturation in the channel. As gate
length decreases and/or the channel mobility increases, the second term in equation
decreases; the electron is now traveling for most of the channel length at v,;.
In the limiting case where the mobility tends to infinity or the gate length tends to

zero, gm = WCy_cpVsat-

12



CHAPTER 2. MOSFET THEORY

2.4 MOSFET Gate-Channel Control

Gate control of the channel charge density is a fundamental parameter for a MOS-
FET. This section reviews the components that compromise Cy_p,.

In transistor current-voltage equations, the C,_.; term represents the gate con-
trol of the semiconductor channel charge density. Terms are of the form dQ/dE,
the derivative of charge density with respect to Fermi level energy. This derivative
can be converted into a capacitance with the equation C = q(dQ/dE) = dQ/dV,
allowing C,_., to be intuitively understood.

The gate insulator capacitance is:

6.
Cop = 22 2.4.1
ﬂns ( )

where €;,, is the relative permittivity of the insulator multiplied by the vacuum
permittivity, €y, and T},s is the oxide physical thickness. When comparing the
relative capacitances of various insulators, it is helpful to normalize all oxides to
silicon dioxide; therefore, an effective oxide thickness (EOT), can be defined:

,I%ns esioz

EOT = (2.4.2)

€ins

where €, = 3.9¢.

Due to the high charge densities seen in MOSFET channels, significant semi-
conductor band bending occurs, and this charge confinement quantizes the semi-
conductor bands at the surface. The lowest energy of the electron is no longer the
semiconductor band edge, but a quantum eigenstate. The eigenstate energy is de-

termined by the electron effective mass perpendicular to current flow, i.e. along the

13



CHAPTER 2. MOSFET THEORY

gate-insulator-channel axis. For the case of an infinite quantum well [7, pp. 44],

eigenstate energy is:

n?m2h?
E,=—— 5
2mja

(2.4.3)
where 1 is the specific eigenstate, h is the reduced Planck constant, m; is the
electron effective mass perpendicular to current flow, and a is the well thickness.
Therefore, as confinement increases, the heavy effective mass for silicon keeps the
eigenstate energy increase minimal, while for InGaAs the increase is significant.
Due to electron confinement, the electron quantum mechanical wavefunction
must be considered when calculating the position of the centroid of the charge
density. Using a self-consistent Schrodinger-Poisson solver, one can obtain accu-
rate simulations of the bound state wavefunction. There is an effective capacitance
associated with the setback of the charge density from the surface, called Cyepp.
Rigorously, this is the change in charge density centroid due to the change in surface

potential, requiring self-consistent simulation for an accurate result. An approxi-

mation for thin quantum wells (less than 10 nm for InGaAs):

€semi
Cdepth ~ (244)

T'Luell

2

where €,.,,; is the relative permittivity of the insulator multiplied by the vacuum
permittivity, and T,y is the thickness of the quantum well. Clearly, Cgepen, will
change with applied bias, and this approximation should only be used as an intuitive
guide.

The charge density in the channel is the integration of the semiconductor density

of states and the Fermi-Dirac distribution function. Due to quantization, the two-

14
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dimensional density of states is used:

*

my

mh?

Dop = (2.4.5)

where mj is the electron effective mass along the direction of current flow. For

silicon MOSFETSs, m; ~ 0.19my, and for InGaAs, m; ~ 0.04mg. Ngpeet is:

E;—E
Nsheet = NapFo = Napln (1 + exp %) (2.4.6)
B

where Nop = (Dop)kpT’, Ey is the channel Fermi level, and E; is the energy of
eigenstate(s) participating in conduction. Nyp comes from the use of Fermi-Dirac
integrals [§] to solve the integral.

To find an equivalent capacitance, one first takes a derivative of with
respect to Eg:

E
d(Nghe Nop exp —L
Caos = ater) _ L0 P Rt (2.4.7)

dEy kgT (exp ]i—fT + exp kg})

Multiplying top and bottom by exp ;TEQJ: gives,

N. 2D
Clios = 42p = 42D (2.4.8)

kgT (1 + exp E;;?) (1 + exp E;;?)

See Figure If multiple eigenstates are occupied, then the capacitance net-
work changes bysimple addition of Cgepe, and Cges terms. Ideally, the semiconductor-
insulator interface is free of electrically active traps; in III-V materials, the trap
density can be significant, on the order of Cy,s or greater. The occupation of these

traps is defined by the difference in surface Fermi energy and the energy trap level,

15
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(Ef-Etrap). In Figure , an interface trap term is added, C; = ¢*D;;. The
interface trap capacitance tends to lower the surface Fermi energy, taking away in-
duced mobile channel charge. The C;; used is not necessarily the one derived from
subthreshold swing measurements, since the interface trap densities can vary with
energy. Finally, Figure [2.6¢ shows that for subthreshold bias, Cy4,s < C,, and the

subthreshold swing is controlled by the gate insulator capacitance and interface trap

density, as defined in Eqn. [2.2.5]

2.5 MOSFET Ballistic Transport Theory

In the previous sections, the mobility term plays a dominant role in dictating device
performance. Mobility in a semiconductor can be defined as u = g7/m*, where ,
where q is the Coulomb charge, m* is effective mass, and 7 is the mean scattering
time for the electron. Assuming an average velocity Veectron, an electron should
travel a distance 7Vgeqron before scattering. Thus, it is of interest to explore device
behavior at gate lengths of this order. Approximations for this distance can come
from using the bulk low-field mobility and the saturation velocity of the semicon-
ductor; however, simplifying assumptions were taken to create those terms (e.g.,
non-degenerate carrier statistics, unconfined carriers). Instead, starting with the
assumption that there is no electron scattering in the channel, one can derive a
“ballistic” model of an FET [9],[5],[10].

Figure shows electron band diagrams of a ballistic FET channel at low and
high Vg4, bias. The two circles represent the electron k-states in k, and k,, the k-
states in the direction of current flow. k, is along the gate length, and k, is along the

gate width. Given no channel scattering, the source right-going k-states fill the drain

17
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Figure 2.7: Ballistic FET electron band diagrams along the source-channel-drain
region
right-going k-states, and similarly for the drain electrons into the source. As drain-
source bias is applied, the source Fermi half-circle loses its negative k momentum
electrons, since they came from the drain and are now blocked by applied bias.

At high Vg, bias, only the right-going source electrons contribute to channel

current:

Jsource =dq nsource(Ef - El)vsource(Ef - El) (251)

where ngouree is the sheet carrier density, a function of Ey — Ey, the difference in
electron Fermi energy and the occupied eigenstate energy, and vgo,,ce is the velocity
of the electrons. The electron density can be calculated, similar to Eqn [2.4.6}
Naop Nop

E; - B
source — Fy = l 1 — 2.95.2
n 5 Lo 5 in ( + exp T ) ( )

where Fj is the Fermi-Dirac integral of order zero. This time the density of

states term is divided by two because only the right-going k-states participate in the
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channel current. The electron velocities are calculated using the directed moment:

Z szO(Ef - El)

k2 >0,ky

= (2.5.3)
> fo(Es— Ey)

k2 >0,ky

USOUT’CE

where v, = iniff is x-directed component of each k-state, and fy is the Fermi-

t
Dirac occupancy function. Assuming a continuum of states where A k,,A k, is
small compared to the device dimensions, summations become integrals and the
moment can be evaluated analytically. For devices biased such that E; > E;, the

degenerate (0K) approximation can be applied. Assuming parabolic semiconductor

bands, in k-space the equations are:

k>
E;— B = 2.5.4
s B =g (2.5.4)
_Deplky Ky (2.5.5)

Nsource,degen =
g 2 2mp 4w

The velocity of the carriers at the Fermi level is vy = hky/m;. Not all carriers
participating in the current density have this velocity, since not all are at E¢. The
mean velocity of the carrier density is the centroid of occupied k-space:

4 A hiky

Usource,degen = 3_7va =

(2.5.6)

3T my

Combining Equs. 2.5.1] 2.5.4] and 2.5.6 and converting back into energy space:

3
Jsource,degen = 3Th2t (Ef - E1)2 (257)
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Ef is the Fermi level in the channel; it is related to the gate voltage by the
capacitive voltage divider described in Section 2.4 Continuing to assume the
degenerate approximation and assuming no interface traps are present: Cy_., =
(1/Cop + 1/Clepin + 1/Caos) ™. The “voltage” across the density of states capaci-

tance as a function of gate voltage is then:

Cg—ch

V;los =
Cdos

(Vg = Vin) (2.5.8)
A transconductance can be defined by taking the derivative of Eqn. [2.5.7 with
respect to the Eg:

av/2m; (E; — Ey)? (2.5.9)

9Im,source =
m2h?

Recapitulating the above mathematics: in ballistic FETSs, the electrons from
the source traverse a scatter-free channel. In the degenerate limit, the ballistic FET
current density is proportional to the 3/2 power of E; - E;, and transconductance
is proportional to the square root of E; - E;. Eqn [2.5.7| is also independent of
Vs; ballistic FET's have current saturation behavior similar to the long and short
channel device models.

In the ballistic limit, there is a trade-off between a low and high density of states
[10]. Too few states means high-velocity carriers are in the channel, but there are
too few of them. Too many states mean many carriers, but since the Fermi level
cannot be much above the eigenstate, the carriers do not have much velocity, and

therefore cannot have high current densities.
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Source
Ef i

Figure 2.8: Electron band diagram along the source-channel-drain axis for a)long
gate length device, and b) short gate length device. Adapted from [6].

2.6 MOSFET Short Channel Effects

A MOSFET is inherently a two-dimensional device. The equations used thus far
have assumed one-dimensional electrostatics are dominant in device operation. As
the gate length scales down, more of the channel is capacitively coupled to drain.
Further scaling leaves the gate without control of the channel, and drain electric
fields control device performance.

As seen in Figure [2.8] the drain electric fields begin to influence the channel
charge and the source directly; this is called “drain induced barrier lowering,” or
DIBL [T1]. Tt is the root cause of many short channel effects, including: threshold
voltage rolloff, subthreshold swing increase, and output conductance modulation.

Threshold voltage rolloff occurs due to the drain electric field “pulling down”
the source-channel barrier. As the drain voltage increases, it capacitively lowers the
barrier, allowing more carriers into the channel, effectively lowering the threshold
voltage. This is illustrated in the I-V curves of Figure 2.9a] This is characterized
in MOSFETs by subtracting the threshold voltage of two different V4, biases on
the same FET. DIBL is typically specified in mV (change Vy,) per V (change V).
Similarly, the subthreshold swing increases due to stronger drain-channel coupling

than gate-channel coupling, preventing proper subthreshold gate modulation (Fig-
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Figure 2.9: log Jgrain-Vgsfor long and short gate lengths, DIBL and subthreshold
swing behavior

ure [2.9D)).

As Vg increases beyond saturation, the electrostatic pinch-off region in the
device absorbs this voltage drop. This region can increase in length, pushing the
pinch off point towards the source, effectively decreasing the gate length. For long-
channel devices, this is effect is small, but for devices where this decrease is a large
fraction of the overall gate length, the output conductance of the device increases,
essentially placing a resistor in parallel with the transistor.

Intuitively, to prevent short channel effects, one must ensure the gate metal has
stronger capacitive control over the channel than the drain. In light of this, Brews et
al [12] published an empirical formula for minimum gate lengths in inversion-mode
MOSFETs. Gate lengths smaller than the minimum would tend to suffer short
channel effects. For inversion-mode n-channel MOSFETSs, the bulk semiconductor
is p-type, and the surface is inverted to form a conducting n-type channel. In gen-

eral, planar inversion mode MOSFETSs are electrostatically improved by increasing
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substrate p-doping to better confine carriers and prevent drain field penetration.
However, there is a limit to this doping. Too much p-doping will add another term

to the subthreshold swing equation:

5g = ln(lO)kBT (Cox + Cy + Cdep)

p - (2.6.1)

where Cge, is the depletion region capacitance from the p-doped substrate. As
the doping increases, Cg, increases since the depletion width will decrease. Since
the p-doping is typically tied to the source, it affects the channel potential barrier.
This capacitance acts similarly to interface traps in that it prevents the gate from
modulating the channel barrier effectively, increasing subthreshold swing.

Instead of increasing p-doping, a different method of electron confinement must
be implemented. Heterobarriers are employed for HEMTs and the III-V MOSFETs
described in this dissertation. The conduction band offset of the channel and back
barrier effectively limits the accumulation charge layer thickness. Another way to
improve confinement is to remove semiconductor from under the channel. This can
be done using SOI [13], inFET geometry [14], or a nanowire [15]. These techniques
have tradeoffs; the selection is based on specific application.

Scaling rules for these non-planar gating scenarios have been derived [16]. There
is a simple “effective length” rule developed for silicon devices than can be applied

to III-V devices with heterojunction back barriers:

)\SOI = \/ET’ChanTchanszs (262)
€r,chan

A = : Tc anﬂns 2.6.3

b \/2€r,ins " ( )
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where €, chqn 1S the channel relative permittivity, €, ;,s is the gate insulator rela-
tive permittivity, T.,q, is the channel thickness, and T}, is the insulator thickness.
Asor is derived for the case of semiconductor-on-insulator, where gate metal is
present on one side of the channel, while Apg is derived for gate metal on two sides
of the channel. As the channel permittivity increases for the same Cgor, the min-
imum channel length increases. Since InGaAs €, s is larger than silicon €, e,
InGaAs channels will suffer increased short channel effects as the gate length is
decreased. For deep sub-micron SOI, the source-drain separation will decrease, and
for thick bottom insulators, their fields will terminate in the channel [17]. This will
lead to poor short channel behavior, and require the bottom insulator be thinned
to bring a ground plane closer to the drain for field termination. A semiconductor
bottom barrier will have a larger permittivity than SiO,, and therefore this effect is
increased proportionally. Rigorous semiconductor transport simulations [18] have
shown III-V-based MOSFET electrostatics do not scale as well as silicon; multi-gate

solutions are required.

2.7 MOSFET Scaling Laws

While MOSFET device behavior is important to understand, how it relates to
intended application is also important. This section examines important behavior
for MOSFETs in VLSI and scaling laws for improving their performance.

In a digital circuit such as a VLSI microprocessor, MOSFETSs are integrated in
such a way to make Boolean logic gates [19]. CMOS circuits pair NMOS and PMOS
FETSs to minimize static power dissipation in the circuit. The most basic switching

element is the inverter (Figure [2.10). This circuit drives a capacitor C,,, which
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Figure 2.10: CMOS inverter schematic with load capacitor.

could be another logic gate or a long interconnect wire. This capacitor is charged
with voltage Vgq. The NFET gate bias is zero. When the NFET gate is turned on
at t=0, the NFET is biased into saturation, and has current source behavior. The
current flowing, 4 s¢, removes charge from C,,;. As long as the voltage across C,
maintains current saturation, the capacitor voltage will decrease linearly. The time
constant for dissipating the energy from the capacitor is approximated as:

~ C'out ‘/dd

~

2.7.1
[d,sat ( )

Therefore, in general, VLSI switches will operate faster if load capacitance is
small, rail voltage is small, or saturated drive currents are high.

While the transistors themselves are analog, in the “digital” limit the ability to
drive the output capacitance is limited by the circuit rail voltage and the saturated
drive current available to the device. If the switches are closely spaced, wiring
delays will be small compared to device resistances and capacitances, and they will
define C,,;. Similarly, if switches are far apart, wiring delays will dominate C,,;.

MOSFETSs require high transconductance at gate bias between Vi, and V,.; to
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have high saturated current densities and therefore fast switching behavior.

Minimizing total power consumption is important for VLSI devices. While the
CMOS circuit topology minimizes static power dissipation, leakage currents can
become a significant percentage of standby power dissipation. For a given device
threshold voltage and subthreshold swing, one can calculate the off-state current.
Threshold voltages can be taken at fixed device currents (e.g. 1pA/micron), and
subthreshold swing dictates device leakage at zero bias. Lowering the threshold
voltage for a fixed subthreshold swing will increase off-state current, increasing
standby power consumption.

Given the information outlined in the previous sections, device researchers cre-
ated a set of scaling laws by which MOSFET circuits could be improved while
maintaining device reliability and low power dissipation. There are two main types
of scaling: constant field scaling, and constant voltage scaling [4], and both are based
on the classic planar silicon MOSFET. Both increase device density by shrinking
device area.

Constant field scaling aims to maintain the absolute field (V/m) inside the device
[20]. This ensures short channel effects will not increase with each scaling node. It
also improves device reliability, since high-field effects (such as impact ionization
and hot electron degradation) decrease total circuit life. Since electric field must
stay constant, rail voltages must decrease by a factor of two. Inversion charge
density stays constant since both oxide thickness and gate voltage are decreasing
by a factor of two. Since absolute power and current both scale by two, power
dissipation decreases by four, and since the circuit density also scales by four, we
maintain power density between each scaling generation. This ensures circuit power

can be dissipated without exotic cooling techniques. Time delays will scale by a
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factor of two.

Constant voltage scaling aims to maintain the applied biases while scaling the
device geometry. This is necessary since multiple factors inside the transistor are
not scalable within a technology, e.g. semiconductor bandgap and thermal voltage.
Unlike constant field scaling, inversion charge density will increase since channel
capacitance will increase, but voltage will stay constant. Constant voltage scaling
also decreases time delays by a factor of two, but sacrifices power dissipation; it will
increase by a factor of two, requiring better cooling technology with each node.

Industrial VLSI production has implemented both constant field and constant
voltage scaling simultaneously; both scaling paradigms can be combined in “gen-
eralized scaling” [21]. Depending on the most pressing problem at a given node,
a balance must be struck between device performance and total power dissipation.
Because gate leakage currents overwhelmed device performance earlier than ex-
pected on industry roadmaps, one of the most important advancements in recent
CMOS development was the introduction of high-k dielectrics [22]. Switching to
hafnium-based oxides and metal gates improves gate capacitance without thinning
the oxide, limiting gate tunneling currents.

