
2296 IEEE JOURNAL. OF QUANTUM ELECTRONICS. VOL 27. NO IO. OCTOBER 1991 

Analysis of 2-Invariant and 2-Variant Semiconductor 
Rib Waveguides by Explicit Finite Difference Beam 

Propagation Method with Nonuniform Mesh 
Configuration 

Youngchul Chung and Nadir Dagli, Mrrnht.r, IEEE 

Abstract-An efficient and simple explicit finite difference 
beam propagation method (EFD-BPM) incorporating nonuni- 
form mesh is described. The criteria for stability is developed 
and it is shown that this algorithm is power conserving when 
the stability criteria is met. EFD-BPM is applied to the analysis 
of single and coupled semiconductor rib waveguides and its ac- 
curacy is confirmed by comparing the results with the reported 
results. Nonuniform mesh is found to improve the efficiency of 
the method significantly for the analysis of weakly guiding 
waveguide structures. Several coupled rib waveguide struc- 
tures with curved input and output branching sections are also 
analyzed using both three-dimensional EFD-BPM and two-di- 
mensional finite difference BPM combined with effective index 
approximation and the validity of the latter approach for the 
analysis of z-variant weakly guiding structures is studied. Zero- 
gap couplers with deeply etched GaAs rib waveguides are also 
fabricated and characterized. The experimental results are in 
good agreement with the theoretical calculations based on EFD- 
BPM with nonuniform mesh. 

I. INTRODUCTION 
HE reliable and economically feasible utilization of T optical systems based on semiconductor lasers and 

optical fibers for communication and instrumentation ap- 
plications require the realization of photonic integrated 
circuits (PIC). Such circuits use guided optical waves to 
perform various different functions such as switching, 
multiplexing, modulation, demodulation, and analog to 
digital (A-D) conversion. Today there is a significant ef- 
fort to develop methods to fabricate, design, and analyze 
PIC. The most basic building block of PIC is the optical 
waveguide. Of various types of optical waveguides, rib 
waveguides seem to be the most attractive waveguides for 
waveguiding in compound semiconductors, which are the 
most desirable materials for PIC. The refractive index 
profile of rib waveguides can be controlled and engi- 
neered precisely. In addition to the accurate control of the 
physical properties of the rib waveguides, their accurate 
and efficient analysis and design are also essential. Such 
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analysis and design methods will eventually generate the 
computer aided design tools for PIC. So far various dif- 
ferent methods have been developed and applied to the 
analysis of rib waveguides. All these methods can be 
combined under two groups. One particular group is most 
suited to the analysis of the waveguides whose cross-sec- 
tional dimensions and index profiles do not vary along the 
direction of propagation. In this work such waveguides 
are called z-invariant waveguides. The simplest method 
to analyze z-invariant rib waveguides is the so-called ef- 
fective index method [ 11. This method is only valid for 
weakly guiding shallowly etched rib waveguides. How- 
ever, it can still be used to design single-mode, strongly 
guiding, deeply etched rib waveguides because the prop- 
agation constant values that the effective index method 
predicts are always higher than the actual values [2]. 
Therefore, the cutoff width values predicted by this 
method are conservative estimates. On the other hand this 
method is not applicable to all possible structures and 
when applicable its accuracy degrades rapidly as the con- 
finement of the mode increases, hence there is a need for 
efficient numerical methods. For this purpose a finite dif- 
ference method and variational methods based on Ray- 
leigh-Ritz procedure were developed and their accuracy 
and computational complexity were compared including 
the effective index method in this comparison [3]. Finite 
element methods have also been applied to optical wave- 
guide analysis [4]. Another recently developed method of 
analysis converts a given optical structure into a modular 
microwave equivalent circuit [ 5 ] .  Almost all the other 
methods to analyze z-invariant waveguides are compared 
by the working group I of COST 216 project [6]. 

For the other group of waveguides cross-sectional di- 
mensions and index profiles vary along the direction of 
propagation. In this paper, such waveguides are called 
z-variant waveguides. 2-variant waveguides arise both out 
of practical needs, such as the need to separate the input 
and output ports of a directional coupler and arms of a 
Mach-Zehnder interferometer, and out of the desirable 
features of certain structures such as Y-junction and 
X-crossing waveguides. The most commonly used method 
to analyze such structures is the so-called beam propaga- 
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tion method (BPM) which is also applicable to the anal- 
ysis of z-invariant waveguides [7]. Conventional BPM re- 
quires fast Fowricr transform (FFT) at every propagation 
step and will be called FFT-BPM in this paper from now 
on. FFT-BPM is usually combined with the effective in- 
dex method to convert a three-dimensional structure to an 
equivalent two-dimensional geometry (81. It is, of course, 
also possible to apply FFT-BPM to the analysis of a three- 
dimensional waveguide geometry [91. Recently new three- 
dimensional BPM algorithms were applied to the analysis 
of single, coupled, and Y-junction rib semiconductor 
waveguides [lo]-[ 141. In [lo], the propagation constants 
and mode profiles of the lowest order rib waveguide were 
calculated utilizing propagation in imaginary z axis. 
Three-dimensional BPM was also applied to evaluate the 
radiation loss of rib waveguide Y junctions [ 101-1131 and 
to determine the mode indexes of single waveguides and 
the even and odd mode indexes as well as coupling lengths 
of coupled waveguides [ 141 analyzed in [3]. 

