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An Assessment of Finite Difference Beam 
Propagation Method 

YOUNGCHUL CHUNG A N D  

Abstract-A finite difference heam propagation method (HI-BPR1) i 5  

outlined and assessed in comparison with a conventional beam propa- 
gation method (i.1.T-BPM) which uses fast Fourier tran\forniation. In 
the comparative study three straight waleguider with different inde\ 
profiles that are frequentlv encountered in integrated optics are uti- 
IiLed. Using both methods normali~ed elkctile inde\ \ d u e s  of the ei- 
genmodes of these wa~eguides are calculated and cornpared with the 
exact \alue3 obtained from analytical expressions. As a further accu- 
racy criteria, the power loss due to numerical errors, when an eigen- 
niode of a waveguide is excited, is etaluated. Based on this compariron 
accuracy, computational efficiency. and \tabilit) of the t D-BPRI are 
assessed. 

1, INTRODUCTION 

CCURATE analysis of guided-wave structures such A as intersecting, branching, or coupled waveguides is 
essential for the development of photonic integrated cir- 
cuits. For such analysis, which could be quite involved 
and complicated, several different approaches have been 
developed [ 11-[6]. The so-called beam propagation 
method (BPM) has been successfully used to analyze a 
wide spectrum of guided-wave structures [ 11. To utilize 
this method, usually the problem is reduced to a one-di- 
mensional cross-sectional index profile by defining effec- 
tive indexes to various parts of the structure. Then the 
paraxial wave equation is solved in the resulting one-di- 
mensional effective index profile using an algorithm that 
involves fast Fourier transformation (FFT). Even though 
the effective index approximation is not adequate for cer- 
tain cases. it can still be applied to get qualitative predic- 
tions about the behavior of a specific guided-wave struc- 
ture. It is of course, possible to analyze a particular 
structure using the two-dimensional cross-sectional index 
profile. but this requires extensive computational effort 
[ 11. The accuracy and applicability of the BPM have been 
studied extensively [ 7 ] ,  [SI. 

It is also possible to solve the paraxial wave equation 
using alternate numerical techniques. One such technique 
uses finite elements to solve the variational functional that 
represents the paraxial wave equation [6]. An alternate 
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numerical scheme to solve the paraxial wave equation is 
to use a finite difference approximation. We will refer to 
this technique (which uses an FD approximation rather 
than FFT) as FD-BPM. FD-BPM has been successfully 
applied to the analysis of nonlinear propagation in a ra- 
dially symmetric structure [ 5 ] .  However, as far as the au- 
thors know, no attempt has been made to analyze the in- 
tegrated-optical structures using this technique. 
Furthermore, the accuracy and the computational effi- 
ciency have not been studied. The purpose of this paper 
is to assess the potential of FD-BPM. This is done through 
a comparative study of FFT-BPM and FD-BPM for cer- 
tain representative structures that are frequently encoun- 
tered in guided-wave optics. 

In Section 11, FD-BPM is outlined and compared with 
FFT-BPM. In the next section, several representative 
cases are numerically analyzed using both techniques and 
results are compared as far as the accuracy and compu- 
tational efficiency are concerned. Finally, general conclu- 
sions are drawn. 

11. FINITE DIFFERENCE BEAM PROPAGATION METHOD 
(FD-BPM) 

In the presence of the one-dimensional cross-sectional 
index profile n (x, z )  and in the paraxial limit, Helmholtz 
equation can be reduced to the paraxial wave equation [9] 
which is 

where E, is the only electric field component of the TE 
mode of the slab waveguide geometry whose index profile 
is represented by n ( x ,  z ) .  In the FFT-BPM, the electric 
field is found at each step by applying the following op- 
erator algorithm 

E,(z + ai) = P Q P E , . ( z )  ( 2 )  
where 

( 3 )  
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In FD-BPM, the partial differential equation is replaced 
by the finite difference approximation, which yields 

where E, is the electric field at (ih, z )  with i = 0, 1, 2 ,  
. . .  , N - 1. If we integrate ( 5 )  in the interval [ z ,  z + 
Az]  and approximate the integration of the right-hand term 
using trapezoidal rule, we can relate the electric field at z 
+ Az, i.e., Ei(z  + A z ) ,  to the electric field at z ,  i.e., 
E, ( z )  by the following expression: 

-aEj-l(z + Az) + bEj(z + AZ)  - ~ E ; + , ( Z  + AZ)  

= aEi-I(z)  + cE;(z )  + aEj+l(z) ( 6 )  
where 

AZ 
2Ax2 

a = -  

b=- Az - - Az ( n’(z + Az) - n i )  + 2jk0n0 (6b) Ax2 2 

A Z A Z  
A x 2  

c = -7 + - ($‘(z) - ni)  + 2jkono. ( 6 ~ )  

This results in a tridiagonal system of linear equations, 
which can be solved very efficiently [ 1 11. The solution to 
this system of equations can be also shown to be stable. 