For ballistic FET scaling, to increase the drain current density by a factor of
two at a constant Vg,-Vy,, Cy_, must increase by factor of two. In the absence of
an interface traps, increasing C,_; requires increasing Coz, Caepn, and Cgo, all by a
factor of two. C,, increase requires increasing dielectric permittivity or decreasing
thickness. These are limited by available materials and process tool maturity. Cgep,
increase requires thin channels to minimize the wavefunction distance from the
surface. Cg,s increase requires either more conducting semiconductor eigenstates

or larger effective mass electrons. New semiconductor material orientations can
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simultaneously increase the semiconductor density of states while maintaining an

adequately low effective mass for high velocity electron conduction [10].

2.8 MOSFET: Conclusions

In this chapter, MOSFET theory, quantum mechanical effects, and transistor figures

of merit have been outlined. In general, the best MOSFET must have strong capac-

itive control over the channel, and that channel must have a relatively large density

of states to manipulate. This control must be stronger than the drain control on

the channel. With optimized gate control, large current densities and transconduc-

tances are possible, which are key drivers for VLSI technology applications.

References

1]

2]

[7]

Dawon Kahng. US Patent 3102230: ELECTRIC FIELD CONTROLLED
SEMICONDUCTOR DEVICE, 08 1963.

Julius Edgar Lilienfeld. US Patent 1900018: Device for controlling electric
current, 03 1933.

BL Anderson and RL Anderson. Fundamentals of Semiconductor Devices.
McGraw-Hill Companies, Inc, 2005.

Yuan Taur and Tak H Ning. Fundamentals of modern VLSI devices. Cambridge
University Press, 2009.

Mark Lundstrom and Jing Guo. Nanoscale transistors: Device physics, mod-
eling and simulation. Springer New York, 2006.

Simon M Sze and Kwok K Ng. Physics of semiconductor devices. Wiley-
interscience, 2006.

David J Griffiths. Introduction to quantum mechanics. Pearson, 2007.

28



CHAPTER 2. MOSFET THEORY

8]

[9]

[10]

[11]

[12]

[13]

[14]

[19]

Raseong Kim and Mark Lundstrom. Notes on fermi-dirac integrals. arXiv
preprint arXiw:0811.0116, 2008.

Kenji Natori. Ballistic metal-oxide-semiconductor field effect transistor. Jour-
nal of Applied Physics, 76(8):4879-4890, 1994.

Mark Rodwell, W Frensley, S Steiger, E Chagarov, S Lee, H Ryu, Y Tan,
G Hegde, L Wang, J Law, et al. III-V FET channel designs for high current

densities and thin inversion layers. In Device Research Conference (DRC),
2010, pages 149-152. IEEE, 2010.

Ronald R Troutman. VLSI limitations from drain-induced barrier lowering.
Solid-State Circuits, IEEE Journal of, 14(2):383-391, 1979.

JR Brews, W Fichtner, EH Nicollian, and SM Sze. Generalized guide for
MOSFET miniaturization. Electron Device Letters, IEEE, 1(1):2-4, 1980.

Chenming u. SOI (Silicon-on-Insulator) for High Speed Ultra Large Scale In-
tegration. Japanese Journal of Applied Physics, 33:365-369, 1994.

Digh Hisamoto, Wen-Chin Lee, Jakub Kedzierski, Hideki Takeuchi, Kazuya
Asano, Charles Kuo, Erik Anderson, Tsu-Jae King, Jeffrey Bokor, and Chen-
ming Hu. FinFET-a self-aligned double-gate MOSFET scalable to 20 nm.
FElectron Devices, IEEE Transactions on, 47(12):2320-2325, 2000.

N Singh, A Agarwal, LK Bera, TY Liow, R Yang, SC Rustagi, CH Tung,
R Kumar, GQ Lo, N Balasubramanian, et al. High-performance fully depleted
silicon nanowire (diameter 5 nm) gate-all-around CMOS devices. FElectron
Device Letters, IEEE, 27(5):383-386, 2006.

R-H Yan, Abbas Ourmazd, and Kwing F Lee. Scaling the Si MOSFET: From
bulk to SOI to bulk. Electron Devices, IEEE Transactions on, 39(7):1704-1710,
1992.

Wei-Yuan Lu and Yuan Taur. On the scaling limit of ultrathin SOI MOSFETs.
FElectron Devices, IEEE Transactions on, 53(5):1137-1141, 2006.

Seung Hyun Park, Yang Liu, Neerav Kharche, Mehdi Salmani Jelodar, Gerhard
Klimeck, Mark S Lundstrom, and Mathieu Luisier. Performance Comparisons
of ITI-V and Strained-Si in Planar FETs and Nonplanar FinFETs at Ultrashort
Gate Length (12 nm). Electron Devices, IEEE Transactions on, 59(8):2107—
2114, 2012.

Frank M. Wanlass. US Patent 3356858: LOW STAND-BY POWER COM-
PLEMENTARY FIELD EFFECT CIRCUITRY, 12 1967.

29



CHAPTER 2. MOSFET THEORY

[20] Robert H Dennard, Fritz H Gaensslen, V Leo Rideout, Ernest Bassous, and
Andre R LeBlanc. Design of ion-implanted MOSFET’s with very small physical
dimensions. Solid-State Circuits, IEEE Journal of, 9(5):256-268, 1974.

[21] G Baccarani, MR Wordeman, and RH Dennard. Generalized scaling theory
and its application to a 1/4 micrometer MOSFET design. Electron Deuvices,
IEEFE Transactions on, 31(4):452-462, 1984.

[22] Robert Chau et al. Advanced Metal Gate/High-K Dielectric Stacks for High-
Performance CMOS Transistors. In AVS 5th Int. Microelectronics Interfaces
Conf, pages 3—-5, 2004.

30



Chapter 3

Gate Insulator Development

3.1 Introduction: Gate Insulator Development

As described in Chapter [2], the intrinsic MOSFET drive current and transconduc-
tance is proportional to the gate-channel capacitance. One of the capacitors that
comprises Cgate—channer 15 the wide bandgap insulator capacitance. For HEMTs,
this is a semiconductor with a conduction band offset to the channel. However, this
offset is not large (InGaAs/InAlAs ~ 0.5 eV) compared to oxide-based insulators
(InGaAs/Al,O3~ 2.5 eV) and has a fixed dielectric permittivity (InAlAs ~ 12.5).
This chapter will overview the use of atomic layer deposition to form insulators on

InGaAs channels.

3.2 Why ALD Dielectrics?

Figure is a cartoon of a HEMT and an electron band diagram under the gated
channel region of the device. The gate insulator for the HEMT is InAlAs, having
a 0.5 eV conduction band offset to InGaAs, when lattice-matched to InP [I]. The

permittivity of InAlAs is also fixed at 12.5 [2]. These place limits on the scalability
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Figure 3.1: HEMT cartoon cross-section with electron band diagram under the
gated channel region.

of InGaAs/InAlAs HEMTs. As outlined in Chapter , a I1I-V MOSFET needs the
highest possible capacitive coupling to the channel without excessive gate leakage
currents. In a HEMT, the low gate insulator barrier height will create significant
gate leakage currents with moderate positive gate bias, due to thermionic emission
over the small heterobarrier and tunneling current through the barrier. As we
scale the thickness of the insulator to improve performance, tunneling currents will
increase rapidly, rendering the transistor inoperable.

One solution to this problem is oxygen- or nitrogen-based insulators, offering
larger bandgaps, favorable electron band offsets to InGaAs, and high dielectric
permittivity (aka, “high-k”). Figure is a cartoon of a source/drain regrowth
MOSFET and an electron band diagram under the gated channel region of the
device. High-k insulators can be thicker than lower permittivity dielectrics for the
same capacitance density, and simultaneously have low gate leakage currents.

The current best method for forming these high-k dielectrics is atomic layer de-
position (ALD). ALD is a specialized form of chemical vapor deposition [3]. During

each cycle of ALD, a metal-organic precursor is conformally deposited over the entire
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Figure 3.2: MOSFET cartoon cross-section with electron band diagram under the
gated channel region.

sample. Then, metal-organic is evacuated from the chamber. A second precursor
enters the chamber and reacts with the covered surface, creating approximately one
monolayer of the desired material. This cyclic deposition technique allows for self-
limiting growth, enabling precise thickness control of MOSFET gate insulators. It
is by nature a conformal process, critical for future non-planar MOSFET geome-
tries. It is compatible with relativity low temperatures (~ 300°C), favorable for the
limited thermal budget in III-V device processing.

However, with any dielectric material deposition on III-V-based materials, the
interface trap density between the dielectric and semiconductor can be quite large.
As outlined in Chapter |2} this interface trap distribution can negatively impact tran-
sistor performance, specifically lowering drive currents and increasing subthreshold
swing. Since the 1960s [4], researchers have invested significant resources to pas-
sivate I1I-V surfaces [5]. A few groups have shown success with GaGdO,-based
materials [6]. Other groups have tried careful oxidation of some III-V materials [7],
with success. Sulfur passivation has been shown to work as well [8],[9],[L0]. The
majority of work in the last five years of In,Ga;_,As-based MOSFET technology

has focused on sulfur passivation; this dissertation has focused on alternatives to
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sulfur passivation.

3.3 MOSCAP Theory

Figure is a series of electron band diagrams depicting regions of operation for a
MOS capacitor (MOSCAP). In this example the substrate is doped n-type.

Accumulation: (Figure When the gate bias is positive with respect to the
substrate, electrons accumulate on the surface of the semiconductor. Since the bulk
semiconductor has the same majority carrier as the accumulated surface, the mobile
charges can respond rapidly, making this capacitance constant with frequency.

Depletion: (Figure Further decreases in gate bias remove any majority
carriers from the surface, and now gate charge images on the mobile charges near
the edge of the depletion region. This will decrease the measured capacitance. As
the negative bias increases, this depletion region increases, lowering the capacitance
even further.

Inversion: (Figure As the gate bias continues negative, the surface Fermi
level reaches the minority carrier band edge (in this case, the valence band). The
hole response is governed by generation-recombination with the majority carriers;
therefore, it is frequency dependent. For low-frequency AC signals on the order of
the minority carrier generation-recombination time constants, the inversion layer
can respond to the gate charge, and we can measure the valence band density of
states capacitance. This inversion layer screens out the charge at the depletion
region edge. For high-frequency AC signals, the inversion layer cannot respond,
and the gate charge must image on the depletion region mobile charge. This is

high-frequency depletion (Figure [3.3d). From the oxide thickness and depletion
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Figure 3.3: C-V and Electron Band Diagrams of an example MOSCAP
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region thickness, one can calculate the minimum capacitance in this region. The

equation is [I1]:

Conin = — +\/4kBT1n(Nd/ ) (3.3.1)

T Co €semiq® Na
where C,, is the insulator capacitance, kg is Boltzmann’s constant, T is the tem-
perature, Ny is the semiconductor doping concentration, n; is the intrinsic carrier
concentration at the given temperature, and €,.,; is the semiconductor permittiv-
ity. For C,, = 1.59 pF'/em? (5nm Al,O3), T = 300 K, Ny = 1x10'" ecm™3, n; =
8.4x10M em™3, €gemi = 13, Crpin = 0.114 pF' /cm?.
In classic silicon MOSFETS, n-type material surfaces would be inverted for
PMOS transistors, where the n-type doping serves to confine holes to the surface
during inversion. ITI-V MOS operates similar to accumulation, where the device is

already somewhat n-type, and under gate bias it has more conduction band charge.

3.4 InGaAs Passivation: Arsenic Capping

Arsenic capping of ITI-V material is useful for quasi in-situ characterization of ma-
terials [12]. The cap can be deposited in a solid-source MBE immediately after
wafer growth. When the cap is thick and/or dense enough, and shipped in sealed
UHYV containers, the material can leave the MBE chamber for reasonable amounts
of time and maintain underlying surface quality. MOS capacitor experiments using
arsenic caps and Al,O3/InGaAs structures have shown world-record low capacitance
frequency dispersion [13].

However, arsenic caps have process constraints. Each cap is unique, leading
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to process variances during decapping. One benefit of the cap is its low desorp-
tion temperature (350°C for [12], 460°C for [13]), but this prevents any intervening
moderate temperature process steps, since the arsenic decapping may contaminate
tooling. Finally, non-planar device structures will likely be incompatible with ar-
senic capping due to the types of processing required to create those non-planar

structures.

3.5 InGaAs Passivation: In-Situ Treatment

In 2009, an ALD tool was installed in the UCSB Nanofabrication Lab. Thermal
desorption of an arsenic cap is not allowed to prevent sample cross-contamination.
Instead, an in-situ dry treatment method was developed using hydrogen plasma and
trimethylaluminum. This method was developed to restore an air-exposed InGaAs
surface, removing the need for arsenic capping.

For the treatment experiments, samples with 300 nm 1x10'" ecm™3 Si-doped
n-type InGaAs on 3x10'® cm™3 S-doped n-type InP were grown by MBE. Be-
fore Al,O3 deposition, samples were dipped for 10 seconds in 10:1 deionized H5O:
HCI to remove surface oxides and provide a controlled surface going into the reactor.
Samples were then immediately loaded in air into a commercial ALD reactor (Ox-
ford Instruments FlexAL ALD). The base pressure of the reactor was approximately
1x107% Torr; pressure was held at 0.2 Torr during the deposition. The substrate
temperature was held constant at 300°C. Prior to ALD Al,O3 film growth, four
different treatments involving remote ICP on the initial InGaAs surface were inves-
tigated. Treatment A was the reference point in which the surface was not treated

in the chamber prior to ALD oxide growth. Treatment B exposed the surface to five
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cycles of trimethylaluminum (during each cycle: TMA pulse for 40 msec, 5 second
Ar purge, and 10 second Hy gas stabilization step) as a probe of TMA half cycle
reactions on the surface prior to growth. Treatment C exposed the surface to five
cycles of hydrogen plasma (during each cycle: 20 mTorr Hy pressure at 100W ICP
power for 2 seconds, 5 second Ar purge, and 10 second H, stabilization step) as a
probe of in-situ surface oxide removal prior to growth. Treatment D subjected the
surface to five cycles of hydrogen plasma and TMA exposure (during each cycle:
20 mTorr Hy pressure at 100 W ICP power for 2 seconds, TMA pulse for 40 msec,
5 second Ar purge, and 10 second Hj stabilization step) in order to determine the
effects of active hydrogen not only on the surface oxide removal but also on the
quality of the initial Al interface layer prior to bulk Al;O3 growth. During each
cycle of Al;O3 film growth, TMA was pulsed for 20 msec followed by a 7 second Ar
purge, deionized HoO was pulsed for 100 msec followed by a 7 s Ar purge, the reactor
was pumped down for 7 seconds, and finally Ar was flowed at 0.2 Torr for 7 seconds.
50 such growth cycles were completed for all samples. Ez-situ measurements using
variable angle spectroscopic ellipsometry (J.A. Woollam M-2000DI) estimated the
nominal Al,O3 growth rate at 0.11 nm per cycle (5.5 nm total oxide thickness).
After oxide deposition, the samples were annealed at 400°C for one hour in a
rapid thermal annealer using 10 L/min forming gas flow at atmospheric pressure. In
order to form MOSCAPs, 150 micron diameter, 100 nm thick nickel gate electrodes
were deposited by thermal evaporation on the Al,Oz side of the sample through
a shadow mask. Thermal evaporation was chosen to avoid sample damage by ex-
posure to x-ray photons or high kinetic energy ions associated with electron beam
evaporators and sputter deposition plasmas [I4]. A back side ohmic contact was

formed by blanket thermal evaporation of 10 nm Cr and 100 nm Au. Samples
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were then bonded to a gold-coated silicon carrier wafer with indium for subsequent
measurements.

All electrical measurements used an Agilent 4294A impedance analyzer in a
shielded dark box. The DC bias was swept from negative to positive voltages
with a 50 mV RMS AC modulation signal. In order to accurately extract C,zige ,
MOSCAPs using Treatment D (Hy/TMA cycles) on sample material with different
Al;O3 thicknesses were fabricated and measured at positive gate bias. From the
variation of the measured capacitance with Al,O3 thickness, a relative permittivity
of 8.7 &+ 0.2 was determined.

Figures [3.4] and show measurements of capacitance and conductance as a
function of bias voltage and frequency. Samples having different surface prepara-
tions show clear differences in the capacitance dispersion in accumulation, in the
“false inversion” capacitance peak [15], in the rate of change of high-frequency
capacitance with bias voltage, and in the conductance. Comparing accumulation
capacitance at +2.75 V bias, the ratio of low-frequency (100 Hz) to high-frequency
(1 MHz) capacitance is 1.17:1 for the untreated sample (Treatment A), 1.12:1 for
TMA-only treatment (Treatment B), 1.2:1 for Hy-only treatment (Treatment C),
and 1.15:1 for Hy /TMA surface treatment (Treatment D). Yuan et al. [16] at-
tribute dispersion in accumulation to border traps near the oxide/semiconductor
interface. Measurement of a peak in capacitance at biases below accumulation for
n-type InGaAs samples is an indication of mid-gap interface trap density, not semi-
conductor surface inversion [I5]. This false inversion capacitance peak is strongest
in the untreated and TMA-only treated samples (Treatments A and B), moderate
with Hy-only treatment (Treatment C), and smallest for Hy/TMA surface treatment

(Treatment D).
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Figure 3.4: C-V measurements of four ALD treatments
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Figure 3.6: Circuit model for parallel conductance extraction.

Another comparative measure of interface trap density is the rate of change
of high-frequency capacitance with bias voltage. This is typically called “stretch
out” [I7, p. 325]. For the untreated and TMA-only treated samples, dC' / dV
= 0.62 puF cm™2V~! while both for the Hy and Hy/TMA samples (Treatments C
and D), dC / dV = 0.9 uF cm™2V~L. For all four samples, there is no inversion
response at negative bias. Further, all samples fail to reach the minimum depletion
capacitance (~ 0.15 puF /cm?) measured versus 0.114 uF/cm? (Eqn. expected
for this epitaxial design at strong negative biases.