The analysis of rib waveguides with the FFT-BPM cre- 
ates a special challenge. The rapid refractive index vari- 
ations in the rib waveguide cross-sectional profile neces- 
sitates the use of large spectral components of the optical 
field, which in turn forces one to use very small propa- 
gating steps [15], [16]. Therefore, even though one can 
accurately analyze the rib waveguides using FFT-BPM, 
the need to use very small propagating steps results in 
exceedingly large computing times. This problem has 
been recognized and there has been considerable recent 
research activity to improve the computational efficiency 
of the FFT-BPM. In one approach finite difference tech- 
niques were used to approximate the plane wave propa- 
gation operator resulting in more efficient BPM algo- 
rithms [ 1 11-[ 131. In all these algorithms including FFT- 
BPM, the exact formal propagation operator is split into 
several operators, each of which can be easily imple- 
mented into a numerical procedure. To keep the error as- 
sociated with this operator splitting the propagation step 
lengths should be small. One of the operators, which de- 
scribes plane wave propagation in a homogeneous me- 
dium, can be realized using FFT algorithm, split-step im- 
plicit finite difference procedure, and the so-called real- 
space algorithm. In FFT algorithm, each plane wave 
component of the field profile is calculated using FFT. 
Then each plane wave component is propagated in the ho- 
mogeneous medium, and at the end of the propagation 
step the field in the real space is calculated using inverse 
FFT [7], [ 131. In split-step finite difference procedure, the 
field propagation in the x direction is first considered, 
keeping the y coordinate constant. This makes it possible 
to use the Crank-Nicholson algorithm resulting in tridi- 
agonal linear equations which can be solved very effi- 
ciently. Next the field propagation in the y direction is 
calculated keeping the x coordinate constant and using the 
same procedure [ 1 11, [ 131. In the so-called real-space al- 
gorithm, the propagation in the x direction is calculated 
by multiplying a field column vector at each constant y 
position with a series of unitary block diagonal matrices. 

These matrices result from the further splitting of the 
propagation operator in the x direction. Next the propa- 
gation in the y direction is calculated similarly [ 121, 1131. 
All the mentioned algorithms are unitary. The real-space 
and FFT algorithms result in explicit methods, but the 
computation time in the method based on real space al- 
gorithm is far less than that based on FFT algorithm. 

In another approach finite difference techniques are di- 
rectly applied to the paraxial wave equation resulting in 
finite difference BPM [17], [18], where operator algo- 
rithms, hence operator splitting is not used. If one con- 
siders only a two-dimensional geometry, then inherently 
stable and unitary Crank-Nicholson finite difference tech- 
niques can be used resulting in a very efficient, stable, and 
power-conserving algorithm [ 171. On the other hand for 
a three-dimensional geometry, although the same finite 
difference techniques can still be used, the need to invert 
a large matrix at every propagation step makes such al- 
gorithms unattractive. One can circumvent this difficulty 
using an explicit finite difference algorithm in the solution 
of the paraxial wave equation resulting in the so-called 
explicit finite difference BPM(EFD-BPM). A brief out- 
line of this technique and its application to semiconductor 
rib Y-junction analysis was given in a recent rapid com- 
munication [ 181. In this communication, the results ob- 
tained using the present scheme are compared with that 
obtained using the real-space method [ 121 and it was con- 
firmed that the agreement of both results is very good 
when the same propagation step size of Az = 0.01 pm is 
used. Both methods are explicit. The EFD-BPM is based 
on direct approximation of partial derivatives and requires 
small propagation step size for the stability and power 
conservation. The real-space method is based on operator 
splitting and also requires small propagation step size to 
assure the accuracy. A close observation of these two 
methods reveals that the number of operations, such as 
multiplications, additions, etc., required to propagate the 
beam over a propagation step is less in the EFD-BPM 
compared to the real-space method. Hence, EFD-BPM 
consumes less CPU time per propagation step than the 
real-space method. However, this doesn’t necessarily 
mean that the present scheme is always superior to the 
real-space method, because the present algorithm requires 
smaller propagation step size as the mesh size decreases 
while the so-called real-space method doesn’t due to its 
inherent unitarity. The more detailed comparison of the 
two different algorithms asks for further study. 

In this paper, EFD-BPM incorporating a nonuniform 
mesh is formulated, the condition for its stability and 
power conservation is derived, and is applied to analyze 
several z-invariant and z-variant rib waveguide structures. 
In Section 11, the EFD-BPM using a nonuniform mesh and 
the condition for its stability and power conservation are 
given. Next, EFD-BPM is applied to analyze several 
z-invariant rib waveguide structures analyzed by other re- 
searchers to assess its accuracy. In Section IV, EFD-BPM 
is used to analyze z-variant directional couplers and the 
results of this analysis are compared with those obtained 
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from a two-dimensional finite difference BPM combined 
with effective index approximation. In Section V ,  the ex- 
perimental results on zero-gap couplers composed of 
deeply etched GaAs rib waveguides with large mode size 
are described. The experimental results are also compared 
with the theoretical predictions of EFD-BPM with non- 
uniform mesh. Finally, general conclusions are drawn. 

11. FORMULATION OF THE EXPLICIT FINITE DIFFERENCE 

The paraxial wave equation for main polarization com- 
BEAM PROPAGATION METHOD (EFD-BPM) 

ponent of the electric field E is as follows. 