111. NUMERICAL RESULTS 
To compare these two techniques, two computer pro- 

grams were developed employing both algorithms and 
various simulations were performed on a SUN-SPARC 
workstation. Required FFT program and the program to 
solve a tridiagonal linear system of equations were taken 
from 1113 and 1121, respectively. In the numerical simu- 
lations three representative cases were studied. All these 
cases are straight waveguides, i.e., they are all uniform 
in z direction. In the first case the waveguide has a slowly 
varying index distribution which is given as 

(7 )  

This index profile approximates that of a Ti diffused 
LiNb03 waveguide. In the simulation the parameters were 
chosen as n b  = 2.15, An = 0.003, w = 4 pm. The re- 
sulting waveguide is single-moded and its normalized ef- 
fective index is 0.4556 at X = 1.15 pm. The exact value 
of the propagation constant is obtained using the analyti- 
cal formula given in [ 131. 

In the second and third cases waveguide has a step in- 
dex profile, i.e., the refractive index is uniform in the 
core and cladding regions, and abruptly changes at the 
core and cladding interfaces. Such an index profile is typ- 
ical of semiconductor slab waveguides and two-dimen- 
sional semiconducting waveguides under effective index 
approximation. In the second case slab waveguide is sym- 
metrical and the core thickness is 4 pm. The refractive 
indexes of the core and cladding are 3.38 and 3.377, re- 

spectively. In the third case the slab waveguide has an 
asymmetrical step index profile. One of the claddings is 
air and the core index and thickness and other cladding 
indexes are the same as the second case. For the second 
and third cases the waveguides are single-moded and the 
accurate normalized effective indexes are 0.6426 and 
0.4609, respectively, at X = 1.15 pm. These values are 
obtained from the well-known eigenvalue equation for the 
three-layer slab waveguide. 

For both FFT-BPM and FD-BPM calculations the 
propagation constants of the modes of these three cases 
are found from the modal power spectra which is obtained 
by correlating the propagating fields with the initial field 
as described in [lo]. A Gaussian profile whose full width 
at half maximum is 4 pm is used as the initial field profile. 
The computational window is 40 pm for all the simula- 
tions. For both cases the accuracy of the results depend 
on the number of grid points N in the transverse, i.e., x- 
direction, and the size of the propagation steps, Az in the 
direction of propagation, i.e., in z-direction. To assess 
the accuracy we calculated the percentage error of the 
normalized effective index as a function of Az for different 
N values. These results are shown in Fig. l(a), (b), (c) 
for the three cases described earlier, respectively. For all 
cases as N gets larger and Az gets smaller, accuracy im- 
proves. For the slowly varying index case the accuracy of 
both methods is not very sensitive to the actual N value 
as long as it is not too small. As Az increases, however, 
accuracy degrades for both schemes. Accuracy of the 
FFT-BPM starts to degrade at smaller Az values com- 
pared to FD-BPM. For the symmetrical step index case 
one needs to use a substantially large N value to get an 
accurate answer. Again as Az increases accuracy of both 
schemes degrades. Degradation in the FD-BPM result is 
slower and well behaved. On the other hand FFT-BPM 
results show an oscillatory behavior. For the case of 
asymmetrical step index guide, the higher the N value, 
the better the accuracy. But the behavior of both schemes 
as Az increases are drastically different. FD-BPM results 
degrade smoothly and slowly as Az increases, which in- 
dicates that propagating steps approaching 20 pm can be 
used. FFT-BPM results, however, show an oscillatory 
degradation as Az increases. This behavior is expected, 
because it is well known that for an accurate analysis of 
a waveguide structure with large refractive index change 
very small propagating steps are required 171, [8]. For this 
case, the magnitude of the FFT-BPM accuracy and its be- 
havior as a function of Az becomes comparable to that of 
FD-BPM only for Az <0.2 pm. 

As another test on the accuracy, we calculated the 
power loss of the eigenmode of a waveguide as it propa- 
gates. If the numerical calculations are accurate we do not 
expect any power loss as the eigenmode propagates. 
However, due to the approximate nature of both tech- 
niques certain amount of loss is observed in the numerical 
calculations. We refer to this loss as the loss due to nu- 
merical errors, and it is plotted in Fig. 2(a)-(c) as a func- 
tion of Az for different N values. An increase in the loss 
due to numerical errors clearly indicates a loss in the ac- 
curacy. For the slowly varying index case, numerical loss 
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Fig. 1 .  Percentage of error o f  the normaliTed elkctive index as a tunction 
of propagation step sire A; for a waveguide ( a )  with a slouly varying 
index profile (case I ) .  (h) with ii symmetric step index profile (case 2). 
and (c) with an asymmetric step index profile (case 3 ) .  The parameter N 
is a number of grid points used in the calculation. 
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Fi:. 2 .  Loss due to numerical error as :I function of propagation step size 