Herbert et al. have demonstrated quantitative measurement of interface trap
density from measurement of the variation of conductance with bias voltage and
frequency; Figure shows the normalized conductance-voltage maps for treat-
ments A, C, and D. The parallel conductance, G, is derived from the circuit model

of Figure [3.6] and is expressed as:

2,2
w Comeeasure

- 2
ngeasu're + WQ (OOJJ - Cmeasure)

Gy (3.5.1)

where w is the applied angular frequency, and C),eqsure and Goeqsure are the

measured capacitance and conductance. Assuming Shockley-Read-Hall statistics
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Figure 3.7: Interface trap density as a function of energy level below the (100)
InGaAs conduction band edge for all four treatments.

for the traps, one can estimate the trap energy level below the conduction band

edge from the applied measurement frequency:

AFE =

kgT ermaD
52 n {‘wm l 3D} (3.5.2)

q w

where o is the capture cross section, vipermar is the semiconductor electron ther-
mal velocity, and D3p is the three-dimensional effective conduction band density of
states. The methods of Herbert et al. are used to determine interface traps as a
function of AE below the InGaAs conduction band, and are described in detail in
Reference [15].

Figure shows interface trap density as a function of AE below the InGaAs

conduction band. For InGaAs lattice-matched to InP, we assume o = 1x1071¢
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em ™2, Vipermar = 5.6x107 cm 71, and Dsp = 2.2x10'7 ecm™3. Interface trap den-
sity extracted by this method is highest for the untreated and TMA-only treated
samples (Treatments A and B), both having 4.6x10'? eV~'em™2, 0.2 eV below E..
Interface trap density is moderate at 2.5x10'2 eV~lem ™2 with Hy-only treatment
(Treatment C) and smallest at 1.7x10'? eV~'em™2 for Hy, /TMA surface treat-
ment (Treatment D). Figure does not include measurements where C,; > q?D;;
since the conductance method is known to be inaccurate for this condition. The
conductance map trend is clear in indicating the efficacy of the hydrogen plasma
treatments to the InGaAs / Al,O3 interface. It has been shown in the literature
that forming gas (5% Hz / 95% N2) annealing of Pt/high-k/InGaAs MOSCAPs
improves the CV frequency dispersion and subsequently lowers the interface trap

density extracted by the conductance method.

3.6 High-k Process Damage

The MOSCAP process flow outlined in Section [3.5] is useful for comparative tests
between new ALD recipes; however, a MOSFET process flow (See Chapter [5{ and
@ has more processing steps, and therefore more chances to alter the interface trap
distribution of the insulator/semiconductor interface. A few process damage cases
were examined with MOSCAPs.

The gate first process flow (see Chapter |5|) uses a sputter-deposited tungsten
gate electrode. Sputter deposition uses high-energy plasma ions to eject metal
from a target; these metal atoms then travel to and bond with the sample. These

metal ions and the plasma ions are in proximity to the sample, and can cause ion

damage to the material. In Figures and 5 nm of Al,O3 was deposited
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Figure 3.9: 5 nm Al,O3 on MOSCAP epi, dummy gate anneal experiment.

on MOSCAP epi. One sample had nickel thermal evaporation and the other had
sputtered tungsten evaporation. Neither were annealed before metal deposition.
It is clear the sputtered metal increases the depletion region dispersion, indicating
a potential increase in interface trap density. Figure [3.8¢ shows the MOSCAPs
after a PECVD SiO, coating and 500°C RTA anneal to simulate MBE regrowth
conditions. While annealing improves frequency dispersion around zero bias, it
increases depletion dispersion considerably.

In the gate last process, an SiO,dummy gate is deposited by PECVD directly
on epitaxial material, the gate is defined, and source/drain regions are regrown.
Figure shows two 5 nm Al,O3 MOSCAP measurements. The sample in [3.9a]
had PECVD deposition, oxide removal with BOE, and immediate high-k deposition,

while the sample in Figure[3.9b/had a 500°C RTA anneal prior to cap removal. There

46



CHAPTER 3. GATE INSULATOR DEVELOPMENT

Capacitance (pF)

Gate Voltage (V) Gate Voltage (V)

(a) 5 nm AlyO3, Ni gate electrode (b) 5 nm AlyO3, 1 nm HfO,, Ni gate
electrode

Figure 3.10: Single layer versus bi-layer gate insulator

was a dramatic increase in depletion dispersion due to this anneal. This suggests
the MOSCAP epi is damaged during this SiO,-capped anneal, and MOSFET epi

would likely suffer similar damage during a regrowth process.

3.7 Summary of Current Insulator Development

Since the development of this surface treatment, research groups at UCSB expanded
on the technique to further reduce interface trap density and increase effective oxide
capacitance.

Al O3 /HfOy bi-layers: Initially, Al,O3 was found to adequately passivate In-
GaAs. For the gate last process flow (Chapter @, gate metal liftoff occurs directly
on device insulator; optical photoresist developer will etch Al;O3. An etch stop
barrier was needed; HfO5 will not etch significantly in developer. Figure|3.10|shows

capacitors with and without this etch stop layer. The bi-layer does not significantly
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increase interface trap density, making it suitable for our process flow.

The Stemmer Group used this process flow to further improve the high-k di-
electrics on InGaAs. Increased hydrogen treatments further reduced interface traps
[18], and use of nitrogen plasma rather than hydrogen plasma [19] allowed for HfO,-

only gate oxides without a significant increase in interface trap density.

3.8 Conclusions

Intrinsic field effect device performance is defined by the capacitive control of the
channel by the gate electrode. One can increase this capacitance by decrease the
gate insulator thickness or increasing its permittivity. For HEMTs, thinning rapidly
increases gate leakage, rendering devices inoperable. Development of high-k di-
electrics with reasonable interface trap densities is one way to continue scaling field
effect devices. A method of in-situ surface treatment was developed to minimize
the interface trap density. These concepts were further developed by other research
groups to provide sub-nanometer EOT dielectrics with reasonable interface trap

densities.
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Chapter 4

Source-Drain Regrowth
Development

4.1 Introduction

MOSFET source-drain regions must be designed to not degrade intrinsic device
performance. They must have low access resistance to the channel, sufficiently high
doping, low sheet resistance, and be capable of low contact resistivities to metal.
In silicon processing, techniques have been developed and refined to meet or exceed
these goals [1],[2]. III-V-based devices have not been able to take advantage of this
research, opting for other techniques that ultimately limit device performance. In
this chapter, we examines the source-drain region formation by epitaxial regrowth.
This process module meets the needs of MOSFETSs measured in this dissertation,

with the ability to scale for future device performance.

4.2 Why Source-Drain Regrowth?

As outlined in Chapter [2] field effect devices have a layer of induced charge on their

surface; the shape of this layer is driven by surrounding electrostatics. By definition,
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the rest of the substrate is of a lower sheet carrier density than the induced layer,
or there would be no change in conductivity. Highly conductive regions of the same
induced charge type (electrons or holes) need to be added to contact this induced
charge.

In silicon MOSFETS, these source-drain regions have been formed a few ways,
depending on process maturity. Initially, dopant diffusion via thermal furnaces
was used [3| p.374]. Dopant diffusion is governed by Fick’s First Law; buried,
heavily-doped, narrow regions are hard to form and maintain with a low thermal
budget. Ion implantation of dopants allows for flexibility in dopant depth and
concentration. However, annealing is typically required to remove crystal damage
during implantation; dopant diffusion will occur and, once again, heavily-doped,
narrow regions are “smeared” out. Another downside of ion implantation is straggle.
While the distribution of ions is statistically well-known, the ions at the edges of
the distribution can diffuse far away from the implant centroid. Channeling of the
dopant along crystal axes exacerbates this effect. This causes fluctuations of the
source-drain regions near the gate edge. This effect has the potential of shorting the
source and drain out at very small gate lengths. New techniques for ion implantation
and annealing, such as plasma deposition [4] and laser annealing [5], are being
explored to overcome these challenges.

The source-drain semiconductor is only part of the total source-drain region.
Metal-semiconductor resistances are also important. This resistance is dictated by
the semiconductor surface Fermi level pinning, the level of doping, and the choice
of metal. For silicon, the silicide process [I] provides the necessary low contact
resistance to the semiconductor.

While silicon MOSFETSs have relatively well-understood source and drain tech-
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Figure 4.1: HEMT cartoon cross-section with electron band diagram under source-
drain region.

niques, the same cannot be said for I1I-V-based semiconductors. Ion implantation
techniques do not readily translate. Implants must be annealed, and while the
crystal structure can be partially repaired, it is never as defect-free as prior to im-
plant. This leads to traps inside the semiconductor, reducing mobility and charge
densities. Figure is a cartoon of a HEMT and an electron band diagram un-
der the source-drain region of the device. HEMT structures [6] rely on as-grown
heavily-doped surfaces to provide source-drain contact. InGaAs/InAlAs HEMTs
also require etch-stop layers of a different composition than the channel; this creates
a electron potential step-barrier between the source-drain and the channel regions,
leading to increased access resistance. Moreover, the gate region is now defined by
semiconductor etching; the heavily-doped contact material must be removed. This
might put a lower bound on gate length depending on the gate definition process
employed.

Rather than etch to define the channel region, it would be better to define
it first and then add back the source and drain, much like a silicon MOSFET
process flow. Figure is a cartoon of a regrowth MOSFET and an electron

band diagram underneath the source-drain contact. Semiconductor regrowth is a

23



CHAPTER 4. SOURCE-DRAIN REGROWTH DEVELOPMENT

Gate [ | Ec
Regrowth || metal || Regrowth 0.0 E¢

InGaAs Channel
EESEsEsEsEsEsEEEs ==
InAlAs Heterobarrier

Insulating Substrate x o JL

8-dopedInAIA§ - [P B BT B B |

I

I

I

|

I

A back barrier 0 10 20 30 40 50 60
A Position(nm) Al

A osf
I
T
I
1
1
l

Energy(eV)

Figure 4.2: MOSFET cartoon cross-section with electron band diagram under
source-drain region.

technique used in silicon MOSFETs [7], [§], and III-V photonic devices [9]. For
silicon MOSFETS, regrowth allows for well-controlled source-drain regions with the
ability to drive-in dopants closer to the channel underneath sidewall spacers. For
photonic applications, regrowth can serve as both a heavily-doped semiconductor
for contacts and current blocking layers in laser structures. In the case of Figure [4.2]
the regrowth lies directly on the semiconductor without intervening wide-bandgap
etch stops that could limit current flow. One limitation is that the channel material
is still undoped; one can recess the channel prior to regrowth, therefore replacing it
with heavily-doped regrown semiconductor.

Rather than a silicide process, the I1I-V regrowth process relies on simple metal
evaporation onto the source-drain. Groups have developed silicide-like processes
using Ni-InGaAs and Ni-InAs [10], [II]. As will be shown in this chapter, simple
metal evaporation provides adequately low resistance contacts to the heavily doped
source-drain regions for the given current densities.

Given the tools available at the time, MBE regrowth was attempted for the

source and drain regions. In 2013, MOCVD at UCSB became a viable regrowth
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technique, and was employed.

4.3 Regrowth Resistance Characterization

Figure outlines the resistances in the source-drain region of a MOSFET:

1) Contact metal sheet resistance (2/0): If the device has any planar contact
metal, current flows along this sheet until it reaches the device. This sheet resistance
should be much smaller than the device resistance. In VLSI, the lateral distance is
minimized to maximize device density.

2) Metal-semiconductor contact resistivity (Q-pm?): This resistivity is a func-
tion of contact metal, surface preparation, semiconductor type, and semiconductor
doping density. The smaller this number is, the smaller the contact area can be in
(1).

3) Semiconductor regrowth sheet resistance (€2/00): This sheet resistance is a

function of semiconductor type, thickness, and doping density. This should be
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minimized to minimize parasitic access resistances.

4) Regrowth-metal contact resistance (2-pum): This resistance term occurs due
to removal of the epitaxial material from the MBE for processing. Channel oxidation
and process damage will increase this term.

5) Spacer-channel sheet resistance (€2/0J): This gap underneath the gate spacer
is typically doped channel material. In silicon CMOS, ion implantation and other
doping techniques ensure this is a small component of the total device access resis-
tance. For III-V materials, where ion implant at this scale is difficult, this distance
must be a small as possible, or a recessed channel regrowth must be employed.

For VLSI circuits, an important metric is gate pitch spacing, or the distance
between adjacent gates. Figure [£.4] defines contacted gate pitch. The contacted
gate pitch is the gate length and the two source-drain contact lengths. While
the gate length is usually determined by the process node and optimized for best

electrostatic channel control, the source-drain metallization lateral dimensions are
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Figure 4.5: TLM data analysis and test structure

determined by metal-semiconductor contact resistivity. The smaller the contact
resistivity, the smaller we can make the source-drain contact length, and the more
devices can be “packed in” per unit die area.

The best n-type contacts to InAs or InGaAs can be made in-situ or ex-situ,
assuming the semiconductor doping is high (~ x10'® or more). For both InAs and
InGaAs the best is on the order of 0.5 to 1 Q-pm? [12][13].

High-performance MOSFETSs require intimate knowledge and precise control of
all five parasitic terms. Sheet resistances are typically trivial to characterize with
four-point probe resistance measurements. Semiconductor regrowth resistance pa-
rameters are determined by growth technique, and can be calibrated independently
from transistor fabrication. However, the metal-semiconductor contact resistivity
is difficult to predict a priori; it must be measured on the sample. “Transmission
line” or “transfer length” measurements (TLMs) are used to measure the contact

resistivity.
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Figure 4.6: SEM image of a TLM structure

Figure is a plot of TLM data versus gap spacing. Figure is a SEM
of a TLM test structure. Current is forced through the I ... pads, and voltage
measured on the V.. pads, and resistance determined. Plotting measured resis-
tance as a function of gap length, one can extract gap sheet resistance (£2/0) and

metal-semiconductor contact resistance (Q-pm). Mathematically:

Rmeasured = RsheetLgap + 2Rcontact (431)

where Ryeasured 18 the width-normalized measured resistance (Q-pm), Rgpeer 18
the semiconductor sheet resistance in the gap, Ly, is the gap length, and Reontact
is the end resistance of the test structure. The Reoniact term (y-intercept) captures
the metal-semiconductor resistance; however, the planar nature of current flow in a
TLM does not immediately provide the specific contact resistivity (2-pm?). Most
of the current flows along the low-resistance metal and “crowds” near the gap.
Modeling the contact region as a semi-infinite resistor network solving the

differential equation for voltage and current [14], the resistance measured equals:

R, = Z coth(ad) (4.3.2)

1
4 =— V Rsheetpcontact (433)
w
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Rsheet

Q
I

(4.3.4)

Pecontact

where w is the physical contact width and d is the physical contact length. If
ad > 2, coth (ad) approaches 1; therefore the measured resistance equals Z, and
Peontact = B2 | Rapeer- Therefore, smaller peontact terms provide smaller device con-
tact lengths and smaller transistor access resistances. This model assumes the
extrapolated sheet resistance is equal in the gap and under the contact. This as-
sumption may be wrong if there is significant depletion underneath the contact, or
the contact metal diffuses into the semiconductor. Given the large regrowth doping

and relatively thick regrowth, the assumption is valid.

4.4 MBE Source-Drain Regrowth

The MOSFET source-drain regions need to be self-aligned to the device channel
to minimize parasitic sheet resistance, must be heavily doped, and should have no
intervening barrier that could increase access resistance or choke off source charge.
The first iteration of the regrowth process module used MBE. The following sections
briefly outline MBE technology, the development of MBE regrowth, and character-

ization of its material in the MOSFET process.

4.4.1 MBE Overview

Molecular beam epitaxy (MBE) is one crystal growth technique employed in III-V
device fabrication. Starting in the 1970s [15], MBE has become one of the most
important tools for both characterization of III-V materials and precision fabri-

cation of the substrates used in making semiconductor devices. All of the device
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epitaxial material used in this dissertation came from MBE. MBE can use solid-
source evaporation, metal-organics, and plasma-based precursors for the growth.
This dissertation focuses on solid-source MBE material.

Solid-source MBE systems are composed of a growth chamber fitted with ef-
fusion cells containing the source material. The specific orientation of the sample
holder and sources depends on the equipment manufacturer. The growth chamber
is typically kept at a pressure in 1x10~7 to 1x10~? Torr or lower. This is a key fea-
ture of MBE; ultra-high vacuum minimizes contamination during epitaxial growth.
It also increases the mean free path of the source material (mean free path is in-
versely proportional to pressure), allowing for greater distance between the source
and substrate, which improves sample uniformity. To minimize contamination of
the growth chamber, a loading chamber is typically employed. This chamber can
be vented independently of the growth chamber to load samples. Samples can also
be prepared and treated in high vacuum in this chamber.

During epitaxial growth, the sample is heated to predetermined temperatures
optimized for the specific growth. The source effusion cells are heated to evaporate
their material, and shuttered to control the composition of the growth. Depending
on which sources are open and their temperatures, different compositions of mate-
rial can be grown. This is important for ternary semiconductors (such as InGaAs
and InAlAs) to ensure lattice matched growth. The growth can be monitored with
reflection high energy electron diffraction (RHEED) [16]. The electron beam inter-
acts with the crystal structure, allowing interpretation of the growth mechanisms

present on the substrate.
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4.4.2 MBE “Quasi-MEE” Rerowth

By its nature, solid-source MBE is a line-of-sight process. This is a problem for
gate first and gate last MOSFET processing, as the covered gate region prevents
the effusion sources from “seeing” the substrate near its edges. Migration-enhanced
epitaxy (MEE) [17] allows for smooth, two-dimensional epitaxial growth with in-
creased adatom mobility. By periodically shuttering off the arsenic source, atomic
gallium mobility increases significantly. This enhanced adatom mobility ensures
smooth epitaxial growth.

During development of the MBE regrowth module, standard MEE was found
ineffective [I8]. InGaAs regrowth could not fill in near covered gate regions. A
modified form of MEE called “Quasi-MEE” [19] keeps the arsenic source shutter
open during the entire growth, while periodically opening the indium, gallium, and
silicon source shutters. This strategy, combined with a higher substrate temperature
than normal MBE, enabled epitaxy near the edge. However, defects were still
present in the regrowth, increasing sheet resistance. A transition to InAs regrowth
[20] fixed the defect problem; defective InAs is still highly n+ [21], allowing for low

sheet resistance source-drain contacts.

