News

ECE Ph.D. & CS Post Doc Gina Adam and ECE Prof. Dmitri Strukov featured in The UCSB Current article “A Tiny Machine”

October 28th, 2016

figure depicting the structure of stacked memristors w/ dimensions
UCSB electrical and computer engineers design an infinitesimal computing device that could satisfy the Foresight Institute’s Feynman Grand Prize challenge named in honor of physicist and Nobel Laureate Richard Feynman

In 1959 renowned physicist Feynman, in his talk “Plenty of Room at the Bottom,” spoke of a future in which tiny machines could perform huge feats. Like many forward-looking concepts, his molecule and atom-sized world remained for years in the realm of science fiction.

And then, scientists and other creative thinkers began to realize Feynman’s nanotechnological visions.

In the spirit of Feynman’s insight, and in response to the challenges he issued as a way to inspire scientific and engineering creativity, electrical and computer engineers at UC Santa Barbara have developed a design for a functional nanoscale computing device. The concept involves a dense, three-dimensional circuit operating on an unconventional type of logic that could, theoretically, be packed into a block no bigger than 50 nanometers on any side.

“Novel computing paradigms are needed to keep up with the demand for faster, smaller and more energy-efficient devices,” said Gina Adam, postdoctoral researcher at UCSB’s Department of Computer Science and lead author of the paper “Optimized stateful material implication logic for three dimensional data manipulation,” published in the journal Nano Research. “In a regular computer, data processing and memory storage are separated, which slows down computation. Processing data directly inside a three-dimensional memory structure would allow more data to be stored and processed much faster.”

While efforts to shrink computing devices have been ongoing for decades — in fact, Feynman’s challenges as he presented them in his 1959 talk have been met — scientists and engineers continue to carve out room at the bottom for even more advanced nanotechnology. A nanoscale 8-bit adder operating in 50-by-50-by-50 nanometer dimension, put forth as part of the current Feynman Grand Prize challenge by the Foresight Institute, has not yet been achieved. However, the continuing development and fabrication of progressively smaller components is bringing this virus-sized computing device closer to reality, said Dmitri Strukov, a UCSB professor of computer science.

“Our contribution is that we improved the specific features of that logic and designed it so it could be built in three dimensions,” he said.

The UCSB Current – "A Tiny Machine" (full article)

Wikipedia – "Foresight Institute Feynman Prize in Nanotechnology"