A: for a waveguide (a) with a slowly varying index profile (case I ) ,  (b) 
with a symmetric step index profile (case 2), and (c) with an asymrnetrlc 
step index profile (case 3 ) .  The parameter N is a number of grid points 
used in the calculation. The IOU is evaluated when an eigenmode of a 
waveguide i\ launched. 
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5001 I - I - I I 1 time it takes to find the field profile Az away from a known 
field profile and is independent of the structure under con- 
sideration. As shown in Fig. 3 ,  as the number of grid 
points increases, CPU time per step for both techniques 
increases. The increase in FFT-BPM is more rapid and 
over the N values considered FD-BPM is 4 to 6 times 
faster than FFT-BPM. This is a direct indication of the 
fact that computation time required to solve a tridiagonal 
system of N linear equations increases as N ,  whereas time 
required to obtain the FFT of a function using N grid 
points increases as N log N .  Comparison of the accuracy 
of both methods shows that one can get accurate results 
with larger propagating step sizes in FD-BPM. Combined 
with the CPU time improvement per step, this indicates 
that FD-BPM can be much more efficient than FFT-BPM. 

1 0 0  2 0 0  300 4 0 0  5 0 0  600 
Number of Grid Points, N 

Fig. 3 .  CPU time per propagation step as function of a number of grid 
points N .  All the CPU times are evaluated on a SUN-SPARC worksta- 
tion. 

of both schemes increases as Az increases and N de- 
creases. The degradation is gradual and well behaved in 
the case of FD-BPM. For FFT-BPM, however, loss in- 
creases very sharply with increasing Az. Furthermore, nu- 
merical loss is quite sensitive to N values for both 
schemes. As N increases numerical loss decreases by or- 
ders of magnitude for the FD-BPM. For FFT-BPM an 
improvement in numerical loss with increasing N is ob- 
served only for Az values less than 1 pm. For Az > 1 pm, 
numerical loss for N = 256 and 5 12 becomes almost iden- 
tical. For Az > 30 pm losses for all N values increase 
sharply, indicating a sharp degradation in the accuracy of 
FFT-BPM which agrees with the previous conclusions 
based on Fig. l(a). For the symmetrical and asymmetrical 
step index cases the same features are again observed. 
Numerical loss of the FD-BPM is not a very sensitive 
function of Az, but is a very sensitive function of N .  On 
the other hand, with FFT-BPM one has to use very small 
propagating steps to increase accuracy and get the benefit 
of increasing N .  For example, for the asymmetric step 
index case increasing Az from 0.1 to 0.2 pm for N = 512 
increases the loss due to numerical errors from 2 X lop5 
dB/cm to 2 dB/cm. This result indicates that Az = 0.2 
pm is unacceptable in the simulations, because it results 
in an unrealistic loss. On the other hand, a corresponding 
change in the percentage error of the normalized effective 
index as observed from Fig. l(c) is about 0.5 % , which is 
acceptable. This observation indicates that loss due to nu- 
merical error could be used as a more sensitive indicator 
of the accuracy of a beam propagation method. 

Although it is possible to get the same accuracy using 
both methods, due to the need for a small propagating 
step, the required computation time effort for FFT-BPM 
can be drastically higher than that of FD-BPM. To com- 
pare the computational speed of both methods we com- 
pared the CPU time required per propagation step as a 
function of N in the range from 128 to 512. This is the 

IV. CONCLUSIONS 

In this paper, a beam propagation method employing a 
finite difference approximation is studied in comparison 
with that using fast Fourier transformation. In the study, 
three different one-dimensional index profiles, whose ef- 
fective index values can be determined accurately using 
well-known analytical expressions, were considered. 
Using both methods the effective indexes of the eigen- 
modes of these three different cases were calculated. It is 
found that the computation time per propagation step for 
FD-BPM is 4-6 times less than that of FFT-BPM when 
grid points ranges from 128-5 12. Furthermore, FD-BPM 
is much more stable with respect to propagation step size, 
Az, and number of grid points N variations. For compa- 
rable accuracy one needs much smaller propagation step 
sizes in the FFT-BPM than the FD-BPM especially in the 
analysis of step index waveguides. This indicates that 
combined with the CPU time improvement per step FD- 
BPM can be much more efficient than FFT-BPM. As a 
further test on the accuracy of both methods, loss due to 
numerical errors, when eigenmode of the waveguide is 
launched, is calculated. Results indicate that this loss 
value could be a more sensitive indicator of the accuracy. 
One can obtain unacceptably high loss even though the 
accuracy of the propagation constant could be acceptable. 
Calculated loss values also indicate that FD-BPM is more 
efficient and stable compared to FFT-BPM. 
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