4.4.3 MBE TLM Data

Based on the mathematics in the previous section, we can extract a semiconductor
sheet resistance (€2/00), metal-semiconductor access resistance (Q-pm), and metal-
semiconductor contact resistivity (2-um?) for our devices. Table is a list of the
various regrowth types and their specifics.

InAs, Si Doping, In-Situ: This recipes developed in [19] and [20] are the base-
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line for the regrowth module. In-situ deposition should provide the lowest con-
tact resistance given little to no oxide can form on the semiconductor surface in
vacuum. Molybdenum is used as contact metal since it is refractory, providing a
thermally-stable metal contact to the InAs. In the gate first process flow, this in-
situ evaporation also provides self-aligned metal to the gate, minimizing parasitic
sheet resistance.

InAs, Si Doping, Ex-Situ: It is well-known that Ti/Pd/Au provides an adequate
contact to InAs and InGaAs. However, the Ti readily reacts with the semiconduc-
tor; this can cause metal sinking into the semiconductor, potentially increasing
resistance or damaging very thin semiconductor layers. However, in our devices,
the metal-semiconductor access resistance term (~ 6 to 15 -um, single-sided), is
small compared to the total device on resistance (~ 200 Q-um, single-sided). See

Figure [.7aland [£.7Dl These are optical microscope images of the regrowth. As see

in the electrical data, the visible roughness appears to not affect the sheet resistance
of the material.

InAs, Si+Te Doping, Ez-Situ: While silicon-doped InAs provides low sheet and
access resistances, gate last devices (Chapter @ reached a plateau of on-state per-
formance. It was discovered that tellurium could dope InGaAs well [22]. Samples
were then fabricated with Si and Te as co-dopants. This tended to lower both the
semiconductor sheet resistance and metal-semiconductor access resistance. When
Si+Te co-doping was used in FET fabrication, the devices had higher performance
and uniformity across the sample. Furthermore, Te appears to be a growth sur-
factant during MBE regrowth. Surfactant elements in MBE growth help create
smoother epitaxial material [23]. See Figure Compared to Si-only regrowth,

Si+Te co-doping dramatically improves regrowth smoothness.
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InGaAs, Si+Te Doping, Ex-Situ: While InAs provides a superior metal- semi-
conductor access resistance, [1I-V MOSFETs may be limited in performance by this
junction (See Section [6.2.4). It would be better to eliminate the conduction band
offset from InAs to InGaAs found on our transistors. Furthermore, lattice-matched

epitaxy would provide higher-quality semiconductor material.
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(b) Si-doped InAs regrowth, Nomarski

a) Si-doped InAs regrowth, dark-field
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(d) Si+Te co-doped InAs regrowth, Nomarski

(c) Si+Te co-doped InAs regrowth, dark-field

images of InAs regrowth
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Figure 4.8: QWTLM test structure cartoon schematic

4.4.4 MBE QWTLM Data

Metal-semiconductor TLMs do not capture all of the possible parasitic resistances
in the final FET. There is no characterization of the regrowth-channel interface;
this is typically analyzed in transistor process flow, eliminating the other known
resistances. Early in gate first process development (Chapter , devices did not
exhibit any channel charge modulation. The regrowth-channel interface needed to
be characterized independently from the gate insulator-channel interface. Therefore,
the quantum-well TLM (QWTLM) was developed.

Figure [4.8 shows a schematic of a QWTLM. A QWTLM is heavily delta-doped

transistor epi design without any gate terminal. All channel charge is provided

. . Rsheet RAccess
Channel Thickness Delta Doping @/ | (Qpm)
25 nm 2x10Y em ™ in 3 nm 938 135
15 nm (1) 3x10 em™ in 3 nm | 893 44
15 nm (2) 3x10"¥ em™ in 3 nm | 960 91
10 nm 3x10Y cm ™ in 3 nm | 2548 —

Table 4.2: QWTLM test structure data

66



CHAPTER 4. SOURCE-DRAIN REGROWTH DEVELOPMENT

by the delta doping and the assumed surface Fermi level pinning, 0.2eV below the
conduction band edge. It is not by chance the QWTLM looks like a transistor; it
is imperative the test structure measurements could be applied to actual transistor
fabrication.

Table [4.2]lists a series of QWTLM measurement data. In general, the QWTLMs
show the regrowth-channel resistance does not explain the lack of device yield in the
gate first process flow. The 10 nm channel access resistance is not listed due to y-
intercept extrapolation error. Approximately 100 €2-pm single-sided channel access
resistance would not prevent proper device operation. However, these channels are
all thicker than 5 nm; there may be regrowth effects for these ultra-thin channels

that are not present in these test structures.

4.5 MOCVD Source-Drain Regrowth

MBE source-drain regrowth provides low metal-semiconductor contact resistances
using either InAs or InGaAs. However, it can cause serious processing issues. The
non-selective nature of the regrowth leaves unwanted semiconductor material on
the sample, hindering device dimension scaling. Regrowth material tends to have
crystalline defects in it, lowering overall carrier densities in most cases. Finally,
experiments were found to be unrepeatable or inconsistent with theory, where all
other potential variables had been explored to explain the data. MOCVD-regrown
III-V MOSFETS in the literature ([25],[26],[27]) had better performance than the

MBE devices; the process flow transitioned to this technology in early 2013.
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4.5.1 MOCVD Overview

Rather than solid-source evaporation in MBE, metal-organic chemical vapor depo-
sition (MOCVD) is primarily a gas-phase process. MOCVD has been successfully
used in semiconductor regrowth for solid-state laser cladding regions [9], where the
final device requires active and passive regions in close proximity. III-V transistor
research groups have also used MOCVD for source-drain regrowth ([25],[26],[27]).

The former result was strong motivation to pursue MOCVD.

4.5.2 MOCVD TLM Data

Table lists MOCVD TLM data taken from FET samples. While the sheet
resistance and contact resistivities are higher for MOCVD, their contribution to the
parasitic access resistance does not currently limit device performance. However,
as MOSFETSs continue to increase in drive current and transconductance, their

contribution will become important.

4.6 Conclusions

Both MBE and MOCVD are capable of providing epitaxial regrowth for semicon-
ductor devices. While MBE can provide ultra-low metal-semiconductor access resis-
tances and sheet resistances, it tends to limit performance in the devices analyzed
in this dissertation. MOCVD regrowth is a promising technology for MOSFET
source-drain regions; with more research, it will likely reach the low parasitic resis-
tances found in MBE regrowth, without the processing problems associated with

non-selective MBE regrowth.
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Chapter 5

Gate First MOSFET: Process and
Results

As outlined in Chapter ITI-V MOSFETSs require short gate lengths, thin di-
electrics, and self-aligned heavily-doped source drain regions. A process flow de-
positing gate metal first and employing MBE regrowth was developed over the
course of three years at UC Santa Barbara. This process was scaled to 60 nm gate
length devices showing drive currents in excess of 1 mA /micron at high Vg4, and ap-
proximately 0.3 mS/micron at 1 V Vg,. This chapter outlines the gate first process

flow, analysis of the transistor data, and the intrinsic process scaling issues.

5.1 Overview: Gate First MOSFET's

ITI-V MOS devices are sensitive to surface passivation. Research groups have at-
tempted to passivate GaAs [I] and InGaAs [2]-based MOSFETs. Unlike their
HEMT counterparts, the insulator-channel interface of a III-V MOSFET is not
free from electrically-active surface traps. This underpins the design of a gate first
MOSFET. One must protect the as-grown III-V surface from any oxidation, which

would increase the interface trap density. Extensive work has been done to protect
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Figure 5.1: Gate First MOSFET cartoon schematic.

the as-grown interface from corruption (See Chapter . Also, transistors must have
scaled gate lengths for peak performance at DC (g, Jgrqin) and AC (capacitances);
for short gate lengths, the device design must minimize short channel effects, re-
quiring thin transistor channels. Excessive oxidation of the semiconductor during a
vacuum break could render most of the channel inactive, changing intended device
design.

Devices from this process flow from earlier work [3] saw 200 nm gate length,
enhancement-mode operation, and reasonable pinch-off characteristics. For the
200 nm gate length device at 5 nm Al,O3 gate insulators, peak currents were 0.6
mA /micron at ~ 3 V above threshold at 1 V V45 1.3 V threshold, linear extraction),
peak transconductance of 0.4 mS/micron at 1 V V4, and subthreshold swing of 500
mV /decade at 0.1 V V4. Given 5 nm of Al,O3, Eqn. of Chapter 2, predicts

an interface trap density of ~ 7x10' em=2eV 1.
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Region Material Type Thickness
Channel InGaAs, not doped 5 to 15 nm
Delta Doping InAlAs, Si-doped (variable) 3 nm
Heterobarrioer InAlAs 200 to 400 nm
Semi-insulating Substr. InP, Fe-doped 500 pm

Table 5.1: MOSFET Epitaxial Design

Continuing with that process flow, it is necessary to see if device performance
can be improved at a scaled gate length. The process can scale to sub-100 nm

metallurgical gate length with modest process changes.

5.2 Gate-First MOSFET Process Flow

The wafer epitaxial design for the gate first process can be found in Table Semi-
insulating InP and undoped InAlAs are used to minimize device-to-device leakage;
delta-doping below the channel is for controlling threshold voltage and ensuring
channel charge below the ungated sidewall spacers. The lattice-matched InGaAs
channel offers low effective mass electrons for high device current densities.

Original processing used solid arsenic caps [4] to maintain an unexposed InGaAs
channel. Solid arsenic cap MOSCAP fabrication shows excellent CV dispersion,
consistent with the hypothesis that air exposure corrupts the MOSCAP surface.
Arsenic caps can be desorbed at 460°C and 1 Torr [4]. Immediately after desorption,
gate insulator is deposited. It can be deposited either in an ALD chamber [4], or
a modified MBE chamber for chemical beam deposition [5]. The original gate first
process used ALD desorption and Al,Os, while the sub-100 nm processing used
cyclic Hy/TMA treatment without arsenic capping [6].

As soon as possible after dielectric deposition, to minimize subcutaneous oxi-
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Figure 5.2: Gate First: Gate stack and etching experiment

dation of the AlyO3-InGaAs interface, the gate stack is deposited on the sample
(Figure . Gate metal is sputtered tungsten. Tungsten is chosen for its high-
temperature stability and ease of dry etching in low-power SFg-Ar chemistries. Low
power (10W ICP power) is necessary in order to avoid damaging the thin high-k
and channel below the gate metal. Next, electron beam evaporated chromium is
deposited. Chromium is an excellent etch stop for SFg-Ar chemistry, and is itself
etched in low power Cly/Os chemistries. Next, plasma enhanced chemical vapor
deposition SiO,is deposited on the sample. This layer is thicker than others to
assist in photoresist planarization [7] later in the process flow. Last, another layer
of chromium is deposited on the sample to serve as a dry etch hard mask during
gate stack dry etching.

To achieve sub-100 nm gate lengths, electron beam lithography (EBL) is cho-

sen. Using hydrogen silsesquioxane (HSQ) resist, one can achieve ~ 20 nm patterns.
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Upon exposure and development, HSQ turns into essentially SiO,, serving imme-
diately as a hard mask for subsequent processing. HSQ is also used in our process
for “mix-and-match” lithography. “Mix-and-match” lithography uses EBL for fine
features and photolithography for large features.

The combined EBL/optical lithography patterns are dry etched in an induc-
tively coupled plasma reactive ion etch (ICP-RIE), patterning the chromium into
gate lengths ranging from 50 nm to 1 micron. A brief O, plasma descum is after dry
etching to minimize polymerized photoresist debris from accumulating on the sam-
ple. As Figure [5.2b] shows, the Cr is undercut, leaving the Cr gate length smaller
than written by HSQ. After photoresist stripping in solvents, the SiO,is dry etched
in SFg/Ar, the chromium gate metal in Cly/O,, and the tungsten gate metal in
SF¢/Ar. For sub-100 nm gate lengths, the SiO,etch power was increased to achieve
a more vertical structure, maintaining the small gate length. Also, undercutting in
the chromium and tungsten gate metal layers can decrease the final gate length, at
the risk of lower yield.

Since the source-drain regrowth is self-aligned to the gate metal, a sidewall spacer
is required to prevent source-drain-gate short circuits. PECVD Si;N,, is chosen for
its conformal deposition and low leakage current. After Si,N, is deposited, it is dry
etched in CF,/O,. Since the gate stack is highly vertical and the Si,N, is conformal,
the dry etch removes Si;N, in the field and at the top of the gate, while not etching
most of the SizN, on the gate stack.

Al;O3 gate dielectric is still present on the surface of the sample; it must be
etched away prior to source-drain regrowth. Al;Oj is easily etched in photoresist
developer (AZ400K). The developer does not etch other layers of the gate stack.

After oxide removal, the semiconductor surface is exposed to ultraviolet (UV) Os.
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O3 creates a favorable native oxide on InGaAs, restoring stoichiometry to the surface
[8]. This surface oxide is etched in dilute HCl immediately before loading the sample
in the MBE loadlock.

Inside the MBE chamber, the InGaAs surface is prepared for epitaxy. After
loading into the buffer chamber, the samples are baked at 200°C overnight. The
temperature is then raised to 325°C. An atomic hydrogen surface clean is done
at 420°C to remove more surface oxides in an UHV environment. After letting
the sample cool down and buffer chamber pressure stabilize, the sample is loaded
into the growth chamber. RHEED is used to confirm a crystalline surface prior to
regrowth.

The quasi-MEE [9] technique produces relaxed InAs source-drain regions that
come up to the edges of the Si;N,-encapsulated gate stack. Since the InAs lattice
constant (0.60583 nm) is significantly different from InGaAs/InP (0.58687 nm),[10]
and since the layer is thicker than the critical thickness [I1], the InAs will relax on
the substrate. However, relaxed InAs is highly conductive [12], and therefore does
not pose an issue for source-drain sheet resistance.

After regrowth, there is an option for in-situ metal deposition in an adjacent
electron beam evaporator. In-situ metal contacts to n- and p-type material have
some of the lowest metal-semiconductor contact resistances [13]. Molybdenum is
evaporated over the entire sample.

Since the InAs regrowth is non-selective, it can grow on all surfaces of the gate
stack. Also, the in-situ Mo evaporation could create a source-to-drain short. To
remove the InAs and Mo, photoresist planarization is used [7]. By accounting for the
height of the gate stack, proper photoresist thickness, and remote oxygen plasma,

material can be removed from the top of narrow features. Given 1 micron resist
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and 350 nm tall structures, 1 micron gate lengths and lower can be successfully
planarized. After planarization, wet or dry etching can remove material from the
top of the gate stack.

Devices must be isolated from one another to prevent device-device short circuits
and source-to-drain short circuits. After photoresist patterning, the semiconductor
can be etched in H3PO4:H,O5:DI. If in-situ Mo was used, it can also be etched in
this solution, or dry-etched in SFg/Ar if undercut is a concern.

Low-resistance source-drain metal must contact either the InAs or the in-situ
Mo. The metal must be thick and of a low resistivity to prevent large end-resistances
from obscuring the intrinsic device performance. Typically, Ti/Pd/Au stacks are
used when metal-semiconductor sinking is not an issue. Ti/Pd/Au makes excellent
ez-situ contact to InGaAs and InAs (See Chapter HJ).

The final step in the process is gate pad opening. The gate pad is buried
in PECVD SiO,; buffered HF will remove this and the device can be electrically

probed.

5.3 Gate First: Device Results

Multiple samples in this process flow failed to have any transistor performance.
Analysis of QWTLMs (see Chapter proved 10 nm InGaAs channels to be fea-
sible. This section details select process lots from the gate first process, examining
common-source characteristics, device on-state performance, and extrapolation of
access resistance. Figure is a cross-section SEM of a MOSFET and a colorized

version for region identification.
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Figure 5.3: Gate First MOSFET SEM cross-section

Gate First Al

Channel Thickness 10 nm Oxide Type Al,O3
Delta doping 3 nm, 9x10'? cm~2 | Oxide Thickness 5 nm
Regrowth Type MBE Regrowth Spec InAs, 50 nm
Epi Lot # 110302D Regrowth Doping Si

Table 5.2: Gate First Lot A1 Process Specifications

5.3.1 Gate First Lot Al: Depletion-Mode MOSFET

Figure [5.6]is a TEM cross-section of a finished 60 nm gate length gate first MOSFET
from Lot Al. The source/drain epitaxial regrowth fills in to the Si,N,sidewall. The
gate metals are vertical and slightly undercut from the SiO,masking. Apparent
regrowth “sinking” is present near the source-drain-Si;Ninterface. This process
flow is focused on raised source-drain regrowth; this sinking is not intentional, and
is an unexplained byproduct of the MBE regrowth process. Sinking only occurs
near gate edges. Figure shows STEM imaging of a similarly processed sample
and EDX analysis shows no gallium where there should be for an InGaAs channel.

Figure [5.4] shows the Jur4in-Vas plots for the 60 nm and 115 nm gate length
devices. Figure is the J4-V 4, plot for the 60 nm gate length device. The 60 nm
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Figure 5.6: Lot Al: 60 nm gate
length TEM

device shows high on-current (1.37 mA /micron) and a low on-resistance (341 Q-pm).
However, the 60 nm transconductance (0.3 mS/micron) is no better than the 500
nm gate length transconductance. Figure shows the drain current (at Vgs=
1.25 V, V= 3V) and peak transconductance (at V4= 1V) for all gate lengths.
The low performance could be indicative of the thickness of the InGaAs channel
(10 nm compared to 5 in [3]), or the heavy delta doping forcing the wave function
to the back of the quantum well. However, the insensitivity of transconductance to
gate length does not support this theory.

Long gate length devices on this sample could not be brought into subthresh-
old, preventing subthreshold swing and DIBL measurements. This may be due to
the large delta doping in the device creating a parasitic resistance underneath the

channel. It could also be due to large interface trap density at the Al,O3-InGaAs
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interface.

Figure [5.8] shows R,, versus gate length for Lot Al. The extrapolated end
resistance is higher than found in QWTLM structures (Chapter . This could be
due to the difference in quantum well thickness; Lot Al is 10 nm InGaAs, while
the QWTLMs are 15 nm and thicker. However, the access resistance high enough
to explain the low peak transconductance. Gate leakage currents were less than 20

nA / micron for all devices measured.