( la )  

where n, is the reference refractive index and ko is the 
wave vector in the vacuum. An explicit finite difference 
algorithm can be obtained by directly applying finite dif- 
ference approximation to ( la) .  It can be readily seen that 
the approximation of d E / a z  by forward difference, i.e., 
(E(z  + Az)  - E ( z ) ) / A z ,  results in an inherent instability 
for any Az .  However, the explicit algorithm is found to 
become stable for moderately small A z ,  if an alternative 
and second-order accurate center difference approxima- 
tion of a E / d z ,  i.e., (E( z  + A z )  - E(z - A z ) ) / 2 A z ,  is 
used. Then, ( la)  can be written as 

where 

is a linear operator. The criteria for stability and power 
conservation of this algorithm will be discussed later in 
this section. Replacing the derivatives in the linear oper- 
ator F by finite difference approximations, the paraxial 
wave equation can be approximated as an explicit finite 
difference equation with nonuniform mesh size, which is 

E,,,(z + Az)  = E,,& - Az) + a, qp - I]q(z) 

where 

- 2Az a, = 
jkonr Ax,-  I (Ax,,-  I + Ax, )  

(2b) 
2az 

jkon, Ax,,(Ax,- I + Ax,,)  
a,’ = 

a,’ - c,‘ - 

(2e) 

In ( 2 ) ,  EPq(z)  and n,,(z) are the optical field values and 
the sampled refractive index values, respectively, at x = 
x,,, y = y, in the computational window, and Ax,, = x,, - 
x,, - I and Ayq = y q  - y ,  - I .  The optical field distributions 
at every propagating step can be found by multiplying the 
optical field column vector E by a very sparse matrix 
which has only five elements in a row. This fact makes 
this algorithm much more efficient than the conventional 
FFT-BPM which requires a fast Fourier transformation at 
every propagation step rather than a sparse matrix multi- 
plication. For example, in case of 64 x 64 grid points in 
the computational window, the CPU time per propagation 
step for the present technique is about 0 . 2  s/step, whereas 
CPU time for FFT-BPM is about 3 s/step on a SUN 
SPARC workstation. As the number of grid points in- 
creases, the CPU time for FFT-BPM increases faster than 
the present technique, and more than an order of magni- 
tude improvement in CPU time per propagation step is 
commonly achieved. It is also noted that the nonuniform 
mesh can be used in the present algorithm very easily 
whereas it cannot be used in the FFT-BPM, which further 
improves the computational efficiency. On the other hand 
in the present algorithm, we need to know field distribu- 
tions at the initial two steps. To calculate the field distri- 
butions at the second step given the initial field distribu- 
tion, we may use a forward finite difference approximation 
which results in an algorithm similar to (2), where only 
the electric field distribution at the present step is required 
to calculate the field at the next step. This procedure is 
programmed and is confirmed to be stable if one continues 
to use the algorithm represented by ( 2 )  right after the sec- 
ond step. Another approach could be to use the FFT-BPM 
at the very first propagation step, but this is not appropri- 
ate in nonuniform mesh configuration. Once the field val- 
ues at initial two steps are obtained EFD-BPM can be used 
to propagate the beam further. 

To analyze the stability and power conservation con- 
dition, we rewrite the algorithm given by (2) in the fol- 
lowing matrix form: 

Az 
J k o 4  

E(z + Az) = E(z - Az) + - AE(2).  (3) 

When the number of mesh points in the x and y directions 
are N ,  and N?, respectively, the kth component of the col- 
umn vector E ( z )  is the optical field value at x = x,,, y = 
y,, i.e., E,,(z), where q is an integer which doesn’t ex- 
ceed k / N ,  andp = k - qN,. The matrix A is a very sparse 
matrix whose nonzero components are given by 

for k # q N ,  
2Az 

Ax,- I (AX,,- I + AX,,)  4 -  I = 
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fork  # qN, - 1 
2Az 

A x ~ ( A x ~ - I  + Axp) A k . k + l  = 
and obtain a quadratic equation for E,,, which is 

t :  + ~ ( ~ A z P , ) E ,  - 1 = 0. (1 1) 

The eigenvalues and eigenvectors of the matrix A are 
2k0nrP, and e, ,  that is, 

Ae,  = 2kOn,&,e,. (4) 

The matrix A is not symmetric for nonuniform configu- 
ration, but it can be symmetrized if it is multiplied by a 
diagonal matrix D2 whose components are [ 2  13 

D:k = (Ax,- I + Ax,) (AY,- I + AY,). (5) 
Multiplying (4) by D 2  and manipulating further one ob- 
tains a transformed eigenvalue equation, which is 

Se,!, = 2kon,P,e,!, (6) 

s = D - ~ D ~ A D - ’  (64 

e,’, = De,. (6b) 

where 

The transformed matrix S is symmetric because D 2 A  is 
symmetric. Hence, the eigenvalues of S ,  which are 
2kon,/3,, are always real and the transformed eigenvectors 
e; form an orthogonal basis set. In the following discus- 
sion, e;’s are assumed to be normalized, hence they form 
an orthonormal basis set. Furthermore, matrices A and S 
have the same eigenvalues because they are related to one 
another through a similarity transformation. The beam 
propagation algorithm described by (3) can be cast into 
an equivalent transformed equation, which is 

Az 

Ikon, 
E ’ ( z  + Az) = E ’ ( z  - AZ) + - S E ’ ( Z )  (7) 

where the E ’  = DE and the matrix S is given by (6a). 
The transformed field distribution E ’ ( z )  can always be 
represented by a linear superposition of eigenvectors e;, 
which is 

~ ’ ( z )  = C a,(z>e,!,. (8) 
n 

Substituting (8) into (7) and multiplying the resulting 
equation by e,!,*T, we can get the difference equation for 
the unknown amplitude coefficients a,, which is 

Then we look for the solution of the form 

The solution of the above quadratic equation for 4, is 

It is readily seen that the magnitude of E ,  is always 
unity if we have the condition 