5.3.2 Gate First Lot A2: Enhancement-Mode MOSFET

Figure and are the Jgrain-Vas and Jgrein-Vgs plots for the 0.3, 0.7, and
1.4 micron gate length devices in Lot A2. The apparent negative resistance in the
Ji4-Vgs plots is due to poor impedance termination of the DC bias probes, leading

to instabilities during measurement. Figure p.11] is the R,, versus gate length
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Gate First A2

Channel Thickness 10 nm Oxide Type Al,O3
Delta doping 3 nm, 3x102 ecm~2 | Oxide Thickness 5 nm
Regrowth Type MBE Regrowth Spec InAs, 50 nm
Epi Lot # 110128B Regrowth Doping Si

Table 5.3: Gate First Lot A2 Process Specifications
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plot for Lot A2. The lower concentration delta doping removes induced mobile
charge from the channel, increasing the threshold voltage. This lot has a lower
peak transconductance, reaching 0.1 mS/micron for the 300 nm gate length device.
Sub-100 nm gate lengths were not available on this lot. Comparing Figures and
[5.11] the lower concentration delta doping dramatically increased the device access
resistance. This could be due to channel depletion under the ungated sidewall

region.

5.3.3 Gate First Lot A3: Depletion-Mode MOSFET with

ALD Sidewalls

The ungated sidewall spacer and delta doping likely control channel access resis-
tance; this ungated region must be minimized. However, PECVD Si,N,cannot be
scaled indefinitely, due to its low porosity which increases gate leakage current.

Figure contains the Jg,qin-Vas and Jgrqin-V 45 plots for the 80 nm gate length
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Figure 5.14: Lot A3: 40 nm gate length TEM

devices in Lot A3. Figure [5.13| shows the g,,, Jaz, and R, versus gate length plots
for Lot A3. Compared to Figure [5.5D] the ALD sidewall appears to not affect the
peak performance of the transistors. Figure shows a TEM of a 40 nm gate
length device in Lot A3; the uncontrolled gate metal recess shadows the sidewall
from vertical etching. Even though the sidewall was ~ 50% thinner, in process the
“foot” is the same thickness. The uncontrolled nature of the gate undercut puts

serious process limits on shrinking the sidewall spacer thickness.

5.4 Gate First: Discussion

Initial sub-100 nm gate first results were no better in terms of transconductance for

longer gate lengths in the same lot or enhancement mode results in previous lots.
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There are a few likely explanations for the lack of performance scaling:

MOSCAP Damage Study: MOSCAPs were fabricated with 5 nm of Al,;Osand
either a) thermally evaporated nickel or b) sputtered tungsten. See Chapter/Section
. When Ni/Al; O3 is not annealed, large threshold frequency dispersion is prevent,
but the negative gate bias false inversion peaks are low. When W/Al,O3 is not
annealed, the negative gate bias false inversion peaks increase. Furthermore, after
500°C annealing to simulate regrowth, the false inversion response gets worse. This
is a concern for the gate first process using tungsten gate metal. Unfortunately,
refractory metals are required for MBE regrowth. In an extensive study [7], it was
found that thermal gate metals had the best false inversion response. Experiments
with electron-beam evaporated tungsten would help determine the specific process
issue.

Sidewall Spacer Channel Depletion: The gate first process requires sidewall spac-
ers to prevent source-drain-gate shorting during regrowth. This sidewall, typically
20 nm thick, creates an ungated region in the device. In silicon MOSFET process-
ing, this region is heavily doped to prevent an increase in FET access resistance, or
if too lightly doped, a current choke. In the gate first process, back-barrier delta
doping is used to overcome this bottle neck. However, this delta doping must be
large in order to have proper device operation, as seen in Lots Al and A2. Making
this region smaller will help, but due to process constraints (see Lot A3), that would
be difficult.

Surface Fermi Level Position: Delta doping of the back barrier poses multiple
problems for reaching maximum device performance. Large delta doping pushes
the channel wavefunction to the back of the channel, in essence, creating a buried

channel device. This decreases Cgepen, decreasing overall device performance (see
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Chapter . The delta doping also affects the threshold voltage of the device. As
the device is taken into subthreshold, the surface Fermi level depends on the delta
doping level; large delta-doping requires the Fermi level to be close to mid-gap.
As shown in Chapter [3] the interface trap density increases towards mid-bandgap.
Therefore, during subthreshold operation of the transistor, the surface Fermi level
of the device may be aligned with a large interface trap distribution, increasing the
subthreshold swing of the device. Last, the large delta doping seems to increase the
device’s off-state leakage current, preventing the device from reaching the proper
Lon/Ioss ratios for modern VLSI technology.

Overall, the gate first process limits design choices for the FET. Along with poor
performance when the delta doping is lowered, the device’s gate oxide must be de-
posited before any subsequent process steps. For other high-k insulators, like HfO,,
it is difficult to remove the oxide after high-temperature deposition without signif-
icant substrate damage. In the case of a III-V MOSFET, the processing involved

would likely ruin the source-drain channel regions, making regrowth impossible.

5.5 Gate First: Conclusions

The gate first process flow is intended to protect the insulator-InGaAs surface from
oxidation causing a large interface trap density. However, the processing involved
ends up removing all benefits predicted. Moreover, the process does not scale to
improve device performance. Therefore, the process development moved towards a
gate last solution to I[1I-V MOSFET fabrication. In gate last, the gate dielectric and
metal are one of the last steps in the process flow. As long as the insulator-InGaAs

surface can be restored to an effectively un-oxidized state, we can have the benefits
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of gate first with increased process flexibility.
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Chapter 6

Gate Last MOSFET: Process and
Results

As concluded in Chapter [3], gate first III-V MOSFETs suffer from high interface
trap densities, due to process damage, and lack trends of device improvement with
gate length. Since the development of Hy/TMA treatments, arsenic cap processing
is no longer necessary to maintain interface quality; gate last processing is now
possible. This chapter outlines the process flow for gate last using either MBE
regrowth or MOCVD regrowth. Select transistor process lot data is analyzed. The
MOCVD process flow gate length scales to 50 nm with the possibility of further gate
length decrease. Best device results at 48 nm gate length and 0.8 nm EOT show
0.85 mA /micron at 0.5 V Vg, and 0.6 V Vg4-Vyy,, and peak transconductance of 2
mS/micron at a V= 0.5 V. Subthreshold swing was brought to down to 97 mV /dec

for long channel devices with InGaAs channels and in-situ No/TMA treatment [I].

6.1 Gate-Last MOSFET Process Flow (MBE)

The gate last process draws on modules from both the gate first process (Chapter 5
and the QWTLM process (Chapter [)). After MBE growth, the substrate is covered

93



CHAPTER 6. GATE LAST MOSFET: PROCESS AND RESULTS

in PECVD SiO,for a dummy gate. For MBE regrowth, this dummy gate must be
capable of being photoresist planarized; therefore, this layer is 300 nm thick. Next,
electron beam evaporated chromium is deposited as a gate hard mask. Chromium is
necessary since the power and chemistry of the dry etches erodes resist too quickly,
preventing a highly vertical structure from being formed. Any “foot” left at the
bottom of the dummy gate would allow non-selective InAs growth to occur, leaving
an ungated access region in the device. EBL for device gate definition is done using
HSQ resist to allow “mix-and-match” lithography with the optical stepper.

Dry etches are the same as used in the gate first process. Chromium is etched
in Cly/O,, and SiO, etched in SFg/Ar. After SiO, etching, the Cr at the top of
the gates must be removed to prevent inconsistent regrowth conditions near gate
edges. Photoresist planarization is used to remove the regrowth from structures less
than 1 micron in gate length. Careful removal of the photoresist is important at
this step; otherwise, the resist cannot be removed without damaging the InGaAs
channel. After etching the Cr in Cly/Osq, the sample must be O, ashed prior to
immersion in photoresist remover 1165. Without this ash, polymerized photoresist
will remain on the sample.

After photoresist removal, the same surface preparation is done for regrowth.
Regrowth in the MBE is identical compared to gate first processing. In-situ Mo
was not explored at this time, but is worth investigation to lower contact resistivity
to the final transistor.

Since MBE regrowth is non-selective (that is to say, it will grow material on
surfaces other than the crystal), one must remove the amorphous InAs from the top
and sides of the gate edge. If the InAs is not removed, the material will fall into

the channel, preventing proper device operation. Photoresist planarization is done
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again, and the InAs is wet etched.

Devices are then isolated with a photoresist mask and a combination of selective
wet etches. Isolation must occur at this point in the process to minimize short
circuits. The gate metal length is large compared to the wet etch depth required for
proper device isolation. Device isolation after gate metal deposition would create
a mask for long gate length, leaving a regrowth short circuit between source and
drain. Furthermore, isolation before gate insulator deposition creates an interlevel
dielectric for later processing. Ground-signal-ground (GSG) pads can be lifted off on
top of the gate oxide and a low-leakage RF-terminated measurement can be done.
This reduces device processing time since a spun-on interlevel dielectric (e.g., BCB)
processing is not necessary. Also, having gate insulator material on the isolation
mesa likely improves device passivation.

The SiO,dummy gate is removed using a dilute buffered oxide etch and a surfac-
tant. The surfactant (Tergitol or Triton) helps remove both amorphous InAs from
the top and sides of the gate, and excess chromium left on dummy gates that have
incorrect lateral aspect ratio for photoresist planarization. Positioning the sample
upside-down also aids in the sedimentation of the InAs and chromium. Extensive
experiments show this process works well, but is not capable of removing all debris.
Altering regrowth conditions changes particulate formation, to the improvement or
detriment of device yield.

Immediately after dummy gate removal, the samples are loaded into the ALD
loadlock. The buffered oxide etch for dummy gate removal also achieves native oxide
removal and surface preparation. Hy/TMA treatment is done prior to gate dielectric
deposition; Ny /TMA treatment can also be done and has been shown to maintain

interface trap density better than Hy/TMA treatment for sub-nm EOT oxides [I].
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Unlike gate first processing, Al,O3 gate insulators cannot be used. As found in gate
first processing, Al;O3 readily etches in photoresist developer; the gate metal liftoff
process would have to use solvent-based lithography, e.g. EBL, to not etch the gate
insulator. Instead, a bilayer of Al;O3 and HfOswas employed. This allows the Hy
treatment and Al,O3 deposition to provide the best interface trap density, while the
HfO4 acts as an etch barrier. HfO5 can also be thinned for smaller EOT. Inclusion
of the HfO, layer did not significantly change the CV dispersion on MOSCAP
samples (See Chapter , Figure . Alternatively, Al,O3 or HfO, single layers
could be used if a blanket metal process were developed, such as in-situ gate metal
(ruthenium, tungsten nitride),([2], [3]) or ez-situ metal evaporation and photoresist
gate definition.

After ALD, the oxide is annealed in a RTA or a tube furnace under forming
gas (10% Hz / 90% Ny). The RTA and tube furnace provide similar MOSCAP
results, but due to the large user base of the RTA, its cleanliness and therefore
repeatability is suspect. This could cause increases in interface trap density that
are not associated with ALD treatments. Also, there is a large temperature variance
across the sample holder in the RTA [4], preventing multiple samples from being
in one lot. The quartzware can accommodate four samples, with more if a new
quartz boat were fabricated. With every FET lot, a MOSCAP epi (see Chapter [3)
is included as an ALD witness sample. This ensures independent monitoring of the
ALD, insulator annealing, and gate metallization steps.

Gate metal metallization is accomplished with photoresist liftoff. Gate metal
length is longer than dummy gate length to prevent an ungated channel due to
stepper misalignment. Since gate metal will cover the entire active gate length,

obscuring gate length confirmation post-measurement, extra dummy gate width
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Figure 6.1: SEM image of extra device mesa and gate width for gate length verifi-
cation.

was written. See Figure This allows the actual gate length to be confirmed
after device processing without device destruction. There is some ambiguity in
gate length due to the presence of gate insulator in this region; selective removal
of insulator here will allow a more accurate gate length measurement. Gate metal
is thermally evaporated to minimize process-induced interface trap density increase
[5]. Nickel is the gate metal, with gold optionally evaporated as well to minimize
metal oxidation and to increase total metal height. Nickel oxidation may increase
gate access resistance in back-end processing. Since nickel tends to deposit with
stress, a thick film may cause resist to peel and the liftoff to fail. A thin layer of
nickel and a thick layer of gold minimize stress and allow the gate metal to connect
to the gate pad over the isolation mesa step height.

Source-drain metallization is accomplished with photoresist liftoff. Immediately
prior to metallization, gate insulator is etched off in buffered oxide etch. Etch-
ing cannot be performed for too long or the resist will peel and the liftoff will
fail. Thermal or electron-beam evaporation is performed, with either nickel/gold or

titanium /palladium/gold respectively. For InGaAs regrowths, electron beam evap-
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Gate Last Bl

Channel Thickness 10 nm Oxide Type Al,O3+HfO,
Delta doping 3 nm, 9x10'? cm~2 | Oxide Thickness | 5 nm, 1 nm
Regrowth Type MBE Regrowth Spec InAs, 50 nm
Epi Lot # 100406 Regrowth Doping Si

Table 6.1: Gate Last Lot B1 Process Specifications

oration is preferred due to its ability to deposit titanium. Ti/Pd/Au is known to

provide low specific contact resistivity to n-InGaAs (See Chapter [4)).

6.2 Gate Last: Device Results (MBE Regrowth)

A large number of process lots were accomplished using MBE source-drain regrowth.
Below is a select review of those process lots. These lots capture the performance

possible with MBE source-drain regrowth, and its limitations.

6.2.1 Gate Last Lot B1: Initial gate last, long L, Compari-

son

The goal of the first experiment was to see a head-to-head comparison of gate first
to gate last on the same epi design (though not the same epi identically). As seen
in Figure [6.2] the J4-Vg4s at the same gate length is startlingly different. Com-
paring gate first and gate last at the same gate biases, the transconductance has
increased and the output conductance has decreased. See Figure [6.3al Lots Al,
A3, and B1 have identical epi design, but only Lot Bl could be brought into sub-
threshold. The increased transconductance and superior subthreshold performance
suggest smaller interface trap density for Lot B1. The access resistance for Lot

B1 (approx. 200 -um, double-sided) is also lower than Al or A3 (both around
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1 1 1 1 1 1 1 1 1 1
] Vgs: -2V to 3V in 1V steps Vgs: 0V to 2V in 1V steps
0.8 W19 um 0.8] W_:9.5um [
B ] E
E o8] E o8] I
< ] <
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T 044 ~e 0.4 i
g ] 8
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0.2 - 0.24 L
0 7 T T T T 0 T T T T
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(a) Lot A1, 500 nm L, (as drawn) (b) Lot B1, 500 nm L, (as drawn)

Figure 6.2: Lot B1l: Jg4in-Vas comparison to gate first, 500 nm L, (as drawn).

300 Q-pm, double-sided); removal of the ungated access region is improving the

transistor access resistance.
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(a) Lot B1, 500 nm L, (as drawn)
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(b) Lot B1, Ry, versus Ly,

Figure 6.3: Lot Bl: Jgrain-Vgs and Rop.
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CHAPTER 6. GATE LAST MOSFET: PROCESS AND RESULTS

Gate Last B3

Channel Thickness 10 nm Oxide Type Al,O3+HfO,
Delta doping 3 nm, 3.9x10'% cm~2 | Oxide Thickness | 3.3 nm, 1.5 nm
Regrowth Type MBE Regrowth Spec InAs, 50 nm
Epi Lot # 120110E Regrowth Doping Si+Te

Table 6.2: Gate Last Lot B3 Process Specifications

6.2.2 Gate Last Lot B2: Short L, Process Refinement

Between Lots B1 and B3, extensive process flow enhancements were made to accom-
modate short gate length processing. It was found that a source-drain to channel
gap could form if the dummy gate dry etch was done improperly [6]. After fix-
ing this, gate lengths could scale appropriately, and device fabrication work for

improved device performance commenced.

6.2.3 Gate Last Lot B3: Si/Te co-doping

One possible reason for low performance is poor source charge. It is possible that,
while Hall data confirms 5x10' cm™ charge in the regrowth, there is a difference
in doping density near a gate edge. Si and Te co-doping experiments were done
(See Chapter {) and found regrowth to have a lower overall sheet resistance and
higher charge densities. In terms of process flow, the regrowth is smoother using
Si/Te co-doping (Figure . This eases device processing and alignment during
lithography. Delta doping density was decreased to move the electron wavefunction
closer to the surface.

Figure shows J4-Vg4s and -V, data for long and short gate length devices
in Lot B3. Peak transconductance at 500 nm gate length is similar to Lot B1. In

Figure [6.5] access resistances are similar to Lot Bl, even though the delta doping
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Figure 6.5: Lot B3: R, versus L.

has been decreased. In Figure [6.7] short gate lengths suffer from threshold voltage
rolloff and subthreshold swing increase due to the large delta doping and thick
channel. The smallest gate length (81 nm) showed aggressive short channel effects
and lower peak transconductance than longer gate lengths. For the long gate length
devices, a minimum subthreshold swing of ~ 120 mV /dec correlates to an interface

trap density of 1x103cm=2 eV 1.
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CHAPTER 6. GATE LAST MOSFET: PROCESS AND RESULTS

Gate Last B4

Channel Thickness 10 nm Oxide Type Al,O34+HfO,
Delta doping 3 nm, 3.9x10'? cm~2 | Oxide Thickness 1 nm, 4 nm
Regrowth Type MBE Regrowth Spec InGaAs, 50 nm
Epi Lot # 120110E Regrowth Doping Si+Te

Table 6.3: Gate Last Lot B4 Process Specifications

e

~ Nickel Gate Metal

100 nm L,
InAs

Figure 6.8: STEM cross-section of gate last FET, chemistry color-coding. Image
courtesy Jeremy Law.

6.2.4 Gate Last Lot B4: InGaAs MBE Regrowth

Figure shows a STEM image of a gate last FET with regions color-coded by
chemistry. Chemical information was provided by energy dispersive x-ray spec-
troscopy (EDX). This confirms TEM imaging from the gate first process: InAs
regrowth “sinks” into the channel region. This moves the InAs/InGaAs heteroint-

erface to a small region near the gate edge of the device.

Ef S m——
Ef' Ec,channel I

. -

n+++ InAs Source InGaAs Channel

Figure 6.9: Electron band diagram along the regrowth/channel interface.
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4>""|---‘|""|‘“'|---

[ —Jdegen InGaAs, single level

35F

Current Density (mA/micron)
N
T

-0.1 0 0.1 02 03 04
EfE (eV)

Figure 6.10: Drain current versus electron Fermi level, degenerate approximation

Even if the regrowth did not sink, the InAs/InGaAs heterointerface has the po-
tential to limit source charge. Figure is an electron band diagram along the
source-to-channel interface in source semiconductor. Given the high doping concen-
tration in the source, nonparabolicity of the semiconductor must be considered [7].
Nonparabolicity effectively increases the semiconductor density of states with Fermi
level. Using a 1D-Poisson semiconductor solver using nonparabolicity (Bandprof),
we can obtain Figure . The Ef-E¢ channer Puts a limit on source charge. From

Chapter [2 ballistic FET current in the degenerate limit is given by:

Jdegenerate = TN (Ey — Ey) (6.2.1)

and Figure [6.10] is a plot of charge density versus Fermi level above the band
edge. For 5x10* cm™ n-doped relaxed InAs to NID InGaAs lattice-matched InP,
E t-E¢ channe 15 0.25 eV. From Figure , that corresponds to a drain current of 2.15
mA /micron. The calculation did not consider quantization of the InGaAs channel,

which will decease E-E; channer and therefore decrease maximum current density.
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Since the Te acts as a surfactant during InAs regrowth, it should improve InGaAs
regrowth quality. Previous InGaAs MBE regrowths suffered from gaps near the gate
edge [8]. Te should help minimize this gap and also give higher material quality.

As Figure [6.11] shows, long gate length performance with InGaAs is worse than
with InAs regrowth, specifically in subthreshold swing and on-state transconduc-
tance. This could be due to a few factors, including process variation and damage,
increasing interface trap density and lowering channel mobility. However, short-
channel on-state performance has improved to ~ 1.17 mS/micron at 0.5 Vg for
87 nm gate length. Figure [6.12 shows slightly increased access resistances, which
is likely due to increased parasitic access resistance from InGaAs regrowth. The
sheet resistance is twice that of InAs (43 versus 17 /0, Table [4.1), and also shows
increased metal-semiconductor resistance (17 versus 8 2-pm). The two metal con-
tacts and the ~ 500 nm source-drain to metal gap on either side of the channel
account for this increase. The sheet resistance is almost double for similar V.-V,
suggesting Lot B4 has worse mobility, even though the samples are from an identical
epi Lot.

Figure [6.13shows the Vyp, g, DIBL, and subthreshold swing for Lot B4. Lots
B3 and B4 are similar in off-state performance except at the shortest gate length.
The transconductances for B3 are higher versus gate length, but do not reach the
same level for the shortest gate length.

While InGaAs MBE regrowth appears to work the same or better than InAs, it
is also a more challenging regrowth to reproduce. Due to the potential for lot-to-lot

variance, InAs regrowth was kept as the standard technique for MBE gate last.
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Figure 6.12: Lot B4: R,, versus L.
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Gate Last B5

Channel Thickness 10 nm Oxide Type Al,O3+HfO,
Delta doping 3 nm, 3.9x10'? cm~2 | Oxide Thickness | 1 nm, 4 nm
Regrowth Type MBE Regrowth Spec InAs, 50 nm
Epi Lot # IQE Rev4 Regrowth Doping Si+Te

Table 6.4: Gate Last Lot B5 Process Specifications

6.2.5 Gate Last Lot B5: Commercial Epitaxy

Most of the epitaxial material for this thesis was grown in the USCB Materials
MBE Lab. It is likely that commercial epitaxy vendors provide material with higher
mobilities, more repeatable wafer specifications, and lower growth defect densities.
Therefore, a standard wafer specification (10 nm InGaAs channel, delta doping 3
nm, 3.9x10'? cm™2), identical to Lots B3 and B4, was grown by IQE Inc.

As Figure shows, initial J4-Vg4s and Vg, results indicate performance similar
to or worse than previous lots using UCSB-grown epi material. Short gate length
devices only reached 0.9 mS/micron at 0.5 V4. However, devices that are 90 degrees
perpendicular to typically measured devices showed improved performance (Figure
[6.14). UCSB semi-insulating InP uses the “European/Japan” or “E/J” wafer flat
designation, while IQE uses “US” flat designation. However, the standard FET
process flow always orients “0 degree” transistors with gate stripes perpendicular
to the major flat, regardless of wafer flat designation. Therefore, when processing
on IQE epi, the sample current flow direction for “0 degree” devices is equivalent
to an orientation of “90 degree” on UCSB epi.

As seen in Figure , Ja-Vgs and Vg, results on 90 degree devices show improved
on-state performance. For the 87 nm gate length device, peak transconductance was

1.2 mS/micron at 0.5 V4. However, off-state performance worsened for both short
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UCSB Wafer Orientation
o ot f on

&= 011

(minor)

==) 011

011
(a) UCSB epi, device orientations
IQE Wafer Orientation
0deg: 011/011 current I 011

90 deg: 011/011 current

==) 011

(minor)

011

(b) IQE epi, device orientations

Figure 6.14: Wafer orientations with respect to device layout.
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and long L, devices. Subthreshold swing increased from 117 to 134 and 181 to 209
mV /dec at 0.1 Vds for ~ 500 nm and ~ 70 nm L, respectively.

Figures[6.17and[6.18|are the Vi, g, DIBL, and subthreshold swing for Lot B5 0
and 90 degree devices, respectively. For both orientations, two different gate length
series of either device orientation are provided to increase confidence in data. It is
clear that the 90 degree devices have a negative threshold voltage shift, improved
transconductance, and increased subthreshold swing at almost all gate lengths.
There are two possible reasons: axis dependence on MBE regrowth, and axis de-
pendence on interface trap density. MBE axis dependence on regrowth could in-
crease charge density, and therefore improve device performance, if that is a limiting
factor. Interface trap density, specifically its distribution and frequency response,
could affect Vi, g, and subthreshold swing simultaneously.

Comparison to similarly processed UCSB epi is important to confirm the axis
dependent effect. Figure [6.19] shows transconductance and subthreshold swing at
short gate lengths for Lot B5 and epi 120615A#2, a FET with a similar process
flow. For UCSB epi, there is a trend for higher on-state performance with 0 degree
devices, but better off-state performance with 90 degree devices. IQE epi shows the

opposite trend.
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Gate Last B6

Channel Thickness 10 nm Oxide Type Al,O3+HfO,
Delta doping 3 nm, 3.9x10'? cm~2 | Oxide Thickness | 1 nm, 4 nm
Regrowth Type MBE Regrowth Spec InAs, 50 nm
Epi Lot # 120615A Regrowth Doping Si+Te

Table 6.5: Gate Last Lot B6 Process Specifications

6.2.6 Gate Last Lot B6: Sulfur Treatment

Even with the research and development put into developing an in-situ cleaning
method for InGaAs surfaces, this may not be as effective as other techniques. Mea-
sured subthreshold swings suggest large amounts of interface traps are still present.
Other ITI-V MOS research groups use hydrogen sulfide passivation ([9], [10], [L1],
[12], [13]). Therefore, sulfur treatment was applied to a transistor lot without
Hy/TMA treatment. After dummy gate removal in buffered oxide etch, the sample
was rinsed in DI and transferred to a bath of 10.5% (NHy)2S. The sample was left
for 20 minutes, rinsed in DI and immediately loaded into the ALD loadlock.

Figure shows 500 nm and 50 nm L, (as drawn) J4-Vg4s and Jg-Vgsplots.
Performance is similar to previous lots, showing ~ 1 mS/micron transconductance
at 0.5 Vg,. Subthreshold swing is also similar for long channel devices at 127
mV /dec.

As seen in Figure[6.21] trends are similar to previous lots. The sulfur treated de-
vices have a more negative threshold voltage compared to other lots. This could be
due to the sulfur treatment creating a flatband voltage shift at the channel /insulator
interface. This could also be due to process variation. More importantly, subthresh-
old swing and transconductances are similar across all gate lengths. This means

the interface trap density is similar for these lots. This could mean: a) the sulfur
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and the Hy/TMA process provide similar interface trap densities or b) the interface

trap density is determined by factors other than wafer treatment.

121



CHAPTER 6. GATE LAST MOSFET: PROCESS AND RESULTS

9m (MmS/um)

o,

g0

(%

gl

0¢

SOA-Pp O (umerp se) wu 0G(p PA-Pr O (waeIp se) wu (g
(0 $OA-Pr O (umerp se) wu 0og(q PA-Pr O (umerp se) wu gog (e A pue PA SNSIOAUPPL g 10T 07’9 INSI]

(p)
(A) selg a1eo
50 : 00 m 0by,

n o 3
T
v * . \.MM»\ M@o_‘ w
)(, h ., \-“wb\ ..mQF 1G..

W . .\“W\ hm#orm
Al oz
j.00=

‘K .m _‘.QF
_ ALOOGIALO n_8>m°8 w\

uibLo~6AgSON SBA PI 1RY45-11-9-0L-21L02—9G —O_‘

(a)
(A) selg e1e9
S0 00 s0- 0L
".ﬂ"lll.llh‘i_l w.oFo
Ay ® e PP 10LC
N Yyx 2 L u
._m|°_‘ A.UU
nm.o—‘ G
Lo 3
0L
AVo=pse 1:0HF
AW /Z}=SS 1 ,.em
JUBWAIOUI A Z°0

_ ALOOIALO=A{ 2

uibLo~BAgSON SOA PI18)-Zh1L-9-0L-2L0Z-9F

(2)
(A) seig utedg

bo

g0

00 80 90 %0 Z0 0
r QWBaIUIAZ0 ]
7 A90OIATO-="A
UIBLIO”BAGSON SPA P 18~EG1-9-0L-2102-SS
(e)
(A) seig uiesg
00 80 90 %0 Z0 0

uswialoul A 2°0
AYOOIATO ="A

g0

UBLO"BAGSON” SPA P IRk-Li71-9-0L-ZL0Z—SY

(wripyw) Ayisusq JuanD

(wrpyw) Ayisusq uaun)

122



CHAPTER 6. GATE LAST MOSFET: PROCESS AND RESULTS

(p)
(uousoiw) yibua aren)

0L 80 90 ¥0 Z0 00

@H ¢ &8 wﬁw‘@/co/

O
o

SPAG0 —@-
SPA L0 O~

(a)
(uosoiw) yibua ajeD)
0L 80 90 %0 ZTO0 00

1

SPAG0O =

0
=]

(uoJoiw/sw) wb

2
2

Sl

S

08p/A\W)

)]
(uosoiw) yibua a9

0L 80 90 ¥0 20 00

1g1q (p Sutms proyseryqug (o “8 (q A (e O snsioa juewr jo somS1g :9g 307 :Tg'9 2mS1

AN1L0L0 @

(e)
(uosoiw) yibua aje9)
0L 80 90 %0 ZO0 00

NAW) 191d

SPAGO @
SPA L0 —O

80~
- Q-OI
LACS

|N.°I

-00

123
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Gate Last B7

Channel Thickness 10 nm Oxide Type Al,O3+HfO,
Delta doping 3 nm, 3.9x10'? cm~2 | Oxide Thickness | 1 nm, 4 nm
Regrowth Type MBE Regrowth Spec InAs, 50 nm
Epi Lot # IQE Revb Regrowth Doping Si+Te

Table 6.6: Gate Last Lot B7 Process Specifications

6.2.7 Gate Last Lot B7a and B7b: InP Channel Capping

MBE regrowth lots never see subthreshold swings less than 120 mV /dec, a sign of
significant interface trap density still present on the channel surface. The device
samples see processes that the witness MOSCAP in every lot does not see; process-
induced damage may be occurring without measurement by the witness MOSCAP.
CV experiments with MOSCAP epi were done to assess annealing damage during
MBE regrowth. In Chapter |3, Figure [3.9] shows CV of SiO,-capped MOSCAP
material; one sample was annealed in an RTA at 500°C for 30 minutes, while the
other sample had no annealing. After anneal, the caps were stripped and a standard
5 nm Al,O3 recipe was deposited with Hy/TMA cleaning. It is clear from the Figure
that with annealing, the semiconductor surface is degraded. This degradation is
consistent with an increase in interface traps [14]. Therefore, a sacrificial layer
must be put in place to protect the channel during the high-temperature regrowth.
ALD Al O3 did not result in improved performance [6]. An InP layer may provide
adequate channel protection. It can be grown in the epitaxial stack, and removed in
HCIL:DI. However, due to the lack of phosphorus in the UCSB MBE lab, the wafer
was grown by IQE. To reduce back barrier leakage currents, the InAlAs buffer
and back barrier were lightly p-doped (Be, 5x10'% ¢cm™3). This is a low enough

concentration to not significantly deplete the delta doping. See Lot C6 (Section
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for more information on the source of back barrier leakage. B7a and B7b are
the same sample; B7 was cleaved into two halves after regrowth.

B7a was the first sample from this IQE wafer to be processed. The InP cap
was removed immediately prior to loading in the ALD loadlock. Figure [6.22] shows
Ja-Vas and -V g, plots for long and short gate lengths. While on-state performance
for B7a is the highest of all MBE regrowth lots- 1.4 mS/micron at 0.5 Vg the
subthreshold swing is the worst: 394 mV /dec for long channel and 450 mV /dec for
short channel. 394 mV/dec subthreshold swing for this EOT corresponds to and
interface trap density of more than 5x103cm=2 eV~

B7b has the same processing as B7a, but with longer HC1:DI etching to remove
the InP capping. It also had ALD dielectric deposition performed on a different day.
Figure shows J4-V s for a long and short L, in this lot. While the subthresh-
old swing improved considerably for both gate lengths, the peak transconductance
decreased from 1.4 mS/micron to 1.1 mS/micron at 0.5 Vg4. InP capping has
only increased subthreshold swing, and has not shown significantly higher on-state
performance. The cap removal might not be complete or optimized. Residual cap
material may negatively interact with Hy/TMA treatment, increasing interface trap

density.
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Figure 6.23: Lot B7a: g,, versus L,.

6.2.8 Gate Last Lot B8: Channel Thickness Series

To assess the scaling potential of the MBE regrowth process, a sample lot with
two channel thicknesses were fabricated. 10 nm and 7.5 nm InGaAs channels were
processed simultaneously. Due to the serial nature of MBE, regrowth may be dif-
ferent on each sample due to fluctuations in surface cleaning and general regrowth
conditions. Also, for this regrowth, tellurium was not used for regrowth doping.
The Te cell was near end-of-life, and could not be used for reliable or repeatable
doping levels.

Figure shows peak g,, maps across the 10 and 7.5 nm channels. The 10

nm channel showed worse performance when compared to similar lots, with only

Gate Last B8

Channel Thickness varied Oxide Type Al,O3+HfO,

Delta doping 3 nm, 3.9x10'2 cm™2 | Oxide Thickness 1 nm, 4 nm

Regrowth Type MBE Regrowth Spec InAs, 50 nm

Epi Lot # 121216F (10 nm ch.) | Regrowth Doping Si
121216D (7.5 nm ch.)

Table 6.7: Gate Last Lot B8 Process Specifications
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(a) Lot B7b: 1 micron L, (as drawn) J4-Vgs  (b) Lot B7b: 50 nm L, (as drawn) J4-Vgs

Figure 6.24: Lot B7b: J4-Vgsfor 1 micron and 50 nm Lg(as drawn).

0.6 mS/micron at 0.5 Vg, for the shortest gate length (~ 60 nm). 7.5 nm channel
thickness saw even lower performance, with 0.25 mS/micron peak transconductance,
with most devices much worse. The lack of performance could be due to the lack
of tellurium in the MBE regrowth, or contamination in the ALD. The decrease in
performance with the 7.5 nm channel suggests MBE regrowth cannot make adequate

contact to thin MOSFET channels.

6.3 Gate Last: MBE Regrowth Discussion

MBE source-drain regrowth provides low access resistance contacts to InGaAs MOS-
FETs. The use of tellurium in the MBE regrowth improves semiconductor mor-
phology, and tends to improve on-state device performance. The use of commercial
epitaxial material also improves device performance compared to university-grown
material. Subthreshold swing with MBE was never lower than ~ 120 mV/dec,
and did not improve using alternative surface treatments. The process failure in

B8 suggests MBE regrowth is not a reliable process. Also, performance decreased
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N/A N/A X 0.04 X
1 1

N/A N/A N/A 0.13 0.2 0.06 X
2 2

N/A Blank N/A N/A X 0.18 X 0.15 X
3 3

0.56 Blank 0.56 0.41 0.53 X X X X Blank 0.37
4 4

0.54 0.6 0.52 0.37 0.57 X X 0.18 0.18 0.25 0.19 Blank
5 5

0.5 0.46 0.41 0.57 0.59 0.33 X 0.19 X 0.11 X X
6 6

A B C D E F A B C D E F

(a) Lot B8: 10 nm channel thickness g,, map (b) Lot B8: 7.5 nm channel thickness g,, map

Figure 6.25: Lot B8: 50 nm L, (as drawn), peak g,, (0.5 Vg4,) wafer map. BD =
blank die, X = non-functional device, N/A = no data recorded.

with thinner channels; thin channels are imperative to improving device perfor-
mance by moving the channel wavefunction closer to the surface. MBE regrown
source-drain devices with lower back barrier delta doping have shown decreased
performance [6]; decreasing or removing delta doping is also critical for improving
device performance. MBE regrowth development for thin channels and channels
without delta doping would be process-intensive and time consuming. Therefore,

MOCVD regrowth was explored.