To satisfy this condition for every eigenvalue of S, Az 
should satisfy the following condition 

1 
&<--- I P n  Imax 

where 10, lmax is proportional to the eigenvalue of A with 
the largest magnitude. We can find an upper bound for 
16, I using the Gerschgorin’s first theorem [22]  which 
states that the magnitude of the eigenvalue of the matrix 
A ,  12kOn,P, 1 ,  is always smaller than the largest sum of 
the absolute values of the elements along any row of the 
matrix A .  Hence 

Combining (14) and (15) one obtains 

& < - -  
1 

I Pfl I” 

When the condition (16) is satisfied, the amplitude coef- 
ficient a,(z) of the transformed eigenvector e; is main- 
tained to be constant, i.e., independent of z so that the 
inner product E’*TE‘  = E, la,,(z) l 2  is constant, hence is 
conserved. In fact, E‘*TE‘  is the integration of the 
squared optical field magnitude in the nonuniform mesh 
configuration. This shows that the condition (16) assures 
both the stability and the power conservation. The power 
conservation has been observed in the real computations 
as long as the stability condition (16) is satisfied. As a 
power conservation test an eigenmode of a z-invariant 
waveguide is launched and propagated over a distance of 
1 cm in the various computational configurations. At the 
end of propagation both the power and the shape of the 
mode were unchanged when the stability condition is sat- 
isfied. If the typical rib waveguide parameters (n,  = 3.34, 
n,, = 1) for the semiconductor rib waveguides are sub- 
stituted and Axmin = Aymin = 0.0625 pm are used, then 
Az should be smaller than 0.014 pm for X = 1.3 pm. As 
A x  and Ay increases, the larger Az can be allowed. At 
first such small step sizes may seem to suggest large com- 
putational times. Indeed the Az value required for stability 
is at the same order of magnitude for the convergence of 
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conventional BPM. Therefore the number of steps re- 
quired to propagate the beam remains about the same for 
both methods. However, the computational effort re- 
quired to propagate the beam at every step is drastically 
lower for EFD-BPM since propagation simply requires a 
sparse matrix multiplication as opposed to fast Fourier 
transform. As documented earlier in this section, CPU 
time improvement more than an order of magnitude per 
propagation step is commonly achieved. Hence even 
though about the same number of steps is required to 
propagate the beam over a given distance for both EFD- 
BPM and FFT-BPM, the overall computational efficiency 
of EFD-BPM is typically an order of magnitude better 
than FFT-BPM. 

111. ANALYSIS OF Z-INVARIANT WAVEGUIDES 
The first step to check the accuracy of the present al- 

gorithm is to analyze the z-invariant single and coupled 
waveguides analyzed by different researchers and to com- 
pare the results with the reported results. Two methods 
exist to calculate the propagation constants using BPM's. 
One method uses the peak position in the power spectra, 
which is obtained by correlating the propagating fields 
with the initial field, to obtain the propagation constant of 
a particular mode [7], [19]. The other method propagates 
the optical field along imaginary z axis and obtains the 
modal properties [lo]. In this paper, the method described 
in [7] and [19] is adopted to calculate the propagation 
constants and coupling lengths. 

A .  Calculation of Propagation Constants from a Beam 
Propagation Solution 

The field distribution E(x,  y ,  z )  everywhere in the 
z-invariant waveguide can be calculated by applying the 
algorithms represented by (2). In the course of propagat- 
ing beam calculation, one calculates the correlation func- 
tion, which is 

P(z> = s s E * @ ,  y ,  O)&, y ,  z )  dx  dy. (17) 

On the other hand, E ( x ,  y ,  z )  can be represented by the 
superposition of orthogonal eigenfunctions of the z-in- 
variant waveguide, which is 

E(x, Y ,  Z )  = Bnun(x, y )  exp ( - j P p n z )  (18) 

where U ,  (x, y) and Ppn are the eigenfunction and the prop- 
agation constant of the nth rib mode as obtained from the 
paraxial wave equation. In this expansion it is assumed 
that degeneracy does not exist, which is a good approxi- 
mation for rib waveguides. If (18) is substituted into (17), 
one obtains 

p(z> = JBn l 2  exp ( - j P p n z ) .  (19) 

P(P> = 2 IB,,)* S ( P  - P,,,,). 

The Fourier transform of (19) is 

(20) 

Thus, one can find the propagation constant Ppn by nu- 
merically calculating the correlation function P(z ) ,  Fou- 
rier transforming it, and locating the peak in the Fourier 
domain. Ideally the accurate determination of PPn can only 
be done by infinitely propagating the beam or when E field 
value is known over all z because only when z extends to 
infinity the Fourier transform of (19) will yield (20). 
However, in practice, one can propagate a beam only a 
finite length, hence field values over a certain z range, or 
z window, are known. In mathematical terms this is 
equivalent to multiplying (17) with a window function 
w(z),  which accounts for the finite length of propagation. 
Then the Fourier transform of the correlation function, 
P,,. ( z ) ,  becomes 

P,(P) = I B ~ I ' u P  - P p n )  (21) 
I 1  

where the line shape function for the propagation distance 
D is defined by 

l D  
L(P - P,,) = 6 So exp t j ( P  - ~ ~ , , ) z l w ( z )  dz.  (22) 

Knowing this line shape function the propagation con- 
stant can be quite accurately determined from the spec- 
trum P,v(/3) using curve fitting. In the calculations the 
Hanning window function, w(z) = 1 - cos [(2az)/D1, is 
used as is typically done in the literature. The eigenfunc- 
tion of the paraxial wave equation ( la)  is identical to that 
of the original scalar Helmholtz equation. However, the 
propagation constant of the Helmholtz equation o h  is 
found from that of the paraxial equation P, using the re- 
lation 

P h  = kon,(l + 2 ~ , , / k ~ n , ) " ~ .  ( 2 3 )  

The details of calculating the peak position from the spec- 
trum are described in [7] and [ 191. 