6.4 Gate-Last MOSFET Process Flow (MOCVD)

After finding a lack of reproducibility and device scaling with MBE regrowth,
MOCVD regrowth was pursued. MOCVD regrowth is known to work well for pho-
tonic devices [15] and for III-V MOSFETs [12],[I3]. The process flow for MOCVD
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Gate Last C1

Channel Thickness 10 nm Oxide Type Al,O34+HfO,
Delta doping 3 nm, 3.9x10'? cm~2 | Oxide Thickness 1 nm, 4 nm
Regrowth Type MOCVD Regrowth Spec InGaAs, 30 nm
Epi Lot # 121216F Regrowth Doping Si

Table 6.8: Gate Last Lot C1 Process Specifications

regrowth is very similar to MBE regrowth, and will be briefly summarized.

The PECVD SiO,dummy gate is shortened since photoresist planarization is
no longer required. This allows the dummy gate mask to be only photoresist and
still maintain a vertical dry etch. Also, MOCVD does not grow on the SiO,dummy
gate; a foot at the bottom of the dummy gate merely increases gate length, rather
than overgrow. Fz-situ regrowth surface preparation is identical to MBE surface
preparation. Inside the MOCVD chamber, the samples are heated to remove native
oxide, and material is regrown. After regrowth, since MOCVD regrowth is selective,
planarization of the dummy gate is not required. Processing proceeds as defined in
the MBE regrowth process.

A large number of process lots were processed using MOCVD source-drain re-
growth. Below is a select review of those process lots. These lots capture the

performance possible with MOCVD source-drain regrowth.

6.4.1 Gate Last Lot C1: Initial result, comparison with

MBE

A process lot using existing epi (121216F) was done. This is the same epi that
was used for Lot B8 (10 nm channel), allowing for direct comparison of MBE and

MOCVD regrowth. Figure shows SEM images of Lot B8 (MBE) and Lot C1
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— 100nm UCSB 1/17/2013 100nm UCSB 1/25/2013
SEM

X 90,000 10.0KV SEI

(a) Lot B8 10 nm channel, post-MBE re- (b) Lot C1: 10 nm channel, post-MOCVD
growth regrowth

WD 8.0mm 11:19:34 X 200,000 10.0kV SEI SEM WD 9.2mm 3:05:15

Figure 6.26: SEM images of dummy gates after source-drain regrowth

(MOCVD) just after source-drain regrowth. B8 dummy gates are covered in poly-
crystalline InAs, which is removed with photoresist planarization and wet etching.
C1 dummy gate is virtually free of InGaAs.

Unlike B8, long and short gate lengths show performance equivalent to that of
previous MBE regrowth lots , confirming epi quality was not the reason for Lot
B8 poor performance. However, C1 devices show much worse off-state performance.
Both long and short channel devices have larger than expected subthreshold swings
(Figure. The dramatic increase in subthreshold swing has moved the threshold
voltage negative.

Figure [6.29 shows a peak g,, map and R,, for C1. Again, we see the transcon-
ductance is high and similar across the sample for the short gate length devices.
The R, versus L, is also encouraging, showing ~ 250 Q-pm (double-sided) contacts.
A fraction of this access resistance is the parasitic sheet resistances (40 ©/0) from
source-drain metal to channel gap and metal-semiconductor contact resistances.

This is similar to that seen in Lot B4 (InGaAs MBE regrowth).
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Figure 6.29: Lot C1: g,, wafer map and R,, versus L,

6.4.2 Gate Last Lot C2: Channel Series (10, 7.5, 5)

Continuing the experiments of Lot B8, a channel thickness series was performed
using MOCVD regrowth. It is important to scale the channel thickness to maximize
Caeptn- Since MBE regrowth was failing with thin channels, it is important to assess
the MOCVD regrowth for the same epi. Figure [6.30| contains plots of J;-V4s and
-Vgs for 10, 7.5 and 5 nm channels and short gate lengths (50 nm as drawn).
Unlike Lot B8, these devices have adequate on-state performance. As the channel
thickness was scaled, the threshold voltage of the devices increased. This is due to
less channel sheet charge with decreasing thickness and eigenstate energy increase
with decreasing channel thickness.

Gate-channel control is improved with decreasing channel thickness, as predicted
by Lg-to-body thickness scaling. While the 10 nm channel has significant breakdown

at high Vs and negative Vg, 7.5 and 5 nm channels do not. Output conductance
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Gate Last C2

Channel Thickness varied Oxide Type Al,O3+HfO,
Delta doping 3 nm, 3.9x10'% cm~2 | Oxide Thickness 1 nm, 4 nm
Regrowth Type MOCVD Regrowth Spec InGaAs, 30 nm
Epi Lot # 121216F (10 nm ch.) | Regrowth Doping Si

121216D (7.5 nm ch.)

121216C (5 nm ch.)

Table 6.9: Gate Last Lot C2 Process Specifications

improves with decreasing channel thickness. Off-state performance also improves
with decreasing channel thickness. Given the short gate length, short channel effects
will dominate subthreshold swing. Decreasing the channel thickness improves gate
control, and subsequently the subthreshold swing and DIBL. All three samples show
buffer leakage at long gate lengths, preventing more accurate off-state analysis.
Figure [6.31] contains g,, maps for all three channel thicknesses. All samples
show consistent transconductance across their areas. On-state performance is best
with the 7.5 nm channel, and worst with the 5 nm channel. This may be due
to mobility; as the channel thickness decreases, the channel control improves, but
the mobility may decrease considerably, hurting overall device performance. This
should not be an issue for ballistic FETs, but increased scattering due to decreased
mobility requires even shorter gate lengths to witness ballistic transport. Therefore,

some minimum mobility must be necessary.
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Gate Last C3

Channel Thickness varied Oxide Type Al,O34+HfO,

Delta doping 3 nm, 3.9x10'? cm~2 | Oxide Thickness 1 nm, 4 nm

Regrowth Type MOCVD Regrowth Spec InGaAs, 30 nm

Epi Lot # 130130B (10 nm) Regrowth Doping Si
130130B (~ 6.5 nm)

Table 6.10: Gate Last Lot C3 Process Specifications

6.4.3 Gate Last Lot C3: Digital etch: 0 cycle versus 2 cycle

Due to a lack of success with InP channel capping (Lots B7a and B7b), alternative
capping techniques had to be pursued. Rather than capping with InP, a heavily-
doped InGaAs layer was grown above the channel surface [16]. This layer would
be etched away using a recently developed digital etching process, offering nearly
nanometer control over etch depth. This process immediately improved MBE re-
growth gate last device performance.

Using epi that did not have an InGaAs capping layer, 10 nm InGaAs channel
surfaces were etched to remove the damage region of the channel. Etching is done
with cyclic UV ozone exposures and dilute HCL:DI etching. One quarter was left as
a control sample, and one was etched with two cycles of treatment (UV, wet etch,
UV, wet etch). The etch removes ~ 1.2 nm per cycle, and the epi has about 1 nm of
native oxide on it prior to any etching that is removed during dummy gate removal
[6]. Etching occurs just prior to loading in the ALD loadlock.

Comparing J4-Vgs and Vg data for C3 in Figures and [6.33], it is evident
that there is a large threshold voltage shift for unetched and etched samples. For
the short gate length unetched sample, the high V4, and negative V4 breakdown is
present, but not for the etched sample; this correlates with improved gate control,

similar to Lot C2 thinner channels.
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(a) Lot C2: 10 nm channel wafer map (b) Lot C2: 7.5 nm channel wafer map

0.93

0.93 0.89

0.97 0.9

(c) Lot C2: 5 nm channel wafer map

Figure 6.31: Lot C2: 50 nm L, (as drawn), peak g,, (0.5 V45) wafer map. BD =
blank die, X = non-functional device.

138



CHAPTER 6. GATE LAST MOSFET: PROCESS AND RESULTS

Figure demonstrates the off-state performance. DIBL and subthreshold
swing improve considerably with channel etching. This correlates to the damaged
interfacial layer providing large interface trap density. Comparing this to MBE
regrowth lots, the subthreshold swing is now comparable to that found in MBE
regrowth processes without channel etching. It is likely that the higher temperature
MOCVD regrowth (600°C versus 500°C) increases interface density.

All figures of merit have been improved with channel etching (Figure . The
increased channel control due to the decreased interface trap density and thinner
body are shown in more positive threshold voltage, reduced DIBL, and reduced sub-
threshold swing for all gate lengths. A moderate improvement in transconductance
is also seen with channel etching. Figure shows g,, maps for both samples. For
the unetched sample, peak transconductances are lower than similarly processed
Lot (C1, C2). For the etched sample, improved transconductance was seen across

the sample.
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(a) Lot C3: No channel etching g,, map (b) Lot C3: 2 cycle channel etching g, map

Figure 6.35: Lot C3: 50 nm L, (as drawn), peak g,, (0.5 V4,) wafer map. BD =
blank die, X = non-functional device.

6.4.4 Gate Last Lot C4: Less delta doping, 2 cycle versus

3 cycle etching

From Lot C3, it is clear the channel etching is necessary for improving device per-
formance. The damage layer prevents device improvement, and the channel etching
provides a simple way to thin device channels and therefore improve Cgute—channei-

Therefore, it is worth exploring scaling channel thickness using this technique. One

Gate Last C4

Channel Thickness varied Oxide Type HfO,

Delta doping 3 nm, 2x102 cm™2 | Oxide Thickness 4 nm

Regrowth Type MOCVD Regrowth Spec InGaAs, 30 nm

Epi Lot # 130130A (~ 6.5 nm) | Regrowth Doping Si
130130A (~ 5.2 nm)

Table 6.11: Gate Last Lot C4 Process Specifications
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sample was thinned two cycles (~ 6.5 nm channel) and the other three cycles (~
5.25 nm channel).

In this lot, delta doping was also decreased to 50% standard (2x10'? cm™2
versus 4x 10?2 cm™2) to move the channel wave function closer to the surface. Given
the success with MOCVD and thin channels, it was predicted the decreased delta
doping would not affect device performance. Last, this and the two following Lots
(C5, C6) use HfOq-only gate insulators, rather than bi-layers. When combined with
the Ny /TMA treatment, low interface trap densities are possible.

As expected, the two devices see a threshold voltage shift from channel thinning
(F igure. Transconductance has decreased for both short and long gate lengths.
Off-state performance has improved for the thinner channel (Figure. Improved
DIBL and subthreshold swing are seen for the thinner channel. See Figure [6.38|
Threshold voltage moves positive for the thinner channel, as expected. The short
channel roll-off is better than that for the thicker channel, consistent with better gate
control. DIBL and subthreshold swing also improved at all gate lengths, suggesting
decreased interface trap density for the thinner channel. This could be due to the
damage layer extending deeper than two cycles of digital etching. It could also be
due to a favorable surface Fermi level position for the thinner sample (see Chapter
. Long channel subthreshold swing increase is due to buffer leakage currents
affecting SS extraction. The peak transconductances are all worse for the thinner

channel. This is likely due to a lower channel mobility for the thinner channel (see

Section .
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Gate Last C5

Channel Thickness ~ 6.5 nm Oxide Type HfO,
Delta doping 3 nm, varied Oxide Thickness 4 nm
Regrowth Type MOCVD Regrowth Spec InGaAs, 60 nm
Epi Lot # 130130B 4x10* ecm™2 | Regrowth Doping Si

130130A 2x10'2 cm—2

130227B 1x10* cm ™2

Table 6.12: Gate Last Lot C5 Process Specifications

6.4.5 Gate Last Lot C5: Delta Doping Series

Delta doping of the back barrier has effects on three important parameters: thresh-
old voltage control, electron wave function depth, and surface Fermi level position.
Threshold voltage control is an important tool for VLSI design, but this is better
controlled with metal work function. Electron wave function depth must be kept
shallow for best gate control, and consequently optimal interface trap density. How-
ever, less delta doping may impact source-drain charge. Therefore, a series of delta
doping concentrations was explored. Given the deleterious effects of three cycle
digital etching in Lot C4, all samples experienced two cycles. HfO, and Ny/TMA
treatment was employed for this lot. Regrowth thickness was also increased to 60
nm to improve access resistance.

Figure W shows J4-Vgs and -V, for Lot C5. Consistent with theory, and
similar to channel thickness scaling (Lot C2), the delta doping affects the threshold
of all three samples, moving Vy;, positive. Also similar to C2, the decreased delta
doping improves DIBL at short gate lengths.

Figure [6.40| characterizes Vi, g, DIBL, and subthreshold swing for all three
samples. Less delta doping decreases threshold voltage roll-off for short gate lengths.

DIBL is similar across samples for long gate lengths, but better at short gate

148



CHAPTER 6. GATE LAST MOSFET: PROCESS AND RESULTS

lengths for less delta doping. Transconductance decreased with delta doping. Peak
transconductance for 50% delta doping was only about 1 mS/micron at 0.5 Vg,
even though this epi lot was the same used in Lot C4. This suggests variation

during ALD gate insulator deposition affecting channel mobility (see Section .
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Gate Last C6

Channel Thickness ~ 6.5 nm Oxide Type HfO,
Delta doping 3 nm, 4x10' cm~? | Oxide Thickness 4 nm
Regrowth Type MOCVD Regrowth Spec InGaAs, 60 nm
Epi Lot # 1302227A Regrowth Doping Si

Table 6.13: Gate Last Lot C6 Process Specifications

6.4.6 Gate Last Lot C6: PIN Back Back Barrier

Examining previous lot data at negative V,, and various Vs, a random source-drain
leakage current is universally present at all gate lengths. At long gate lengths, the
leakage tends to have an ohmic response. This is most likely a buffer or back barrier
leakage resistance. This resistance prevents accurate subthreshold measurements of
FETs.

Device buffer leakage is not a new phenomenon. It has been seen in MBE [17]
and MOCVD grown devices [18]. Theoretically, epitaxial material has few defects.
However, initial growth on substrates, even lattice-matched, is imperfect. During
initial MBE growth, an “epi-ready” oxide is removed by thermal desorption, and
“buffer” material is grown. Since phosphorus is not available at UCSB, the buffer
is InAlAs. Fluctuations in oxide desorption and buffer growth can lead to crystal
defects. Buffers are grown to terminate these defects.

Another effect is unintentional silicon at the epi/substrate interface. During
“epi-ready” preparation, silicon accumulates on the InP surface. Figure |6.41| con-
tains SIMS profiles of IQE and UCSB epi material. For UCSB epi, there is a large
amount of silicon in the buffer and in the InP wafer. IQE epi has a Si spike at the
surface, but not in the buffer or the InP substrate. Even though the InP wafer is

semi-insulating, the Fe concentration is typically low, 5x 10 cm~2, not enough to

152



CHAPTER 6. GATE LAST MOSFET: PROCESS AND RESULTS

511E19
1.0 1.0 1E21
0 —~ 0 —~
= & z —_p 11E20 &
b e 2 —hs ——si £
5 = 5 {1E19 =
< 05 5 < 05 ] 5
S J1E17 © S J1E18 ©
S < © =
- [0} = [0}
G 00 1E16 © 5 00 ©
8 8 11E16
200 210 220 230 240 430 435 440 445 450 455 460 465 470
Depth (nm) Depth (nm)
(a) Commerical epi, buffer/substrate inter- (b) UCSB epi, buffer/substrate interface
face
1.0 1E21

0 —~

= o J1E20 &

S —as S §

& 051 4{1E19 :C)’

S . {1IE18 B

£ 3

(5 J1E17 ¢

2 S

8 004 11E16

440 460 480 500 520 540 560 580 600
Depth (nm)

(c) UCSB epi, buffer/substrate interface

Figure 6.41: SIMS data for UCSB epi and Commercial epi

deplete the silicon doping.

Figure [6.42| contains electron band diagrams under the source-drain region with
and without this interfacial silicon. This silicon can increase back barrier mobile
charge significantly, creating the parasitic resistance witnessed in UCSB epi mate-
rial. C8 epi design has 100% delta doping, a 100 nm InAlAs NID setback region,
and the remaining InAlAs doped to a density of 3x 10" cm~3 Be (p-doping). Figure
is an electron band diagram of Lot C8 in the source-drain region. The low p
concentration and setback are to prevent source-to-buffer tunneling currents. The

low p concentration also minimizes depletion of the delta doping.
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As shown in Figure C6 shows the lowest device leakage currents, ~ 1x1078
mA / micron, at long gate lengths. However, at short gate lengths, short channel
effects still dominate, even with ~ 6 nm channel thickness. This is due to the 100%
delta doping employed. However, 48 nm gate length has a peak transconductance
of 2 mS/micron at 0.5 Vds, the highest of any lot in this dissertation.

Figure [6.44] shows that Vy, is similar to Lot C5 100% delta doping, confirming
the p-doping did not affect the delta doping. Due to the low leakage, C6 has very
low long-channel DIBL and subthreshold swing. The peak transconductance is also
high for all transconductances. As Figure[6.45|shows, the low R,,, is due to increased

regrowth thickness, decreasing its sheet resistance by a factor of two.
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Figure 6.45: Lot C6: R,, versus L,.
6.5 Gate Last: On-Wafer CV Measurements and

Effective Channel Mobility

The previous sections dealt with DC IV data for various III-V MOSFET samples
with varying regrowth type, gate insulator, and epitaxial design. However, this
data cannot independently explain all the phenomena and trends found. Epitaxial
growth can vary run-to-run, even for the sample wafer design. Cleanroom processing
chambers vary as well; it is likely each ALD gate insulator deposition is different
run-to-run. Another on-wafer measurement is needed to gain further insight into
these measurements.

On-wafer CV measurements can reveal channel charge density as a function of
gate bias. Given the low capacitance density of C,_., (~15 {F per um?), a relatively
large-area device is required to measure an appreciable capacitance with a standard
impedance analyzer and moderate (~ MHz) frequencies. Furthermore, parasitic

gate overlap capacitances must be smaller than the overall measured capacitance to
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be negligible. Gate-last processing (MBE or MOCVD) currently requires overlaps
on the order of 200 to 400 nm of lateral gate metal along the gate width. This
is to prevent gate metal misalignment in the optical photostepper. Gate lengths
on the order of 20 microns are therefore required. Gate-last MBE processing was
not amenable to gate lengths longer than 1 micron due to the nature of photoresist
planarization. MOCVD processing is selective growth; therefore, photoresist pla-
narization is not required to remove regrowth debris. Transistor Lots C4, C5, and
C6 included large area devices (20 micron L, 25 micron W4, ), allowing their gate
capacitance to be measured.

Extraction of channel charge density as a function of gate bias requires a few
assumptions. First, the capacitance measured is entirely that of mobile channel
charge. Interface trap response adds to the capacitance, but this charge is not mobile
and does not increase device current densities. Back-barrier (InAlAs) charge could
also be measured, if the semiconductor Fermi level approaches the conduction band
edge of the back barrier. This would also increase measured capacitance density.
Second, the gate metal source-drain overlap is negligible compared to the channel
area. This ensures the measured capacitance is strictly in the channel region.

After capacitance is measured and normalized to gate area, one integrates ca-

pacitance with respect to gate voltage:

1
Qchannel = v (651)

q f Omeasured dVv

Vo

Mobility as a function of channel charge can also be extrapolated from the
capacitance data. A key assumption is that the transistor channel is ohmic at low

drain bias, and its resistivity is proportional to its mobility and charge density:
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1

UM sheet

(6.5.2)

Rchannel -

Measurement of this resistance was taken at various gate biases with 0 to 10
mV V. It is assumed that the channel resistance is much larger than the parasitic
access resistance (due to both metal-semiconductor access resistance and semicon-
ductor gap sheet resistance), and therefore the total measured resistance is only
that of the channel. By examining Lots C4, C5, and C6 R,, data and comparing
the y-intercept to the 20 micron gate length resistance, we can conclude assumption
is valid.

From Eqns. [6.5.1] and [6.5.2], the effective mobility is:

1

Hef fective = (653)

%

Rchannel f Cmeasured av
Vo

For all data sets, ngue.: integration started at OV Vg All CV measurements

were taken at 2.5 MHz.

6.5.1 CV: Lot C4 (2 cycle versus 3 cycle etching)

Figure [6.46| contains the CV and ngpe.; curves for Lot C4. The CV curves are offset
due to the threshold voltage shift from differences in channel thickness. Figure
[6.47 is a plot of effective channel mobility versus sheet charge density for both
samples. While the CV measurement confirmed similar sheet charge densities for
both samples, the mobility for the 3 cycle etching decreased by more than 50%. This
is likely due to the wavefunction proximity to the semiconductor surface, increasing

electron scattering. It also explains the poor on-state performance seen in the DC
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Figure 6.46: Lot C4: CV and ngpe.; for 2 and 3 cycle channel etching.
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Figure 6.47: Lot C4: Effective mobility versus ngp..; for 2 and 3 cycle channel
etching.

IV data (Figure [6.306)).

6.5.2 CV: Lot C5 (Delta doping series)

Figure shows the CV and ngper curves for Lot C5. The CV curves are offset
due to the threshold voltage shift from delta doping. The maximum capacitances
are as high as Lot C4, even though the same ALD recipe was run for both lots.

Ellipsometry measurements of off-wafer silicon ALD witness samples confirm this
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variation. Lot C4 had ~ 3.6 nm HfO,, while C5 had ~ 4.2 nm HfO,. Figure [6.49
is a plot of effective channel mobility versus sheet charge density for the three delta
doping levels. The peak mobility for each sample correlates with the threshold
voltage shift. This could be due to the wavefunction movement with applied gate
bias. The heavier delta doping forces the wave function towards the back of the
channel, away from the channel surface. Only until the channel charge density is
high enough does the electron wavefunction centroid move from the back towards the
front of the channel. The 50% delta doping sample in C5 had the same processing
as the 2 cycle channel etching sample in C4, but the mobility decreased by about
half for C5. This is could be an effect of ALD-induced process variation on channel

mobility.

6.5.3 CV: Lot C6 (P-doped back barrier)

Figure[6.50[shows the CV, ngp..;, and effective mobility curves for Lot C6. Yet again
the maximum measured capacitance is different than that seen in the other lots,
and is in fact the highest out of all three lots. The threshold voltage is also more
negative due to the heavy delta doping. The effective mobility is also the highest of
all three lots; combined with the higher capacitance, this can explain the superior

on-state DC performance.

6.5.4 CV: Data Discussion

There a few discrepancies when comparing the measured capacitance data to the-

oretical calculations. The measured accumulation capacitance for all lots is on the

2

order of 2 uF / cm®. Given 4 nm HfO, with a relative dielectric permittivity of
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800

Rl S
600 -

mobility (cm? / (V sec))

—a—100% delta doping
—a— 50% delta doping
—e— 25% delta doping

5 25 45 65 85 11 13x10”
Nsheet (Cm_z)
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Figure 6.50: Lot C6: CV ngpe.s, and effective mobility for p-doped back barrier.

20, Cpp = 4.42 uF / cm?®. The two-dimensional density of states capacitance for
InGaAs, assuming m* = 0.04mg and one eigenstate, equals 2.69 uF / cm?. Neglect-
ing wave function depth capacitance, Cy_chanmaz = 1.67 pF per cm?, lower than
measured. This would be even lower if Cgepy, Were not neglected.

The extra capacitance may be due to the following: unaccounted parasitic capac-
itances, incorrect channel density of states capacitance, interface trap capacitance,
or back barrier capacitance. Parasitic capacitance may come from needle pad ge-
ometries. This can be eliminated from the measurement by removing the pad and
directly probing gate metal on top of the channel. The channel density of states
capacitance is proportional to the effective mass in the channel and the number of
eigenstates. Nonparabolicity and strain effects in the channel can modify m* and
alter Cgs. Increased capacitance can come from a second eigenstate population
near the top of the well.

Interface trap capacitance may be present at 2.5 MHz. Higher frequency mea-

surements are therefore required to eliminate their response. However, as frequency
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increases, device resistance terms (access, channel) will affect measurement capac-
itance due to RC charging delay. Channel resistance is high around V,;,, and long
gate length capacitance measurements will suffer at high frequencies. Therefore,
shorter gate length measurements can be done at high frequencies, with a propor-
tional increase in gate width to maintain absolute capacitance.

Back barrier capacitance requires the electron Fermi level to be near the back
barrier conduction band edge. For InGaAs/InAlAs, AE, ~ 0.5 eV. Including quan-
tum confinement, this will decrease, leaving less than 0.5 eV of Fermi level movement
to accumulate charge in the channel. The theoretical maximum charge in the chan-
nel at E; - E; is ~ 7x10' ¢cm™2 before back barrier states are populated. ngpees
calculations for all lot capacitance data exceed this, suggesting charge is accumu-
lating in the back barrier. If the back barrier density of states capacitance is high
enough, it will pin the Fermi level in the channel region, preventing increase in
device current.

It is likely that a combination of incorrect effective mass, interface trap ca-
pacitance, and back barrier capacitance affects the measurement. Since increased
capacitance equates to increased charge, the effective mobility is lowered. Therefore,
the effective mobilities seen here are lower bounds on the actual mobility. Future
publications will more rigorously analyze the CV data to obtain more accurate
mobile channel charge densities.

Overall, the capacitance and effective mobility data can help correlate and guide
future experiments to improve device performance. A few trends have emerged. The
channel thickness plays a strong role in channel mobility at the 5 to 6 nm channel
thickness regime. Delta doping effectively moves the wave function closer to the

back barrier, away from the channel surface, providing higher effective mobilities
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are consequently better on-state performance. However, higher peak mobility does
not make an optimal device, since carrier densities on the order of 1 to 2x10'? cm =2
have low mobilities. This may be due to electron scattering at the InGaAs/InAlAs
interface and with the delta doping in the InAlAs. Delta doping set back may
improve the mobility. Reduction of the delta doping appears to hurt mobility since
the wave function is not buried. Surface roughness must be improved to prevent
mobility degradation. Wide bandgap channel capping layers, such as InP or InAlAs,
may improve mobility by setting the wavefunction back from the surface. However,
they must be kept thin, on the order of a few monolayers, to prevent EOT increase.

Clearly, there is a trade-off between mobility, capacitance, and performance that

must be optimized.

6.6 Gate Last: MOCVD Regrowth Discussion

MOCVD regrowth provides heavily-doped lattice-matched InGaAs source-drain re-
gions. Due to its selective growth properties, transistor process complexity is re-
duced; more samples can be processed in a given time, increasing the confidence
in conclusions drawn from the data. Lot C1 showed that MOCVD performance
is as good as MBE for on-state, but worse for the off-state. The addition of digi-
tal channel etching improves both the on- and off-state performance by removing
semiconductor damage during processing. A comparison of etched InGaAs channel
thicknesses suggests surface roughness for the ~ 5 nm channels dominates device
performance. Back barrier delta doping improves on-state device performance, by
improving channel mobility, but negatively impacts off-state performance, by in-

creasing subthreshold swing and DIBL for short gate lengths. P-doped back bar-
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riers tend to minimize off-state leakage current. Using 0.8 nm EOT HfO, gate
dielectrics, an InGaAs channel achieved peak transconductance of 2.0 mS/micron
at 0.5 V Vg, With a subthreshold swing of ~ 100 mV /dec, interface trap density is
still 1 to 2 x10™ em~2 eV~!. Further work must be done to improve short-channel

subthreshold swing while maintaining channel mobility.

6.7 Conclusion: Gate-Last MOSFETSs

This chapter has summarized and analyzed multiple experiments in gate last I1I-V
MOSFET process flow. Transitioning from gate first to gate last immediately im-
proved device performance, revealing III-V surface protection is not a critical step
for on-state device performance. Continued process development led to moderate
performance improvements, but eventually plateaued. The combination of MOCVD
regrowth and digital etching allowed for continued device improvements. Improving
off-state performance can have negative effects on on-state performance. Mobility
measurements suggest higher mobility channels, or prevention of mobility degra-
dation, are critical for maintaining on-state performance while improving off-state

performance.
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Chapter 7

Conclusions and Future Work

7.1 Summary

This dissertation has examined semiconductor MOSFET theory and experimental
device results for InGaAs-based MOSFETSs. It has covered MOSFET device theory
for long-channel, velocity saturated, and ballistic FETSs, including short channel
effects and general FET scaling theory. It has examined two key process modules:
source-drain regrowth and atomic layer deposition of gate insulators. Three process
flows were examined: gat first MBE source-drain regrowth, gate last MBE source-
drain regrowth, and gate last MOCVD source-drain regrowth. Gate-first research
concluded with sub-100-nm-gate lengths, but scaled device data did not improve
performance. Gate-last processing, when paired with MOCVD regrowth and digital
channel etching, showed markedly better performance than any MBE regrowth FET

process.
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7.2 Process Improvements

This dissertation has shown the potential for gate last III-V MOS processing, but
the process flow can be altered to enhance performance and better characterize
the devices. IV and CV data is currently measured using needle-probeable device
layouts. Needle probe measurements are adequate for DC characterization, but
not for high-frequency or microwave characterization. At microwave frequencies,
the interface trap response will be low, improving on-state performance. Using a
network analyzer and measured S-parameters, more in-depth characterization of the
FETSs can be accomplished.

Gate lengths in the dry-etch SiO,process scale to ~ 50 nm gate lengths, with
adequate sidewall roughness. The gate length can be further scaled using electron
beam lithography direct-write HSQQ dummy gates. This process should scale to 20
nm or less. However, scaling the gate length is only effective if short channel effects
can be kept under control. Non-planar device geometries will improve gate-channel
control, allowing gate length scaling to continue below 50 nm.

Gate metal is currently evaporated over the entire sample and selectively re-
moved using photoresist liftoff processing. The sample must be removed from the
ALD chamber, exposed to ambient conditions, and to photoresist; all of these pose
sample contamination issues, such as water vapor and mobile ions. These will likely
decrease device performance. An in-situ ALD metal, such as Ru or WN, would
prevent these contamination opportunities. For non-planar device geometries, an
ALD metal is critical, as standard metal evaporation does not have adequate side-
wall coverage (in the case of fins), and is impossible for shadowed surfaces (in the

case of gate-all-around or nanowires).
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Gate-last CV data provides on wafer capacitance data and effective mobility.
However, given the presence of interface states, actual channel mobility extraction
is difficult. Hall mobility measurements would provide a more accurate assessment
of the channel. Adding gate control to a Hall structure would allow mobility char-
acterization as a function of channel charge, without interface trap density affecting

an accurate charge density extraction.

7.3 Data Trends

A few trends have emerged from the collective transistor data set. As predicted
from FET device scaling, improving Cy_.,, by scaling gate insulator and wavefunc-
tion depth, has improved device performance. Short gate length MOSFETSs with 1
to 2 nm EOT gate insulators and 10 nm thick InGaAs channels had peak transcon-
ductance ~ 1.0 mS/micron at 0.5 Vg4 Channel thickness scaling (Lot C2, Lot C3)
showed trends of improved transconductance in the limit channel mobility is not
affected. ~ 0.8 nm EOT dielectrics combined with ~6 nm InGaAs channels and
heavy delta doping saw the best peak transconductance, 2.0 mS/micron at 0.5 V.
In this process flow, InAs/InGaAs composite channels have shown 2.5 mS/micron
peak transconductance [1].

Caeptr, can be increased by decreasing the channel thickness. However, as seen
in the channel scaling series, long channel performance decreases, a sign of lower
mobility. Another effect of channel thickness scaling is eigenstate energy increase.
AE, for InGaAs/InAlAs is 0.5 eV. From Schrodinger-Poisson simulation, 6 nm
InGaAs channels with HfO, gate dielectric raise the eigenstate at least 0.1 eV from

the band edge. Further channel thickness scaling will continue to raise the state.
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This will increase threshold voltage and cause the electron wavefunction to have
a larger portion of its evanescent tail in the InAlAs barrier, increasing electron
scattering and decreasing overall gate control. Therefore, it is important for device
scaling to increase channel confinement. Larger AE, is possible with lattice-matched
AlAsSb, offering a theoretical 1.0 eV offset to InGaAs [2]. This would allow larger
channel charge densities without sacrificing channel mobility. Another option is
the use of non-planar device structures, shown in Figure [7.1} By surrounding the
channel with large AE. material, charge confinement is no longer a problem, and
very thin channels with large Cgepep, are possible, in the limit where channel mobility
does not deteriorate. Non-planar device geometries also improve short channel
effects.

Scaling C,, and Cgepp, are important and necessary for device scaling. However,
Cy—cn also includes Cgps, the density of states capacitance. For a given material
system, this is a fixed parameter. In the absence of interface trap capacitance, the
electrical effective thickness capacitance, Cggr, is the series combination of C,, and
Coeptn, which controls the electron Fermi level for Cg,s. Given current EOT (0.8
nm) and 2 nm wave function depth in InGaAs, and one populated eigenstate, C,_.,
/ Caos = 49%. Given a 0.5 nm EOT gate insulator, 2 nm wave function depth in
InGaAs, and one populated eigenstate, C,_.; / Caos is 55%. Further scaling of C,,
is not effective for improving on-state gate control, but will improve subthreshold
swing if interface state density remains constant.

Interface trap density for the gate first and gate last data set is summarized in
Table[7.1] While the interface state density was highest for gate first MBE regrowth,
the lowest was for InAs channels with gate last MOCVD regrowth. Increasing

C,z correlated with improved on-state and off-state device performance, but the
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B Channel l O

B Insulator
Gate Metal
b) d)
S/D S/D S/D S/D S/D S/D
a) c) e)

Figure 7.1: Various field effect transistor geometries. a) Planar FET, parallel to
current flow b) FInFET, perpendicular to current flow ¢) FiInFET, parallel to current
flow d) Nanowire FET, perpendicular to current flow e)Nanowire FET, parallel to
current flow.

absolute interface state density is still very high, ~ 1x10'® (cm™2 eV~! for the
samples measured. Channel passivation techniques need to be examined and new
methods developed to further reduce the trap density. For the same EOT, lower
subthreshold swings (85 mV/dec) have been seen on InAs channels [I]. In the
literature, there is a correlation with improved subthreshold swing with increasing
channel In content. For [3], 0.53 In content channels show 80 mV/dec with sulfur
treatments, and for [4] gate-all-around has 63 mV/dec with 0.65 In content with
sulfur treatments. Higher indium content channels offer lower effective mass carriers,
improving electron velocity, but also a decreased density of states capacitance.
Ballistic FET limit analysis in the degenerate limit [7] reveals an optimum ef-
fective mass for a given electrical effective thickness (a combination of insulator
capacitance and wave function depth). If there are too few electrons (low DOS),

while they move very fast, there is not enough current. Too many electrons (high
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Sample Gate Insulator | EOT (nm) | SS (mV/dec) | Dy (cm™2 eV ™)
Ref. [7] ALO; 217 500 73x10%
Lot A2 Al; O3 2.17 230 2.8x10%
Lot B1 Al,O3+HfO, 2.36 200 2.1x10%
Lot B3 Al;O3+HfO, 1.72 120 1.25x10%3
Lot B4 Al,O3+HfO, 1.21 144 2.4x1013
Lot C5 HfO, 0.8 110 2.8x1013
Lot C6 HfO, 0.8 100 1.9x10%
InAs surface [6] HfO, 0.8 85 1.2x10

Table 7.1: Summary of subthreshold swing and interface trap density for various
FET samples.

DOS) means many electrons move slowly, therefore there is not enough current.
In the ultra-thin EET limit, silicon is the semiconductor of choice. However, it is
theoretically possible to engineer a higher density of states in I1I-Vs [7], thereby in-
creasing Cgos, the limiting capacitance in C,_.,. By altering the crystal orientation,
two favorable eigenstates can be populated simultaneously, and therefore compete
with or exceed the ballistic currents of silicon.

[TI-V MOSFETSs are promising candidates for future integrated MOS technolo-
gies. This dissertation has examined three process flows for their fabrication. Two
process modules, gate insulator deposition and source/drain regrowth, were exam-
ined and optimized for best possible device performance. From the measured data,
the current generation of I1I-V MOSFETSs require a reduction in interface trap den-
sity and improved gate-channel control for improved off-state performance. These
modules and process flows can be leveraged for other I1I-V devices, such as HEMTs,

HBT's, and photonic devices.
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Appendix A
Gate First MOSFET Process Flow

This appendix describes the gate first MBE source/drain regrowth process flow.
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Appendix B
Gate Last MOSFET Process Flow

This appendix describes the gate last MBE/MOCVD source/drain regrowth process

flow.
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