B. Calculation of Eigenmode Projile from a Beam 
Propagation Solution 

( j p z )  and integrated from 0 to D, we can obtain 
If both sides of (18) are multiplied by 0 - ' w ( z )  exp 

E(x ,  y,  P )  = ST E(x,  y,  t> exp (JPz>w(z) dz (244 

Bnun(x, Y ) U P  - P p n ) .  (24b) 
n 

Thus, for P = bpi, E ( x ,  y ,  P P I )  can be expressed as 

E(x, 4 ' 3  P p i )  = Biui(x9 Y)L(O) 

+ C ~n un ( ~ 3  Y)L( Ppi - ~ p n )  . (25) 
n f i  

Equation (25) shows that the eigenmode profile ui (x, y) 
can be determined by evaluating the integral (24a) with P 
= provided that most of the excited power belongs to 
the zth mode which is the mode of interest. In practice, 
such excitation can be achieved in most cases for rib 
waveguides. The detailed description of this method can 
be found in [20]. 
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n2 

Structure nl n2 n3 t "1 t 1  bml w b m l  
1 3.44 3.34 1 1.3 1.1 2 
2 3.44 3.36 1 1.0 0.1 3 
3 3.44 3.435 1 6.0 2.5 4 

Fig. 1 .  Cross-sectional profiles and structural parameters of semiconduc- 
tor rib waveguide structures that are analyzed in this work. 

C. Analysis of z-invariant Waveguide Geometries 
In the calculations three different rib waveguides shown 

in Fig. 1 are considered. The operating wavelength is 1.55 
pm. For structure 1 guiding is strong, hence a small com- 
putational window size and a uniform mesh configuration 
is enough for its analysis. Thus, 8 pm X 4 pm window 
size with 64 and 64 uniform mesh points in x and y direc- 
tions, respectively, is used to analyze structure 1.  For 
structure 3, however, guiding is very weak both in the 
vertical and horizontal directions. Thus, a large compu- 
tational window is required, hence a nonuniform mesh 
configuration is very useful to reduce the computational 
time. For the analysis of structure 3, a 130 pm X 33 pm 
computational window in x and y directions, respectively, 
is used. In the x direction, the window is partitioned into 
3 intervals, where the center 8 pm interval consists of 64 
mesh points and the two 61 pm side intervals consist of 
64 mesh points each. In the y direction, the window is 
partitioned into 2 intervals, where the 20 pm substrate 
interval consists of 20 mesh points and the 13 pm interval 
above the substrate consists of 108 mesh points. For the 
analysis of structure 2, a 33 pm X 4 pm window with 512 
and 64 uniform mesh points in the x and y directions is 
used. Table I shows the calculated effective indexes as 
well as those given in [3], [lo], and [ 141. The results show 
that EFD-BPM with uniform or nonuniform mesh config- 
uration is as accurate as the other methods. The compu- 
tational efficiency of EFD-BPM is at least an order of 
magnitude better than that of FFT-BPM for all the cases 
considered. As an illustration of power spectrum from 
which propagation constant of the paraxial wave equation 
is calculated, the power spectrum for structure 3 is shown 
in Fig. 2. A peak is observed representing the guided 
mode as well as a small amount of power in the radiation 
modes. The position of the peak can be quite accurately 
determined by the line fitting method described in [7] and 
[ 191. The mode shape of each single waveguide is found 
using the method mentioned above and described in [20]. 
These shapes are found to be quite similar to those shown 
in [ 101. 

For further check, the coupling lengths of directional 
couplers composed of two single waveguides shown in 
Fig. 1 and with gap of 2 pm are calculated. To calculate 
the even mode effective indices, a sum of two Gaussians 

TABLE I 
EFFECTIVE INDEXES OF THE RIB WAVEGLIDES SHOWN I N  FIG. 1 AS A RESULT 

OF VARIOUS DIFFERENT APPROACHES 

Present 
Structure Work [31 [ I O 1  [I41 

1 3.3913 0.3908 3.3908 3.3913 
2 3.3947 3.3953 3.3948 3.3960 
3 3.4369 3.4368 3.4368 3.4365 

to 

Propagation Constant, - p [cni'l 

Fig. 2 .  Modal spectral power of a rib waveguide which  is structure 3 in 
Fig. 1 .  

TABLE I1  
COUPLING LENGTHS OF T H E  DIRECTIONAL COUPLERS COMPOSED OF VARIOUS 

RIB WAVEGUIDE STRUCTURES SHOWN I N  FIG.  1 AS A RESULT OF VARIOUS 
DIFFFRENT APPROACHES 

Present 
Structure Work 131 ~141 

1 349 mm 341-357 mm 65.1 mm 
2 780 pm 797-827 pm 710 p m  
3 1273-1968 pm 930 pm 

with equal amplitude centered at each arm of directional 
coupler is excited at the input. For the odd mode calcu- 
lation, a sum of two Gaussians with equal magnitude and 
opposite sign is excited at the input so that a sharp peak 
will occur at the odd mode position in the power spec- 
trum. Table I1 shows the calculated coupling lengths of 
directional couplers. For structures 1 and 2, the results 
are close to the previous results, especially to the results 
given in [3]. However, there is an uncertainty in accu- 
rately locating the odd mode effective index position of 
structure 3 in the power spectrum. Although in the power 
spectrum there existed a peak, it was not sharply defined 
and was intermixed with quasi-continuum. As a refining 
process, the odd mode index was calculated by using this 
spectra and the mode profile corresponding to this ap- 
proximate odd mode index is calculated. This is thought 
to be a better way of approximating the initial field dis- 
tribution to determine the odd mode of the coupler. Still 
the power spectrum didn't show a sharp peak without in- 
termixing of continuum modes. Furthermore it is ob- 
served that the mode leaked out as it propagated. From 
this argument, it is suggested that the odd mode for the 
coupler from structure 3 is not well defined since it is 
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(b) 
Fig. 3. (a) Even and (b) odd mode profiles of the rib waveguide directional 
coupler composed of rib waveguides which are the same as structure 2 in 
Fig. 1. 

leaky, hence it is of little meaning to calculate a coupling 
length for this structure. The same argument has been 
suggested in [2]. In fact, the calculated coupling length 
of this coupler varied considerably depending on the 
methods of calculation employed [2], [3], [14]. For the 
illustration of the resulting mode profiles, even and odd 
mode profiles of the coupler composed of structure 2 are 
shown in Fig. 3. 

IV. ANALYSIS OFZ-VARIANT WAVEGUIDES WITH EFD- 
BPM AND COMPARISON WITH THE RESULTS FROM 

TWO-DIMENSIONAL FD-BPM 
The application of EFD-BPM to a strongly guiding 

Y-junction structure and its accuracy and efficiency were 
recently published [ 181. In this section, weakly guiding 
z-variant waveguide structures are analyzed by using both 
two-dimensional finite difference BPM (FD-BPM) and 
three-dimensional EFD-BPM. Since the accuracy of EFD- 
BPM is verified, the applicability of effective index ap- 
proximation combined with a two-dimensional BPM in 
the analysis of z-variant weakly guiding rib waveguide 
structures can be assessed. 

1 I LengthL I 

V 

I.  I 
+ 

2 
Width w 

Radius r 

Fig. 4.  A rib waveguide directional coupler with curved input and output 
branching sections. The cross-sectional profile of the rib waveguides is the 
same as shown in Fig. I with n ,  = 3.23001, nZ = 3.20528, n 3  = I ,  U' = 
3 pm, t = 1 . 1  pm, and t ,  = 0.225 pm. h = 25 pm, r = 40 mm. 

As an example of a z-variant weakly guiding waveguide 
structure, the couplers with curved branching sections 
shown in Fig. 4 are considered. These structures are taken 
from the problem set prepared by the COST-216 working 
group, which is solved by many different researchers using 
various different techniques at the 1990 Integrated Pho- 
tonics Research Conference at Hilton Head, SC. The 
cross-sectional profile of an individual waveguide is the 
same as that shown in Fig. 1. The refractive index of the 
substrate(InP), n2, is 3.20528, that of the epi- 
layer(InGaAsP), n l ,  is 3.23001, and the upper cladding 
region is air. The width of the individual waveguide w is 
3 pm, rib height t is 1.1 pm, and etch depth t l  is 0.225 
pm. The transverse variation of the curved branch h is 25 
pm and the radius of curvature r is 40.0 mm. 

First, the ratio of the optical power in guide 2 at the 
output to the total output power as a function of the length 
of the uniform coupled region L is calculated. At the input 
guide 1 is excited with its eigenmode. The gap g and the 
wavelength of operation are 2.5 pm and 1.286 pm, re- 
spectively. To get a first approximate solution, a two-di- 
mensional BPM combined with effective index approxi- 
mation is used. In this approach the three-dimensional 
index variation is reduced to two-dimensional variation 
with the help of the effective index approximation and then 
the two-dimensional FD-BPM is applied. Since the etch 
depth is not too large, it is expected that this simple ap- 
proach will give results quite close to those from full three- 
dimensional analysis. The effective index in the rib region 
and that outside the rib region are calculated to be 3.2 1024 
and 3.20647, respectively. Then, a two-dimensional FD- 
BPM, which is proven to be an order of magnitude more 
efficient than a two-dimensional FFT-BPM [17], is ap- 
plied to calculate the output power ratio at the end. The 
size of the computational window is 80 pm with 1024 
mesh points. The propagation step size Az is 5 pm. The 
three-dimensional EFD-BPM is also applied to analyze 
these couplers. The computational window size in the x 
direction is 80 pm with 1024 uniform mesh points. Since 
the vertical confinement is not so strong, a large vertical 
computational window size is required to assess the ra- 
diation loss properly. The computational window size in 
the vertical direction is 15 pm. It is partitioned into three 
regions: a 9.5 pm section with 20 mesh points in the sub- 
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TABLE 111 
RATIO OF T H E  OPTICAL POWER I N  GUIDE 2 TO THE TOTAL POWER AT T H E  

OUTPUT FOR DIFFERENT LENGTHS OF T H E  UNIFORM SECTION OF THE 
DIRECTIONAL COUPLER STRUCTURE SHOWN I N  FIG. 4.  AT THE INPUT, GUIDE 

MAINTAINED TO BE 2.5 fim 

Length of Uniform Two-Dimensional Three-Dimensional 

1 IS EXCITED WITH THE EIGENMODE OF THE WAVEGUIDE. THE GAP g IS 

FD-BPM EFD-BPM Section, L(mm) 

0 0.433 0.453 
1 0.757 0.784 
2 0.093 0.049 
3 0.987 0.988 
4 0.012 0.098 

TABLE IV 

OUTPUT FOR DIFFERENT GAP SIZES OF T H E  DIRECTIONAL COUPLER 
RATIO OF THE OPTICAL POWER I N  GUIDE 2 TO THE TOTAL POWER AT THF 

STRUCTURE S H O W N  I N  F I G  4.  AT THE I N P U T ,  GUIDF 1 IS EXCITED WITH THE 
EIGENMODE OF THE WAVEGUIDE. THE LENGTH OF THE UNIFORM SECTION L 

IS MAINTAINED TO BE 2 mm. 

Two-Dimensional Three-Dimensional 
Gap. g( fim) FD-BPM EFD-BPM 

2.5 
3 
3.5 

0.093 
0.304 
0.841 

0.050 
0.304 
0.799 

strate, a 2.5 pm section with 35 mesh points above it in 
the region containing the epilayer under the rib, and a 3 
pm section above that with 9 mesh points in the air re- 
gion. For this mesh choice the maximum propagation step 
size for stability is 0.02 pm. In the calculations propa- 
gation step size is chosen as 0.019 pm. It should be noted 
that this step size is 250 times smaller than the step size 
used in FD-BPM analysis. The results are summarized in 
Table 111. As can be seen, the effective index approxi- 
mation and FD-BPM analysis in this case is quite good 
compared with the full three-dimensional results. The ra- 
diation loss due to the branched section is evaluated using 
both the two-dimensional FD-BPM and three-dimen- 
sional EFD-BPM. For the two-dimensional FD-BPM, the 
excess radiation loss is about 0.04 dB whereas it is about 
0.12 dB for the three-dimensional EFD-BPM. This sug- 
gests that the two-dimensional FD-BPM tends to give less 
excess radiation loss than the three-dimensional EFD- 
BPM even though for both cases the excess loss is very 
small. 

The ratio of optical powers in the guide 2 at the output 
for g = 2.5, 3, and 3.5 pm when guide 1 is excited with 
its eigenmode, are also calculated both with the two-di- 
mensional FD-BPM and with the three-dimensional EFD- 
BPM keeping the length of the uniform region L as 2 mm. 
The mesh configurations are the same as before. The re- 
sults are summarized in Table IV. It is noted that the two- 
dimensional FD-BPM combined with effective index ap- 
proximation is an efficient and good approximate ap- 
proach for the analysis of shallowly etched rib waveguide 
structures . 

V. EXPERIMENTAL RESULTS ON DEEPLY ETCHED GaAs 
RIB WAVEGUIDE ZERO-GAP COUPLERS 

The accuracy of any theoretical method should be ul- 
timately compared with the experimental results. For this 
purpose deeply etched GaAs rib waveguide zero gap cou- 
plers are fabricated and characterized. Deeply etched rib 
waveguides with large mode size are quite attractive be- 
cause of their compatibility with single-mode optical fi- 
bers. However, a fully three-dimensional analysis is inev- 
itably required for the accurate modeling of such guided- 
wave devices due to deeply etched side walls. The cross- 
sectional profile of the rib guides together with the non- 
uniform mesh configuration used in the EFD-BPM anal- 
ysis and the top view of the zero-gap coupler are shown 
in Fig. 5. In the experiments only one waveguide width 
of nominal value 4 pm and several different zero-gap cou- 
plers with different uniform region lengths L are used. The 
nominal width of the uniform zero-gap section was 8 pm. 
In the fabrication, chemical vapor deposition (CVD) 
grown undoped GaAs layers on 100 oriented n +  GaAs 
substrates were used. The epilayer thickness and the dop- 
ing levels were 6 pm and 1 x 10l6 cm-', respectively. 
The substrate doping was specified to be in the low 10'' 
cm-3 range. The exact knowledge of the index step be- 
tween the epilayer and the substrate is crucial to the ac- 
curacy of the theoretical analysis. Therefore the index step 
between the epilayer and the substrate was experimentally 
measured. For this purpose different slab guides were ob- 
tained by etching the epilayer at 1 pm steps and slab 
guides were tested at 1.15 pm with TE polarization. For 
this wafer it was found that 4 pm thick slab supported 
only the fundamental mode while 5 pm and thicker layers 
supported the first- and second-order modes. The index of 
the guiding layer, which is undoped GaAs, is 3.45 at 1.15 
pm [23]. Knowing this index, the wavelength and the lim- 
its on the cutoff thickness of the second slab mode, one 
can use the well-known slab dispersion relationship to 
confidently say that the index step is between 4.25 x I O p 3  
and 6.25 X IO-'. Thus it is a reasonable choice to take 
the index step as (5.25 _+ 1) x 

is 
used. The rib guides were fabricated using reactive ion 
etching (RIE). As a, mask for RIE, a trilevel mask was 
used. First, a 3000 A thick PMMA layer was spin coated 
on the GaAs material and baked. Then a 500 A thick Ti 
layer was evaporated on the PMMA layer. This layer is 
used to prevent the intermixing of PMMA with the pho- 
toresist layer used in standard lithography in the next stee. 
Finally using standard lithographic techniques IO00 A 
thick Ni waveguide patterns were defined on the Ti layer 
using lift off. Ni patterns defined this way provide the 
masking for RIE. After the mask fabrication is complete 
the patterns were etched 4 pm deep using chlorine based 
RIE. After the etching was done, the RIE mask was re- 
moved by dissolving PMMA in acetone. Due to the lim- 
itations of the optical lithography process used, the ends 
of the curved waveguides, where they are connected with 

In the simulations, a nominal value of 5.25 x 
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45 mesh 
Y,pm points 

4.7pm 

19 ns I3.44475 
8 mesh points 

11 mesh points 
15 

0 
X 

Input port L 1400pm 

- / output I 'tZ 2.5 pm blunt 50 mm radius of 
taper end curvature 

Fig. 5 .  Cross-sectional profile of the GaAs rib waveguides and schematic 
top view of the zero-gap couplers used in the experiments. On the cross- 
sectional profile of the single waveguide the nonuniform mesh configura- 
tion in the j direction is also indicated. 

the zero-gap coupling region at the center, did not turn 
out to be smooth and resulted in a 2.5 pm blunt taper end 
as indicated in Fig. 5 .  The waveguide width after the 
etching was measured to be 4.7 pm. The width of the 
uniform zero-gap section at the center was 9 pm. To as- 
sess the radiation loss of the zero-gap couplers straight 
waveguides were also fabricated beside each zero-gap 
coupler. 

During the optical measurement the output of a 1.15 
pm He-Ne laser was endfire coupled into the guides using 
a microscope objective lens. The near field output pattern 
was imaged onto a vidicon camera and displayed onto a 
TV monitor. For fine alignment purposes piezoelectric 
positioners, which allow a precision less than a microm- 
eter, were used. Fig. 6(a) shows the rib waveguide cross- 
sectional profile at the output of a zero-gap coupler and 
the measured and calculated output field profiles for two 
different lengths of uniform region. The measured and 
simulated output field profiles show good agreement. The 
calculated field profile just after the curved output wave- 
guides shows a fair amount of optical intensity outside of 
the rib waveguides. This is the radiating part of the optical 
field and is mainly due to blunt taper end. In the experi- 
ment, this radiated field profile was not observed because 
of the presence of 5 mm long straight waveguides be- 
tween just after the curved waveguides and the cleaved 
end of the crystal where output profile was measured. 

Relative crossover power and transmission are also 
measured and the results are shown in Fig. 6(b) as a func- 
tion of the length of the uniform zero-gap section. The 
relative crossover power is defined as Pout,/(Pout, + 
Poutz ). Relative transmission is the ratio of the total output 
power in guides 1 and 2 to the output power of a straight 
waveguide next to the zero-gap coupler. The same struc- 
tures are also simulated with EFD-BPM. During the EFD- 
BPM simulations, in the x direction, a uniform mesh with 
2.56 points over a 60 pm window was used. In the y di- 
rection, a nonuniform mesh shown in Fig. 5 was used. 
The propagation step size was 0.075 pm and CPU time 
for propagating the beam over 1 mm was about 80 min on 

L = 200 prn L = 800 pm- 
(a)  
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(b)  
Fig. 6. (a) The cross-sectional profile of the fabricated rib waveguides at 
the output of a zero-gap coupler. The measured and simulated output pro- 
files for two different uniform zero-gap section lengths are also shown. (b)  
The relative crossover power P,,,,, /(P<,,],,  + P,>,,>) and transmission of zero- 
gap couplers as a function of uniform zero-gap section length. The contin- 
uous curves are the results of the simulations and the data points are the 
results of the experiments. 

a SUN-SPARC workstation and 7.5 s on a CRAY-2 su- 
percomputer. In the simulations, first the eigenmode of 
single rib straight waveguide is calculated using the 
method described in Section 111. Then one input arm of 
the coupler was excited with this eigenmode. The power 
at each output arm was found by calculating the overlap 
integral of the resulting field distribution with the eigen- 
mode of the straight waveguide. 

Fig. 6(b) shows that experimental and calculated re- 
sults are in good agreement. The relatively low transmis- 
sion and its oscillatory behavior are due to blunt taper 
ends at the input and output. As the length of the uniform 
zero-gap section L varies the field profile at the blunt taper 
end at the output also varies. Hence the radiation caused 
by this blunt taper end also varies resulting in oscillatory 
transmission behavior. This behavior is also predicted by 
the simulations. 

VI. CONCLUSION 
An efficient and simple three-dimensional explicit finite 

difference beam propagation method (EFD-BPM) to ana- 
lyze an arbitrary three-dimensional waveguiding geome- 
try is described. Condition for the stabiliy of EFD-BPM 
algorithm is derived and it is shown that when stability 
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condition is met power conversation is assured. Its accu- 
racy is confirmed by analyzing singe and coupled z-in- 
variant rib waveguides and comparing the results with the 
previously reported results. The EFD-BPM is an order of 
magnitude faster than the standard BPM employing FFT 
in advancing the beam over a propagation step. To im- 
prove the computational efficiency per propagation step 
even further, EFD-BPM with nonuniform mesh configu- 
ration is developed and applid to the analysis of z-inva- 
riant and z-variant structures. It is confirmed that this ap- 
proach reduces the computation time further by a factor 
of a few while maintaining the accuracy. However, com- 
pared to FFT-BPM the maximum step size for the stabil- 
ity of EFD-BPM is about the same. But due to more than 
an order of magnitude improvement per propagation step 
overall computational efficiency of EFD-BPM was found 
to be at least an order of magnitude better than FFT-BPM. 
With the help of three-dimensional EFD-BPM the appli- 
cability of a two-dimensional finite difference BPM com- 
bined with effective index approximation for weakly guid- 
ing z-variant structure is also studied and verified. Finally, 
experiments on GaAs zero-gap couplers with deeply 
etched rib waveguides are performed and experimental re- 
sults were found to be in good agreement with the non- 
uniform mesh EFD-BPM simulations, once again con- 
firming EFD-BPM to be a very accurate and efficient 
modeling tool for the design and analysis of practical 
guided-wave devices. 
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